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Abstract

Background: The prediction of essential genes from molecular networks is a way to test the
understanding of essentiality in the context of what is known about the network. However, the
current knowledge on molecular network structures is incomplete yet, and consequently the
strategies aimed to predict essential genes are prone to uncertain predictions. We propose that
simultaneously evaluating different network structures and different algorithms representing gene
essentiality (centrality measures) may identify essential genes in networks in a reliable fashion.

Results: By simultaneously analyzing 16 different centrality measures on 18 different
reconstructed metabolic networks for Saccharomyces cerevisiae, we show that no single centrality
measure identifies essential genes from these networks in a statistically significant way; however,
the combination of at least 2 centrality measures achieves a reliable prediction of most but not all
of the essential genes. No improvement is achieved in the prediction of essential genes when 3 or
4 centrality measures were combined.

Conclusion: The method reported here describes a reliable procedure to predict essential genes
from molecular networks. Our results show that essential genes may be predicted only by
combining centrality measures, revealing the complex nature of the function of essential genes.

Background

Modelling the molecular mechanisms present in living
organisms represents an active area of research in biology.
Such modelling is appealing to scientists both in applied
and basic research areas, because they represent a way to
test our basic understanding on how cells are organized.
The models also have the potential to accelerate the dis-
covery of new drugs (e.g., antibiotics) or to guide the engi-
neering of new organisms that are better at producing
desired compounds (e.g., vitamins). Different approaches
are available to build molecular networks, but in any case
these models need to be able to reproduce an observed

feature of a biological system. This ability rests on the
assumed relationship between a biological observed fea-
ture (commonly referred as phenotype) and the molecular
structure of the cell. We will refer to this relationship, as
the structure-function relationship paradigm. This paradigm
may be stated as follows:

S1. A given cellular phenotype is related to the molecular
structure of the cell.

Additionally, the molecular structure of a cell is repre-
sented by a molecular network; that is, the set of molecules
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and molecule-molecule interactions (e.g., genetic rela-
tionships, protein-protein interactions).

According to S1, molecules and their interactions have to
be known in order to model phenotypes. The advances on
DNA manipulation techniques have allowed scientists to
systematically identify all the genes from different organ-
isms and consequently, genes became the first set of mol-
ecules to model phenotypes. It is important to note that
although genes represent only one of the many different
types of molecules in biological systems (e.g., proteins,
ions, carbohydrates, lipids), genetic relationships on the
other hand represent different molecular interactions
(e.g., protein-protein interactions, protein-DNA interac-
tions). Mapping genetic relationships has the advantage
that these are observed by relatively simple experiments
such as gene deletion experiments or gene expression
studies. For instance, using a culture media without
Arginine to grow different gene deletion mutant strains
may be used to identify genes related to the biosynthesis
of Arginine; alternatively, extracting and comparing the
mRNA from a strain cultured with and without Arginine
may be used to identify up-regulated gene transcripts in
the presence of Arginine, indicating their potential func-
tional relationship. Thus, having access to a full set of
genes and their relationships (otherwise, having access to
a genetic network) may ultimately render a model to
describe a phenotype.

The goal of the present work is to describe a computa-
tional procedure to achieve the reliable prediction of
essential genes from such genetic networks. To achieve
that, we need access to a set of molecular networks and
algorithms reproducing some features of essentiality. The
need for different sets of networks is justified by the cur-
rent incompleteness of biological networks.

In previous studies the effective reconstruction of tran-
scriptional regulatory networks (TRN) has been achieved
[1,2]. Wagner for instance [1], described an algorithm
where parsimonious TRN can be built based on any exper-
imental data source in only n? steps, being n the number
of genes. A parsimonious network uses the lowest number
of genetic relationships to connect every pair of genes [1].
However, the algorithm does not attempt to establish the
completeness of the network, instead it depends on the
available data. Alternatively, the group of Palsson [2]
described a procedure for TRN reconstruction as well. To
validate the completeness of the TRN, predicted cell
growth rates from the metabolic enzymes included in the
TRN are compared with observed ones [2]. Although this
is a very powerful tool, we argue that these are based on
chemicals while genetic networks are based on genes; as
we have argued above, information for genes is now read-
ily available and more complete [3]. Other reports have
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used all the known genetic relationships for yeast to infer
the role of genes [4]; however, not all the reported genetic
relationships are used in every particular process per-
formed by yeast (e.g., sexual reproduction may use a dif-
ferent set of genes and/or genetic relationships than cell
division). Hitherto, to the best of our knowledge, the
available experimental data and theoretical approaches
have not completed the mapping of all the genetic rela-
tionships for every cellular phenotype.

On the other hand, the diverse nature of essential genes
[5] may explain the limited success of previous attempts
to predict them [6-8]. Hence, in the current scenario
where there is uncertainty about the completeness of the
network it is likely that the algorithms may fail to identify
the true nature of essentiality. In order to evaluate the sig-
nificance of the algorithm used to predict essential genes,
it is necessary to vary both the network structure and the
algorithm to predict essentiality. In this way, by compar-
ing the significance of the prediction algorithm in differ-
ent network structures it is possible to find the most
significant result among the tested networks.

Here, we show the first combined analysis of these two
aspects to reliably predict the essential genes from net-
works as follows (see Figure 1). First, according to S1, a
phenotype may be represented as a molecular network
with n genes; formally, a network G is defined by two sets,
a set of genes V and a set of relations R, such that:

V(G) = {v1, v2, ... v} where n is the total number of
genes in the network and V(G) is not empty.

R(G) < V(G) x V(G) such that R(G) is not empty.

Now we define the set of critical genes associated to a phe-
notype as ¢; thus:

cc V(G)
Consequently, we postulate that:

P1. There should be a mathematical operation on G to
rank V(G) in a way to obtain c.

It is expected that G is incomplete, thus the ability to iden-
tify ¢ may be limited as well. In that condition, the best
approach to predict c is to identify the G that allows for
the most complete prediction of set c. This constitutes the
limiting condition of P1.

In the present work, we will develop a method based on
postulate P1, that is, we will describe a method to achieve
the reliable prediction of essential genes from genetic net-
works. We propose as the mathematical operation
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Reliable prediction of essential genes. Prediction of essential genes depends on both the quality of the network and the
efficacy of the prediction algorithm to reproduce the features of essentiality. To account for these two factors, our method
uses a set of n networks modelling a biological process, and m different centrality measures are applied to these to identify
both the network(s) with the largest predictable set of essential genes and the centrality(ies) more effective to identify the
essential genes. To determine the reliability of these predictions it is necessary to have access to the set of known essential

genes.

described in P1 the calculation of network centralities. A
centrality is defined, as a measure that computes the rela-
tive importance of network elements (genes) within a net-
work. Therefore, given a centrality measure that satisfies
postulate P1, this must include the basic features that
determine the essentiality of a gene within the network.

Methods

Databases and computer programs

The genetic metabolic networks of S. cerevisiae described
in this work were based on the KEGG PATHWAY database
[9] and the hand-curated model iND750 [10]. Genetic
metabolic networks were built by connecting the genes
annotated as enzymes through metabolites. That is, two
genes coding for metabolic enzymes may be linked if they
share a metabolite that is the product of one of the reac-
tions and the substrate for the other. All metabolites were
considered here except in the cases indicated (see below).
Additionally, a depurated version of KEGG was built and
named KEGG2. This version was obtained by eliminating

the genes in the KEGG database without an EC classifica-
tion. In KEGG2, genes with the same EC number and dif-
ferent substrate were forced to accept all substrates found
for the given EC number. All the programs used to rebuild
and analyze the genetic metabolic networks were coded in
Java programming language.

Directionality of the networks

Enzymatic reactions involved in metabolism could be
either reversible or irreversible. We refer to this as the reac-
tion type. However, genetic relationships are not reversi-
ble or irreversible as a consequence of the experimental
way these are detected (gene deletions or gene transcrip-
tion profiles). To account for these different ways to rep-
resent the relationships of genes, we built genetic
metabolic networks assuming the annotated reversibility
of the reaction (e.g., KEGG-derived networks with the
"type" word, e.g., KEGGtype network) or assuming all the
genetic relationships were reversible (KEGG-derived net-
works without the "type" word, e.g., KEGG or KEGGpath)
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(see Table 1). In summary, all KEGG-derived networks
named without the "type" keyword include reversible
genetic relationships (i.e., undirected networks).

Pathway insulation and compartamentalization

For decades metabolism has been organized into path-
ways and recently it has been observed that genes in path-
ways are often co-regulated [11]. It is also well known that
the genes of many pathways are not always expressed. For
instance, enzymes involved in aerobic primary metabo-

Table I: Genetic metabolic networks used in this study
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lism are not present during anaerobic conditions [12]. In
order to account for such insulation in metabolic path-
ways, we built a group of genetic metabolic networks by
only linking genes in the same pathway; additionally, we
also different pathway through the genes present in these
different pathways (e.g., KEGGpath network). Alterna-
tively, we build metabolic networks by linking all genes
disregarding the pathway (e.g., KEGG network) (see Table
1). In summary, all KEGG-derived networks labelled with
the "path" keyword include genetic relationships

Network name

Over-linked metabolites

Vertices:Edges Overlap (%)

KEGG H20O, ATP, ADP, NAD+, NADH, NADP+, NADPH, Oxygen 636:10038 33.85
KEGGtype Ibid 629:6590 26.81
KEGGpath Ibid 634:7752 31.57
KEGGtypepath ibid 621:5223 25.11
KEGG2 Ibid 609:10518 34.24
KEGG2type Ibid 602:7099 27.44
KEGG2path Ibid 608:8130 31.89
KEGG2typepath Ibid 595:5691 25.65
iND750_0 H20, H+ 990:8427 19.19
iND750_1 H20O, H+, Pi 976:6995 18.27
iND750_2 H20O, H+, Pi, ATP 976:6278 17.85
iND750_3 H20O, H+, Pi, ATP, Glu-L 974:5742 17.60
iND750_4 H20, H+, Pi, ATP, Glu-L, ADP 969:5186 17.18
iND750_0nh H20, H+ 634:4761 19.19
iND750_Inh H20O, H+, Pi 619:3963 18.27
iND750_2nh H20, H+, Pi, ATP 618:3387 17.85
iND750_3nh H20O, H+, Pi, ATP, Glu-L 617:3122 17.60
iND750_4nh H20, H+, Pi, ATP, Glu-L, ADP 613:2720 17.18

The names of the KEGG and the iND750-derived networks are indicated under the "Network name" column. Note that the last five networks end
with an "nh", indicating that hypothetical reactions were not included in these networks. The column labeled "Over-linked metabolites" indicates
the metabolites being removed while reconstructing the network: H2O: water; H+: a proton; Pi: inorganic phosphorus; ATP: adenosine
triphosphate; Glu-L: L-glutamate and ADP: adenosine diphosphate, NADP+/NADPH: Nicotinamide adenine dinucleotide phosphate, NAD/NADH:
Nicotinamide adenine dinucleotide. The number of genes (values in bold) and gene-to-gene relationships (values in italics) of each graph are
indicated separated by a colon in the Vertices:Edges column. The column labeled "Overlap (%)" indicates the percentage of known gene-to-gene
relationships (network links) found in each reconstructed network reported in the probabilistic functional network of yeast genes [4] that included
two metabolic genes. According to the procedure to build these networks, KEGG, KEGGpath, KEGG2 and KEGG2path networks are undirected.
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restricted to the annotated pathways, even if they share a
metabolite.

Finally, it is well known, that inside eukaryotic cells there
are barriers to keep proteins and small molecules sorted in
compartments [10]. Such insulation was taken into
account in the iND750 derived networks. Specifically, we
did not link genes in different cellular compartments.
Additionally, two groups of networks were derived from
the hand-curated iND750 network. In the first group, all
the reactions contained in the original model were consid-
ered (e.g., iIND750_0, see Table 1), while in the second,
hypothetic reactions were eliminated (e.g., iND750_0nh).
For each of these groups, different sets of over-linked
metabolites were eliminated from each network (see
Table 1).

Elimination of genetic relationships emerging from highly
connected metabolites

Including highly connected metabolites (e.g., ATP or
water) into reconstructed metabolite networks induce a
small average path length of 3 [13]. By eliminating highly
connected metabolites, more distinct chemical metabolic
networks have been obtained in [14]. All these recon-
structed networks were treated as bipartite networks, com-
posed of enzymes and metabolites, and the effect on the
prediction of essential genes have not been evaluated.
Here, we evaluated the effect that eliminating highly con-
nected metabolites has on the prediction of essential
genes using genetic networks. All the KEGG-derived net-
works eliminated the following over-linked metabolites:
water, ATP, ADP, NAD+, NADH, NADP+, NADPH and

Oxygen.

Network properties

Two sets were determined from these genetic networks,
the genes in a network (vertices) and the connections
between these genes (edges). From these sets, the eccen-
tricity and the radius were determined; eccentricity is
defined as the largest shortest path found for a given gene,
while the radius is defined as the smallest eccentricity
value for all genes. Thus, if there is no path connecting two
genes, the radius of a network is equal to infinitum and
the network is not connected. This measure was also used
to determine the presence of the giant strong component
in our models [15].

Centrality measures

We used 16 different centrality measures (see Table 2 for
a mathematical description of each): eccentricity, 1/eccen-
tricity, closeness, average distance, shortest-path between-
ness, Katz index (for the network under analysis and the
corresponding inverse network), PageRank (for the net-
work under analysis and the corresponding inverse net-
work), radiality, integration, clustering coefficient, 1/
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clustering coefficient, degree (in and out) and sphere
degree (the number of reachable vertices up to a distance
of 2) [16-18]. An inverse network is derived from a
directed network by switching the nodes in every edge.
Note that when a centrality value was equal to zero, the
inverse value was set to zero in our study. Eccentricity,
average distance, closeness, shortest-path betweenness,
Katz index, PageRank, radiality and integration are global
centrality measures while the others are local in the sense
that the measure only depends on the immediate connec-
tions of a gene. Thus, every gene is assigned a centrality
value and the list of genes is sorted in a descendent fash-
ion. From this ordered list, we took every possible fraction
of the list and determine the correspondence with the
known lethal genes coding for metabolic enzymes.

Additionally to performing the analysis based on a single
centrality, we combined every individual centrality in
groups of 2, 3 or 4 centralities and generated a combined
centrality score for each gene in the network, CS(v),
according to the following formula:

CS(v) = (Y] ((MAX_C; = C;(v)) /(MAX _C; = MIN _C;)*)1/2

Where MAX_C; and MIN_C; define the maximum and
minimum score obtained for ith-centrality in a given net-
work, respectively, C;(v) refers to the centrality of a given
gene and m in the summation refers to the centrality com-
binations evaluated; for instance, m = 2 for groups of 2
centralities, m = 3 for groups of 3 centralities and m = 4
for groups of 4 centralities. CS(v) estimates how far from
the largest observed centrality measures are the centralities
of the genes analysed. Thus, the lower the combined score
is, the higher the individual centrality measures are.

Assessing the reliability of the centrality predictions

The Yeast Genome Consortium [19] provides a list of
genes that upon deletion from the yeast genome prevent
the yeast growth in YPD media. Those lethal phenotypes
arising from deletion of genes involved in metabolism are
considered critical for metabolism function, since inacti-
vation of primary metabolism may lead to cell death. This
included a total of 246 genes: the iND750 networks in this
work have 107 to 115 essential metabolic genes and in the
KEGG and KEGG2 networks this number varies from 127
to 131. The iND750 networks and the KEGG networks
share 93 essential genes.

The genes of each network were ranked according to each
of the 16 centrality values (the 4 non directed networks
used 13 measurements). Therefore, we created 276 gene
lists to compare with the list of known essential genes
when single centrality values were used. When pairs of
centrality were used to score each gene, 2,736 compari-
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Table 2: Centrality measures used in this study
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Centrality Formula Description
In degree Cu = kin(u) Number of connections into node u
Out degree Cu = kout(u) Number of connections out from node u

Sphere degree

Cu = kout(u) + ¥, -, kout(w); w is any neighbor of u.

Number of nodes at | or 2 connections from node u

. . _ le] . . .
Clustering coefficient Cu= Teot(u) (ktot(u)=1) The fraction of connections between the neighbors of node u
k -1
I/Clustering coefficient Cu = kiot(u)(ktot(u)-1)

le]

Eccentricity

Cu = max{dist(u, w): w € V}

The distance between node u and the most distant node in
the net.

|/Eccentricity

Cu = I/max{dist(u, w): w € V}

Average distance

Cu = Ywe v dist(u,w)

Average distance of node u to the rest of nodes in the net

n-1
- n-1 .
Closeness Cu= S we v dist(u,w) Inverse of average distance
©° a Tya . .
Katz Cratz = 2321 o (A ) 1 A node has a larger ckatz value while more paths reach it.
_\'*" ,a a A node has a larger ckatz value while more paths leave the
KatzR Cratz = za:la (A)"1 hode.
PageRank cpr=dPcpr* ((I -d) I) The centrality of a node depends on its incoming connections
and the relative connectivity of these connections
PageRankR cpr=d PTepr + ((1 -d) I) The centrality of a node depends on its outcoming
connections and the relative connectivity of these
connections
diamG+1—dist(t,u
Integration Cu= Ziev -l (tw) The easiness of reaching node u from any other node
diamG+1-dist(u,t
Radiality Cu= 2te v ( = (ub) The easiness of reaching any node from node u
SP-betweenness Cu = og(stju) The fraction of shortest. !:aths inside the network, which
iy og(sit) utilize node u

In the table, kin(u), kout(u) and ktot(u) refer to the incoming, outgoing and total number of edges of node u. diamG refers to the diameter of the
graph and dist(u, v) stands for the distance between nodes u and v. In clustering coefficient, |e| stands for the observed paths between the
neighbours of a node. In Katz A is the adjacency matrix and o a damping factor. In PageRank d is a damping factor and P the transition matrix. In the
formula for shortest path (SP) betweenness 6 denotes the number of shortest path from s to t. For a more detailed description of these

centralities, please read [17].
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sons were performed, 13,200 for the groups of 3 centrali-
ties, and 48,300 for groups of 4.

The quality of the comparisons was assessed with a
Receiver-Operator Characteristic curve (ROC curve),
where the sensitivity vs. the false discovery rate (FDR) for
each possible cut-off of a ranked gene list is plotted. The
area under each ROC curve (AUC) was calculated using an
empirical method [20]. The AUC is an estimate of how
good a classifier is to differentiate between essential and
non-essential genes. This is a variant to the Mann Whitney
U statistic. An effective classifier will generate an AUC sig-
nificantly greater than 0.50 (the expected AUC value for a
random classifier), therefore we calculated the confidence
intervals (CI) for all AUC scores using the formula CI = +
z * SE(AUC), were z is the z-value for a given significance
level (0.1, 0.05, 0.01 in our case) and SE(AUC) is the
standard error of the AUC [20]. In addition, we calculated
the minimum error (minE) for each ROC curve as follows,
minE = (MIN [(1-sensitivity)2+(FDR)?2]1/2). This tracks the
point of the curve that is closer to a perfect prediction. The
prediction accuracy for each ROC curve was calculated as
[TP+TN]/[TP+TN+FP+FN] [7]. Sensitivity is defined as TP/
(TP+FN), where TP = true positives (genes truly predicted
as essential) and FN = false negatives (missed essential
genes). FDR is defined as FP/(TN+FP), where TN = true
negatives (genes truly predicted as non-critical) and FP =
false positives (missed non-essential genes). Note that
Specificity = 1 - FDR.

Estimating the completeness of the genetic networks

We estimated the fraction of identical edges between each
reconstructed network in this work with the probabilistic
functional network of yeast genes [4]; the percentage of
identical links was estimated by dividing this value by the
number of edges present in the reconstructed network
(See Table 1, column "Overlap").

To estimate the completeness of the networks, the missing
relationships of non-predicted essential genes in the
KEGG2path network were determined by grouping all
essential genes by their Gene Ontology biological process
ID. Then, the missing local relationships of unpredicted
essential genes in these groups were determined.

Using these two criteria, we estimated the completeness of
the reconstructed networks; however, it has to be kept in
mind that there is no precise approach on how to estimate
the completeness of genetic networks, thus our results
may be used as an approximation to this problem.

Results

The reliable identification of essential genes in a biologi-
cal network depends on both the network structure and
the algorithm used to identify the essentiality of genes.

http://www.biomedcentral.com/1752-0509/3/102

Therefore, by using different methods to analyze alterna-
tive representations of the same network, we may identify
on one side the algorithm(s) that reproduce(s) the best
the feature of essential genes presented in the networks
and, on the other hand the network(s) with the largest
identifiable number of essential genes. Here we refer to
these as Rich on Essential Metabolic Genetic network, or
REMG network.

18 different networks were built following the procedures
described above (see Methods). These networks can be
grouped according to the data source used to build them:
KEGG and iND750 (see Table 1). These two data sets con-
stitute the most common sources for metabolism recon-
struction in S. cerevisiae. Note that when reconstructing a
model of metabolism, several assumptions are made
regarding the edge set present in this model. In our study
we consider some of the most common assumptions,
including the reversibility of the relationships, insulation
by organelle or function, and the elimination of highly
connected metabolites (see Methods). Thus, the genetic
networks used in this study are similar (see Table 1) and
constitute a sampling of the common reconstructing strat-
egies to build models of metabolism.

All the networks analyzed here were disconnected (i.e.,

these presented at least one gene for which there was not
path to connect it with the rest of the genes) and presented

0.8

AUC
—-
——
—-

0.6
N
057 ; ‘
1 2 3 4
Group of Centralities
Figure 2

The efficacy to predict essential metabolic genes
from centrality measures. The maximum Area Under the
ROC Curve (max AUC) obtained from the Mann-Whitney
test (see Methods) applied to the |8 different metabolic net-
works used in this study (see Table I) are shown in the plot
as black squares. Each square represent the max AUC
obtained from groups of 1, 2, 3 or 4 centrality measures used
to differentiate essential from non-essential genes. The verti-
cal lines crossing each square represent the confidence inter-
val at 99%.
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a giant component (data not shown), as previously
reported for other metabolic networks [15].

Prediction of essential genes by a single centrality measure
Using the Mann Whitney U test normalized by the
number of possible pairings (see Methods), we evaluated
the efficacy of 16 different centrality measures to differen-
tiate essential from non-essential genes on 18 genetic net-
works. We selected as the best network-centrality pairs
those with i) an AUC score above 0.50 and, ii) an AUC
score within a confidence interval above 0.50 with 99% of
significance (see Methods). From this analysis, we
detected that only the KEGG2path-Closeness pair satisfied
these two criteria (see Additional File 1 and Figure 2).
However, for the 276 tests performed (14 x 16 + 4 x 13),
almost 3 network-centrality pairs were expected by chance
to be positive at this level of significance. Thus, our results
indicate that single centrality measures may not identify
critical genes with statistical significance.

Prediction of essential genes by combining centrality
measures

We noticed that genes predicted by individual centrality
measures did not overlap (to access the specific sets of
overlapping genes see http://bis.ifc unam.mx:8090/REM
GNets/SupplementaryData/SuppTable2.html); therefore,
we hypothesized that combining the predictions from dif-
ferent centralities may improve the reliability achieved by
the individual centralities. To test the hypothesis, we com-
bined the scores of 2, 3 and 4 centrality measures in a sin-
gle Combined Score, CS(v), and assigned this new
centrality measure to every gene (see Methods). That is,
instead of assigning 16 different centrality measures to
every gene in a given network, the number of combined
centrality measures was n!/(n-i)!*i! (n: number of indi-
vidual centrality measures applied to a given network; i:
number of combined centralities, i.e., i = 2, 3 or 4). That
is, the number of combined centralities were 2,562,
13,244 and 48,300 for the groups of 2, 3 and 4 individual
centrality measures, respectively. For each group of com-
bined centralities, the efficiency in differentiating essen-
tial from non-essential genes was estimated using a
variant of the Mann Whitney U test (see Methods). In this
case too, the best network-"combined centrality meas-
ures" pairs were selected based on an AUC score > 0.5
where the confidence interval at 99% was > 0.5. Figure 2
shows the maximum AUC scores obtained for groups of 2,
3 and 4 centralities. The numbers of positive hits observed
(884, 5,023 and 20,250) are clearly above the expected
number of positive hits by chance (26, 132 and 483 for
the groups of 2, 3 and 4 combined centrality measure-
ments, respectively), at 99% confidence level (see http://

bis.ifc.unam.mx:8090/REMGNets/
SuppTable3?modo=2&table=suppTable3A&orderBy=AU
C&orderMode=DESC, http://bis.ifc.unam.mx:8090/

http://www.biomedcentral.com/1752-0509/3/102

REMGNetSuppTable3?2modo=2&table=suppTable3B&or

derBy=C&orderMode=DESC and http://
bis.ifc.unam.mx:8090/REMGNets/

SuppTable3?modo=2&table=suppTable3C&orderBy=AU
C&orderMode=DESC). Particularly, the combined cen-

tralities closeness-"1/clustering coefficient", excentricity-
"1/clustering coefficient”, 1/excentricity-"1/clustering
coefficient" and radiality-"1/clustering coefficient" ren-
dered significant predictions in both iND750 and KEGG
networks.

Completeness of REMG networks

The combination of more than 2 centralities did not
improve the correct prediction of metabolic essential
genes (see Figure 2). In this case, it is possible that some
essential genes may have not been detected because
REMG networks do not include all the relevant genetic
relations for metabolism, among other reasons. Indeed,
we observed that those networks did not include all the
known genetic relationships for metabolic genes: only
17% to 34% of all known metabolic genetic relationships
(see Methods) are included in any given network used in
this study (see Table 1).

Furthermore, to identify the relevant missing genetic rela-
tionships in a REMG network (KEGG2path network, as
detected by combining 1 or 2, 3 or 4 centrality measures;

see http://bis.ifc.unam.mx:8090/REMGNets/
SuppTable3?modo=2&table=suppTable3A&orderBy=AU
C&orderMode=DESC, http://bis.ifc.unam.mx:8090/
REMGNetSuppTable3?modo=2&table=suppTable3B&or
derBy=C&orderMode=DESC and http://

bis.ifc.unam.mx:8090/REMGNets/
SuppTable3?modo=2&table=suppTable3C&orderBy=AU

C&orderMode=DESC respectively), we aimed at the
unpredicted essential metabolic genes. It has been shown
that essential genes tend to be part of Essential Complex
Biological Modules [21]; in that case, the missing local
genetic relationships of unpredicted essential genes may
be found within these modules. As a proof of concept,
essential genes were predicted by both local (Clustering
coefficient) and global (Closeness centrality) centrality
measures using the minimum error criteria in each case.
This identifies 99 essential genes out of 131 total known
metabolic essential genes (see http://
bis.ifc.unam.mx:8090/REMGNets/SupplementaryData/

SuppTable2.html). The missing 32 essential genes may be
reduced to 18 by including the essential genes predicted
with every local centrality measure (YBR153W, YDR236C,
YDRO50C, YKL192C, YNRO16C, YBR196C, YDLO55C,
YBLO76C, YPRO33C, YPL160W, YFL022C, YDRO23W,
YGR185C, YHRO019C, YGR094W, YDR341C, YBR121C,
YDRO037W). These genes were classified using the April's
2008 Gene Ontology classification [22] and found that 6
(YERO03C, YKL152C, YCRO12W, YKL182W, YPL231W,
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YBR256W) out of these 18 unpredicted essential meta-
bolic genes shared the same classification with predicted
essential genes (see Additional File 2). According to the
reported probabilistic functional gene network of yeast
[4], these 6 genes are engaged in 119 different metabolic
genetic relations, while only 26 of these are present in the
KEGG2path network (data not shown). Thus, the REMG
network KEGG2path does have missing genetic relation-
ships.

Discussion

Our work describes a procedure to identify essential genes
from genetic networks (see Figure 1). We claim than in the
current scenario where the knowledge on the molecular
network structures is not complete yet, it is necessary to
test the mathematical operation to reproduce the essenti-
ality of genes beyond a single model network. To achieve
this, we report a procedure that simultaneously varies
both the network structure and the mathematical opera-
tion that reproduces gene essentiality. Considering the
infinite number of possible network structures for a given
set of genes, a reasonable approach is to use knowledge-
based networks reconstructed with different criteria.
Hence, we used 2 knowledge-based networks sharing a
common set of genes and genetic relationships (i.e.,
KEGG and iND750) and use variations accounting for
some of the most common assumptions during metabolic
network reconstruction (see Methods and Table 1).

To differentiate essential from non-essential genes on 18
different metabolic genetic networks, a total of 204,233
centrality calculations were performed using 16 different

http://www.biomedcentral.com/1752-0509/3/102

centrality measures. Our results indicate that closeness
centrality applied to the KEGG2path network identify the
largest fraction of essential metabolic genes (see Addi-
tional File 1). As stated, this result is in agreement with
previous reports showing that global centrality measures
(e.g., betweeness, closeness, synthetic lethality) and other
chemical-based approaches [23-25] are efficient identifi-
ers of essential genes [26-32]. However, when the overall
number of predictions in our study is taken into account,
this prediction is not significant: closeness must have
been observed at least 4 times as a reliable predictor in
these 18 similar networks. Hence, closeness highly
depends on the structure of the KEGG2path network to
achieve the correct identification of essential genes. We
conclude that none of the single centrality measure tested
can predict essential genes in a statistically significant way.

The discrepancy of our results with previous reports may
be explained also by the different statistical analysis per-
formed: in previous studies the prediction of essential
genes is achieved at one particular centrality cut-off value
(e.g., top 20% of genes with largest centrality values) and
for that cut-off value one statistical parameter is reported
(i.e., sensitivity, specificity, accuracy; see Table 3 for a
summary of some of these reports). This assumption may
induce errors because the parameters reported in the Table
are dependent on the chosen cut-off value: for large cut-
off values, the sensitivity tend to present large values and
the specificity small ones, while this trend may be reversed
for small cut-off values. Our method considered all possi-
ble cut-off values and we did not observe any statistical

Table 3: Comparison of statistical parameters used to estimate the efficacy to identify essential metabolic genes in yeast

Model Method Essentials/Non-essentials Sensitivity Specificity Error Accuracy Reference
iFF708 FBA 23/90 0.13 | 0.87 82% 22
iFF708 FBA 91/508 0.31 0.95 0.69 85% 6
iFF708 FBA 79-146/562-629 0.40-0.53 90-96% NR NR 33
iND750 FBA I 18/NR 0.31 NR NR NR 10
iLL672 FBA NR/NR 0.68-0.80 96-98% NR NR 33
iFF708 MOMA 46/302 0.60 0.92 0.41 88% 34
iLL672 MOMA NR/NR 0.73-0.80% NR NR NR 33
iND750 SA 100/NR 0.14 NR NR NR 7

Previous studies on the efficiency to identify essential metabolic genes on yeast, report different statistical parameters of confidence (Sensitivity,
Specificity, Error and Accuracy columns), and commonly use a single network (Model column) and a single method (Method column) to identify
essential genes. The data were obtained from the works reported in the "Reference” column. FBA: Flux-Balance Analysis; MOMA: Method of
Minimization of Metabolic Adjustment; SA: Synthetic accessibility; NR: a value not reported in the cited reference.
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significance in the predictions of gene essentiality with
any individual centrality measure.

Because of this, it is valid to ask whether the current net-
work structure of metabolism may be efficiently related to
gene essentiality? Recent studies shows that the incom-
plete knowledge of gene function in metabolism cannot
explain incorrect gene essentiality predictions achieved by
centrality because other factors may be responsible for the
essential role of genes in metabolism [8,21,33,34]. How-
ever, we argue that other ways to measure centrality in net-
works may improve the correct prediction of essential
genes. Our argument is based on the observation that dif-
ferent essential genes are predicted by different centrality
measures (see http://bis.ifc unam.mx:8090/REMGNets/
SupplementaryData/SuppTable2.html). Thus, combining
centrality measures might improve the significance of
these predictions.

Indeed, combining 2 centrality measures improved the
overall significant predictions (see Figure 2). The com-
bined predictions that specifically achieved the best
results included both local and global centralities (see

http://bis.ifc.unam.mx:8090/REMGNets/
SuppTable3?modo=2&table=suppTable3A&orderBy=AU

C&orderMode=DESC, http://bis.ifc.unam.mx:8090/
REMGNetSuppTable32modo=2&table=suppTable3B&or
derBy=C&orderMode=DESC and http://
bis.ifc.unam.mx:8090/REMGNets/

SuppTable3?modo=2&table=suppTable3C&orderBy=AU
C&orderMode=DESC). Particularly, the top-ranked com-

bined centralities (AUC > 0.60) successfully identified
essential genes in both KEGG and iND750 networks: the
observed number of predictions (4 or more) for these 4
combined centralities is above the expected number in a
random prediction for the 18 different networks tested (p
= 0.01). These combined centralities are composed by the
local centrality 1/"clustering coefficient" and the global
centralities closeness, radiality and excentricity. Small 1/
"clustering coefficient" values identify genes with highly
connected neighbouring genes, like those at the edge of
networks where the leaf node (last node in the network)
only has 1 single neighbour to which is connected; hence,
genes with large CS(v) values would tend to be at the end
of metabolic pathways where many critical enzymatic
reactions are located. On the other hand, closeness, excen-
tricity and radiality estimate how near any gene is from
the others; thus, genes with high values of these centrali-
ties tend to be hubs for the network communication
where many essential proteins are located too. Thus, com-
bining these two centrality measures identify genes that
are hubs for metabolism, genes located at the end of met-
abolic pathways or both.

http://www.biomedcentral.com/1752-0509/3/102

These results indicate that the best way to represent gene
essentiality is by combining the single features estimated
by individual centrality measures. This in turn, reflects the
complex nature of essential genes [5]. Specifically, genes
are essential because they establish different relationships
(local and/or global) with other genes of an organism:
these genes may have local contacts in pathways essential
for cell survival (e.g., glycolysis); alternatively, essential
genes may have distant relationships with genes in other
non-essential pathways that become essential to maintain
cellular homeostasis for instance.

It is important to emphasize that although our method
improved some limitations of previous works to reliably
identify essential genes, it does not correctly predict all the
known essential metabolic genes. This is expected, as the
essentiality of some genes comes from regulatory dynam-
ics and quantitative aspect of their function. Although
such aspects cannot be captured neither by the static net-
works analyzed in the work nor by the centrality measures
tested here, it is possible that some missing essential genes
may still be detected by adding missing genetic relations
in metabolic networks, if any. To determine if there are
missing genetic relationships in our REMG networks, we
performed two analyses: i) the identification of known
metabolic genetic relationships (see Methods) in our
reconstructed networks and ii) the identification of the
missing local relationships of non-predicted essential
genes (see Methods).

Our results show that many known metabolic genetic
relationships are missing in our networks. In that case,
some improvements in the prediction of essential genes
may be achieved by adding some of these missing genetic
relationships; but which are the missing relations to be
added?

We show how this can be achieved in a particular REMG
network (KEGG2path) by extracting the unpredicted
essential genes from the Essential Complex Biological Mod-
ules [21]. We observed that only 6 out of 18 unpredicted
essential metabolic genes share the same classification
with truly predicted ones (see Additional File 2) and may
have local interactions within the essential complexes
they belong to. For instance, the gene YER003C is an
unpredicted essential gene that shares the same biological
process classification (i.e., GDP-mannose biosynthetic
process) with essential genes (see Additional File 2); the
location of YER003C is at the end of a metabolic network
and connects two pathways, thus it may be detected by
our approach. Interestingly, the 2 genes that constitute the
GDP-mannose biosynthetic process in S. cerevisiae were
part of the KEGG dataset, but KEGG did not include the
GDP-mannose biosynthetic pathway, thus our REMG net-
work did not include this relationship. In summary, our
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REMG network does have missing relations. Adding some
of these may have improved the prediction of essential
genes using our method.

As noted above, the essential role for some genes is deter-
mined by factors others than those included in network
structures, such as the variations on the media composi-
tion and/or kinetics. Therefore, our method may comple-
ment these other analysis as well as to guide
experimentalists to direct experiments to complete our
understanding about the structure-function relationship
present in metabolism.

Conclusion

In summary, we describe an effective procedure to identify
essential genes from genetic networks. Our method is use-
ful in the current scenario where there is uncertainty about
the completeness of the network and consequently, in the
correct representation of gene essentiality. We show that
essentiality is represented by a combination of centrality
measures, revealing the complex nature of the function of
essential genes. It is expected that further improvements
in essential gene predictions may be achieved by adding
missing genetic relationships into metabolic networks.
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