
BMC Systems Biology

Research article
A model invalidation-based approach for elucidating
biological signalling pathways, applied to the chemotaxis
pathway in R. sphaeroides
Mark AJ Roberts1,2,3, Elias August1,3, Abdullah Hamadeh1,3,
Philip K Maini3,4, Patrick E McSharry3,5, Judith P Armitage2,3

and Antonis Papachristodoulou*1,3

Addresses: 1Control Group, Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK, 2Department of
Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK, 3Oxford Centre for Integrative Systems Biology,
Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK, 4Centre for Mathematical Biology,
Mathematical Institute, University of Oxford, 24-29 St Giles’, Oxford, OX1 3LB, UK and 5Mathematical Institute, University of Oxford,
24-29 St Giles’, Oxford, OX1 3LB, UK

E-mail: Mark AJ Roberts - mark.roberts@bioch.ox.ac.uk; Elias August - elias_august@hotmail.com;
Abdullah Hamadeh - abdullah.hamadeh@eng.ox.ac.uk; Philip K Maini - maini@maths.ox.ac.uk;
Patrick E McSharry - patrick.mcsharry@maths.ox.ac.uk; Judith P Armitage - judith.armitage@bioch.ox.ac.uk;
Antonis Papachristodoulou* - antonis@eng.ox.ac.uk
*Corresponding author

Published: 31 October 2009 Received: 2 June 2009

BMC Systems Biology 2009, 3:105 doi: 10.1186/1752-0509-3-105 Accepted: 31 October 2009

This article is available from: http://www.biomedcentral.com/1752-0509/3/105

© 2009 Roberts et al; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Background: Developing methods for understanding the connectivity of signalling pathways is a
major challenge in biological research. For this purpose, mathematical models are routinely
developed based on experimental observations, which also allow the prediction of the system
behaviour under different experimental conditions. Often, however, the same experimental data
can be represented by several competing network models.

Results: In this paper, we developed a novel mathematical model/experiment design cycle to help
determine the probable network connectivity by iteratively invalidating models corresponding to
competing signalling pathways. To do this, we systematically design experiments in silico that
discriminate best between models of the competing signalling pathways. The method determines
the inputs and parameter perturbations that will differentiate best between model outputs,
corresponding to what can be measured/observed experimentally. We applied our method to the
unknown connectivities in the chemotaxis pathway of the bacterium Rhodobacter sphaeroides. We
first developed several models of R. sphaeroides chemotaxis corresponding to different signalling
networks, all of which are biologically plausible. Parameters in these models were fitted so that they
all represented wild type data equally well. The models were then compared to current mutant
data and some were invalidated. To discriminate between the remaining models we used ideas from
control systems theory to determine efficiently in silico an input profile that would result in the
biggest difference in model outputs. However, when we applied this input to the models, we found
it to be insufficient for discrimination in silico. Thus, to achieve better discrimination, we
determined the best change in initial conditions (total protein concentrations) as well as the best
change in the input profile. The designed experiments were then performed on live cells and the
resulting data used to invalidate all but one of the remaining candidate models.
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Conclusion: We successfully applied our method to chemotaxis in R. sphaeroides and the results
from the experiments designed using this methodology allowed us to invalidate all but one of the
proposed network models. The methodology we present is general and can be applied to a range of
other biological networks.

Background
Understanding the connectivity of signalling pathways
within organisms has always been an important chal-
lenge in biological research. One approach to address
this is to study individual parts in vitro and look at
protein localisation, homologies and co-expression in
order to elucidate signalling pathway connectivity.
Another approach is to use genetics and mutants to
attempt to work out the pathway connectivity in vivo.

More recently, systems biology approaches have used
quantitative measurements to develop mathematical
models that can be used for understanding the properties
of biological signalling pathways and their connectivity
[1-3]. These models are usually a result of cyclic
mathematical model/experiment design iterations,
which aim to yield maximum information about the
system under study [4,5]. It is well known, however, that
models of comparable complexity corresponding to
different pathway connectivities may fit experimental
data equally well, leaving the researcher with the
dilemma of which model is correct [6]. The question
of which model is correct is actually impossible to
answer as model validation is a misnomer. The related
question of which models are invalid can be answered if
appropriate data are available, i.e. the inability of a
model to reproduce a data set renders it invalid. Applied
in this way, model invalidation can be used to reduce the
number of possible models [7], hence narrowing down
the number of possible network connectivities.

Previous work in model invalidation emphasised the
importance of using time-varying inputs to the system
under study. One method of invalidation is to apply a
dynamical input and try to maximise the difference in
the phase shift of two competing deterministic models
[8]. The disadvantage of this approach is that phase-shift
is usually difficult to quantify, especially with noisy data.
Another approach is presented in [9], where the authors
develop a dynamic model-based controller and an input
profile that drives the system output along a prescribed
target trajectory. However, this approach requires the
implementation of a controller in the laboratory which
may prove difficult. Other approaches for model
invalidation are presented in [5,10,11], and the refer-
ences therein. These lack-of-fit methods are used to
invalidate models in a statistical manner, but there can
be problems with this approach as it relies on large data

sets and focuses on obtaining reliable parameter
estimates rather than network connectivities. There is
also the issue that a wide range of model parameters
could give a very similar model output and these
methods would have difficulty coping with this.

In this paper we present a new method for developing
mathematical models of biological signalling networks,
aiming to understand biological network structure.
Given a set of experimental data, models corresponding
to competing network connectivies are first constructed,
all of which can explain wild type data equally well.
Then, experiments which maximally discriminate
between models corresponding to different networks
are designed systematically. These experimental results
are used to invalidate models of these networks,
resulting in a cyclic process which aims to produce a
mathematical model corresponding to a signalling
pathway structure which explains all available wild
type and mutant experimental data. Our method is
applicable to biological pathways for which it is possible
to experimentally modify the input profile and measure
the output simultaneously. One such system is the
chemotaxis signalling pathway, for which tethered cell
experiments can be performed in a flow cell and used to
measure the response of the system to dynamic ligand
concentration profiles.

Chemotaxis is the biasing of movement towards regions
of higher concentrations of beneficial or lower concen-
trations of toxic chemicals by altering the frequency of
flagella switching [12]. The signalling pathway within
E. coli is well understood and is a simple circuit with one
feedback loop [13]. The receptor in the system is a
Methyl-accepting Chemotaxis Protein (MCP) that senses
ligands outside the cell. Associated with the MCP is the
histidine protein kinase called CheA. Binding of certain
ligands to MCP decreases the auto-phosphorylation rate
of CheA. CheA can transfer phosphoryl groups to two
possible response regulators, CheY and CheB. CheY-P
interacts with motor binding sites of the multiple E. coli
flagella motors causing a change in direction. The
receptors are constantly methylated by the action of a
methyltransferase CheR, while CheB-P acts as a methy-
lesterase to demethylate the receptor, making it less
responsive to ligand binding. This creates a feedback
loop, allowing for adaptation. Adaptation allows E. coli
to react to changes of the concentration gradient of
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ligands and not to changes in concentrations per se.
Finally, CheZ acts to dephosphorylate CheY and to
terminate the signal.

Chemotaxis pathways in other species are less well
characterised and often contain multiple homologues of
the E. coli system and sometimes proteins not found in
the E. coli signalling pathway, for example, CheD [13].
Chemotaxis pathways in other species may also have a
different connectivity - for example in S. meliloti, only
one of the two CheY homologues interacts with the
motor, with the other CheY acting as a phosphate sink
[13,14]. Another good example is the chemotaxis path-
way in R. sphaeroides. This bacterium has three chemo-
taxis operons, two of which are expressed under normal
laboratory conditions. Proteins expressed from these
operons have previously been shown to localise to
discrete signalling clusters, one at the poles of the cell,
similar to E. coli, and one in the cytoplasm [15]. This
localisation is thought to prevent cross talk between the
two clusters, allowing them to potentially signal sepa-
rately. Despite these data and corresponding data on the
possible phosphotransfer patterns [16], the way the
signal is transmitted and integrated between the chemo-
taxis clusters to control flagella activity is currently
unknown [17]. This is a good example of the difficulty of
inferring a network structure from homology alone. The
current known connectivity and protein localisation is
shown in Figure 1.

In this paper, we apply our method of model invalida-
tion to different possible and plausible connectivity

structures in the chemotaxis pathway of R. sphaeroides. In
particular, we use the model invalidation/experiment
design cycle outlined above, in order to shed light on the
signalling pathway in R. sphaeroides.

Results
A method for discriminating between competing
network models
A general method for designing experiments so as to render
the outputs of candidate models as different as possible is
described. These experiments can then be performed in the
laboratory and, when compared to the model predictions,
allow the invalidation of some of the candidate models,
even when the experimental data set is noisy.

Our method involves the development of ODE models
corresponding to different signalling pathway connectiv-
ities, all of which can explain current wild type
experimental data equally well. The models have in
common all currently known interactions and differ in
that each model represents a new speculative pathway
connectivity. Some parameters in these models are
known and some others are unknown. Thus in principle,
one can develop a “set” of models with uncertain
parameters for a particular signalling structure, each
member of this set representing the wild type experi-
mental data equally well. We would want to discriminate
between these “sets” of models (which represent signal-
ling pathway structures) but since this is a very hard
problem, our method uses a nominal model from each
set and then designs an experiment in order to
discriminate between these nominal models. Once the
discriminatory experiments between the nominal mod-
els are designed in silico, we a posteriori assess the
discriminatory property of the stimulus by simulating
the behaviour for many, randomly chosen, models
within these sets in order to see whether the outputs
from the two model sets remain distinguishable.

The discriminatory experiments were designed by initi-
ally determining the input profile that maximises the
magnitude of the squared output difference between
models over time. This is typically an optimal control
problem, which is often laborious to solve and can result
in an input profile that is difficult to realize experimen-
tally [18]. In order to design the input profile in a
numerically efficient manner, we used the following
result from linear systems theory: for a linear time-
invariant system, the input that produces the largest
energy output given an input of fixed energy is a
(truncated) sinusoid of a particular frequency [19]. The
frequency can be obtained using a Bode plot (see
Methods section), a tool which is often used in control
and systems theory [20]. Thus, we first linearised the

Figure 1
The chemotaxis pathway of R. sphaeroides. The
currently known localisation and connectivity of the
chemotaxis pathway in R. sphaeroides is shown. The
localisation of the two signalling clusters, one at the pole and
one in the cytoplasm was determined by GFP fusions and
immunoflouresence [15]. The remaining connectivities, was
determined be in vitro phosphotransfer measurements and by
mutant data [16,21]. It is currently unknown what role
CheY3 and CheY4 perform in the system.
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models and then determined this particular frequency of
a sinusoidal input corresponding to the error system, i.e.
the difference between the two models.

If the above method is insufficient to discriminate
between the models then a further method of ‘mutating’
the two models in biological terms or changing para-
meters/initial conditions (e.g. alter the initial protein
concentrations) in engineering terms is applied to
achieve discrimination. These changes can be tested in
silico to determine those which will discriminate best
between the models under test, before undertaking
experiments. The exact nature of the perturbation that
can be performed will vary with the system being
investigated, but could include altering protein levels
by knockout, knockdown (e.g. RNAi in eukaryotes),
protein over expression, etc. Thus the space of perturba-
tion which can be searched will be defined by what is
possible to implement experimentally in the biological
system under investigation.

The designed experiments can then be implemented and
the data obtained from such laboratory experiments
used to help us differentiate between the models under
study, by invalidation. In the above procedure we used
deterministic models and a worst-case input design
procedure, therefore even if the data are noisy, we
expected that we would still be able to invalidate some
of these models.

Determining pathway connectivity in R. sphaeroides
chemotaxis
We applied our model invalidation method to elucidate
unknown interconnections within the R. sphaeroides che-
motactic signalling pathway. In vitro phosphorylation
measurements have determined some of the internal
connectivity and genetic work has shown that only CheY6
and either CheY3 or CheY4 are required for motor switching
and that CheY6 canbind to themotor [21] (Figure 1).Whilst
it has been shown in vitro that all CheYs 1-6 can interact with
FliM, the rotor switch [22], it is currently unknown whether
CheY3 and CheY4 proteins cause flagellamotor switching or
whether some CheYs have an effect on other parts of the
signalling pathway to influence the motor indirectly, for
example, by acting as a phosphate sink.

Model creation and parameter estimation
We created a number of different models representing
various plausible CheY3, CheY4 connectivities within the
chemotaxis system (Figure 2; Methods; SMBL in Addi-
tional File 1). Each of these models contains all the
currently known connectivities, shown in Figure 1, but
differs in which unknown connectivity is considered. To
allow each of our models to represent current, wild type

observations equally well, we fitted the unknown
parameters of each model (K1-3) such that the error
between model prediction and wild type data is small
(Figure 3). These parameters represented the activation
of the receptor on the CheA (K1), and the effect of and
rate of methylation on the receptor (K2,3). These values
are currently unknown biologically. The fitting results in
the models with different connectivities having different
such parameter values.

We obtained the following values for the parameters for
the different models (the units for values of K1 are in μM,
and in 1

sec
for K2 and K3):

• blue: K1 = 1, K2 = 16.5 and K3 = 0.015
• red: K1 = 25, K2 = 3250 and K3 = 0.075
• grey: K1 = 1, K2 = 97.5 and K3 = 0.0023
• magenta: K1 = 1, K2 = 0.4 and K3 = 0.011

We assumed that these parameters are the same for the
polar and cytoplasic clusters, so K Ki i= � .

Figure 2
The models of the R. sphaeroides chemotaxis system.
The different connecitvities modelled for CheY3 and CheY4
are shown in this diagram. The coloured lines represent
three models presented in this paper. In the blue model
CheY3-P and CheY4-P bind to FliM in the motor co-
operatively with CheY6-P. In the red model CheY3 and
CheY4 form a connection with the cytoplasmic cluster and
act antagonistically to ligand in altering the kinase activity of
CheA4; therefore, the increase in CheY3/4-P acts to increase
the rate of CheA3 phosphorlyation by CheA4. In the magenta
model CheY3/4 interact with CheA3 preventing CheY6
binding and hence phosphotransfer. The fourth model
corresponds to a model, in which CheY3 and CheY4 act as
phosphate sinks only and hence do not interact with
anything. This is referred to as the grey model in this paper.
It should be noted that the other three models also contain
this interconnection and that the difference in the grey
model is that only this connection exists.
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We used the Pearson product-moment correlation
coefficient as a measure of correlation between model
prediction and data. For 200 ≤ t ≤ 800 seconds, we found
a good correlation between data and the predictions
made by the models. For example, we obtained a
coefficient of 0.9466 for the blue model and of 0.9544
for the red model.

To ensure our models can fit all current experimental
data we then compared the output of all models to data
previously determined for the deletion of various genes

within R. sphaeroides [21]. One possible plausible
connectivity contains CheY3 and CheY4 acting only as
phosphate sinks, similar to the roles of the multiple
CheY’s in S. meliloti [13,14]. However, the model
representing this connectivity (grey model) was unable
to fit mutant experimental data as it still showed
chemotaxis in a CheY3Y4 deletion state (ΔCheY3Y4).
Another possible connectivity where CheY3 and CheY4
can bind to CheA3 preventing CheY6 binding and
hence phosphorylation was also considered (magenta
model). However, this connectivity was unable to fit

Figure 3
Fitting model parameters. The three parameters K1 - K3 are unknown and thus the models were fitted to wild
type data in order to obtain them. WS8N (wild type) was tethered and recorded for 5 mins without, 5 mins with and
5 mins without 100 μM propionate. The coloured lines represent the best fit of each model to this data by varying
the parameters K1-3 using the methods described in Methods section.
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experimental data as it remained chemotactic in a
ΔCheY3Y4 state (Figure 4A). To strengthen our conclu-
sion that both connectivities are invalid, we ran 200
simulations of the models lacking CheY3 and CheY4, in
which we allowed parameters k1 to k14 (Table 1) to vary
by ± 50%. We observed that, even when we allowed
for greatly different parameter configurations, the

connecitvities modelled by the magenta and grey models
are still chemotactic, hence our invalidation is robust
(Figure 4B). As opposed to the grey and magenta model,
the red and the blue model cannot be invalidated by
above deletion data.

We then designed an experiment to invalidate one or
both of the remaining two models following the model-
invalidation cyclic procedure described in the back-
ground section. As mentioned previously, we chose a
sinusoidal input with a particular frequency to help
discriminate between the models. Using a Bode plot
showing the response of the difference of the outputs to
a sinusoidal input with fixed amplitude, we determined
an input frequency (in terms of frequency of 100 μM
amplitude ligand application) in order to discriminate
best between the remaining two models (Figure 5A). We
chose an input period of four minutes, which was both
close to the optimal in terms of discrimination and easy
to implement experimentally. We then ran simulations
of the time evolution of the models with alternating step
inputs mimicking a sinusoidal input of this period (as

Table 1: Reaction rates used in the R. sphaeroides chemotaxis
models

reaction parameter(s) value(s)

(R1) A2 Æ A2p k1 0.03 s-1

(R2) A2p+ B1 ⇌ A2 + B1p k k2 2
+ −, 0.035(μMs)-1,

0.01(μMs)-1

(R3) A2p + Y3 ⇌ A2 + Y3p k k3 3
+ −, 0.065 (μMs)-1, 0

(R4) A2p + Y4 ⇌ A2 + Y4p k k4 4
+ −, 0.004(μMs)-1, 0

(R5) A2p + Y6 ⇌ A2 + Y6p k k5 5
+ −, 0.0006(μMs)-1, 0

(R6) A2p + B2 ⇌ A2 + B2p k k6 6
+ −, 0.0035(μMs)-1,

0.01(μMs)-1

(R7) B1p Æ B1 k7 0

(R8) Y3p Æ Y3 K8 0.08s-1

(R9) Y4p Æ Y4 K9 0.02s-1

(R10) Y6p Æ Y6 K10 0.1s-1

(R11) B2p Æ B2 K11 0.015s-1

(R12) A3A4p + Y6 ⇌ A3A4+ Y6p k k12 12
+ −, 0.1 (μMs)-1, 0

(R13) A3A4p + B2 ⇌ A3A4 + B2p k k13 13
+ −, 0.006(μMs)-1,

0.07(μMs)-1

(R14)A3A4 Æ A3A4p k14 0.02s-1

The reaction rates used for the models determined by fitting
phosphotransfer in vitro experiments [16,31]. For some of these
reaction rates the best fit is zero suggesting that these reactions
do not occur in vitro.

Figure 4
Simulation of ΔCheY3 Y4. A] Models representing the
mutants lacking CheY3 and CheY4 were simulated. The grey
and the magenta model are chemotactic (they still respond
to stimulus) under these conditions and the steady state of
magenta model is always close to zero. These results do not
correspond to experimental observation. B] The robustness
of our invalidation of the grey and magenta models was
tested by running 200 simulations of the model lacking
CheY3 and CheY4, allowing parameters k1 - k14 to vary by ±
50%. None of these changes produced a non-chemotactic
model.

BMC Systems Biology 2009, 3:105 http://www.biomedcentral.com/1752-0509/3/105

Page 6 of 14
(page number not for citation purposes)



this mirrors what can be implemented experimentally)
to ensure that the difference in the outputs was
sufficiently large to be accurately measured experimen-
tally (Figure 5B).

We observed that the difference between the outputs of
the two models under consideration was insufficient to
allow discrimination between the models experimentally
using this discrimination technique. Therefore, we
sought experimental perturbations which resulted in a
larger difference between the outputs of the different
models. Possible experimental perturbations in this
system involve deletions of one or more components,
over expression or under expression of a protein
component and growth of the bacteria in different
growth conditions; the latter results in large-scale
changes of the expression of the chemotaxis operons
and hence protein concentrations.

Before experimental implementation, we tested the possible
perturbations in silico. Theover expression ofCheY4was cho-
sen as this resulted in a large difference in both the models’
steady states and their dynamical behaviour (Figure 6A).

Figure 5
Model discrimination by optimal frequency.
A] Bode plot determining the optimal input frequency
for model discrimination. The Bode magnitude plot
shows the output amplitude gain, gω, versus frequency ω
(in decibel; that is in 20 log(gω)). Here, the gain corresponds
to the ratio of the difference between the outputs of the blue
and the red model, and the input amplitude (sinusoidal
input); in other words, the maximum denotes at which
frequency one can expect to see the largest difference
between the models. The aim was to determine the optimal
input frequency to apply to the system. This was determined
to have a period of 4 minutes. B] Outputs of the simulation
for the behaviour of the models with this optimal frequency
applied as the input frequency demonstrating that the best
input perturbation alone is not enough to discriminate
between the two models. The coloured lines represent
the models defined in Figure 2.

Figure 6
Discrimination by optimal initial conditions. A]
Outputs of the simulations of the models with wild type
(continuous lines) or levels of CheY4 (total) increased to 5-
times normal levels at the start of the simulation (dotted
lines). The coloured lines represent the models defined in
Figure 1. B] Experimental outputs from tethered cell
experiments, wild type output (continuous line) and CheY4
over-expressed in the cells at an average of 5-times the
concentration found in wild type cells (dotted line). C]
Robust invalidation of the blue model. To ensure that our
invalidation was robust we ran 500 simulations assuming that
CheY4 is 5-fold over-expressed. We vary parameters k1 - k14
by ± 15% and still observe the same clear difference between
the behaviour of the blue and of the red model.
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Moreover, in order to ensure that this discrimination is not
influenced by errors in determining parameter values, we
confirmed that our findings are relatively robust to
parameter changes. We allowed all parameters to vary
by ± 15% and still observed the same clear difference in the
behaviour of the models (Figure 6C).

We then used IPTG to experimentally induce the over
expression of CheY4 from an expression plasmid. The
level of CheY4 over expression as a population average
was verified using semi-quantitative western blotting
(data not shown). We observed that when CheY4 is over-
expressed to five times the wild type level the tethered
cell trace was similar to that of wild type cells
(Figure 6B); this suggested that the model, in which
the CheY6 and CheY3 or CheY4 bind to the motor co-
operatively (blue model) and do not have other
interactions, is invalid, as it is unable to represent our
new experimental data (Figure 6B). Since the red model,
where there is an interconnection between CheY3 and
CheY4 and the cytoplasmic cluster altering the CheA4

kinase activity, can represent this data, it is the only
model we cannot invalidate (Figure 6B).

Discussion
We have developed a methodology for elucidating
biological signalling pathways which we applied to
understanding the chemotactic signalling pathway in
R. sphaeroides. Our method differs from many other
methods currently in use in that is based on manipula-
tion and observation of the entire biological system
under in vivo conditions and, importantly, offers a
systematic approach to model invalidation based on
cyclic model development/experiment design iterations.
In particular, it does not aim at designing experiments
for the refinement of parameter values, but rather at
identifying possible interconnection structures. By doing
so, our method considers a model representing a specific
structure that it aims to invalidate.

We applied our method to a real biological system and
successfully managed to invalidate some potential
signalling pathway network models. Thus, this method
helped to more rationally consider the interconnectivity
of the chemotactic signalling pathway in R. sphaeroides
through relatively simple input-output experiments in
vivo and helps to design rational future experiments.

The method is applicable to other biological systems but
requires an experimental setup where it is possible to
control the input and measure the output simulta-
neously. Even with this limitation the method could be
used for both pathway determination and parameter
determination, where multiple models with different

parameters could be systematically invalidated. Our
method could potentially be used to help annotate and
understand signalling pathways in non-model organ-
isms, using the information from model organisms as a
guide for the first model generation step. These could
then be tested and models invalidated. A parameter
search could also be performed by creating models
which deviate from the model organism data and then,
through model invalidation, determining which para-
meter sets are able to fit the experimental data. In all
these cases though, the input of the system must be
under experimental control and the output easily
measured.

A potential limitation would be the case in which two
models from different network structures produce out-
puts that are indistinguishable under all potential
experimental conditions. The problem in this case
could lie with the particular properties of the network
and their discriminatory nature - i.e., whether such
differences in structure are identifiable from input-
output experiments [23]. Performing all calculations in
silico before any experiments are undertaken is important
in saving experimental time ensuring that experiments
are only performed when the results will have discrimi-
nating property between the models under test.

In the system studied in this paper the modelling and
experiment design was done on average cell traces for
R. sphaeroides responses. The reason for this is that single
cell behaviour is noisy, and in any case the model
parameters we have available at the start of the
procedure correspond to the average system behaviour.
The total protein concentrations, for example, are the
population average determined for these growth condi-
tions. Thus the model output is for the ‘average’ cell
hence we compared the output to the average of the
tethered cell data.

When constructing the models we used in vitro rates as it
is very difficult, if not impossible to measure these rates
in vivo. The multiple homologues in R. sphaeroides would
prevent a FRET assay such as the one applied to E. coli
being used. Thus the parameters are the best estimate of
the real value. To allow for this uncertainty we
considered models where these parameters were varied
to ensure robust invalidation. Also for simplicity in the
modelling we did not consider the increased concentra-
tion of the CheAs at specific points in the cell due to
clustering nor the effects of clustering. This is because the
exact concentration of CheA in specific regions and the
effects of clustering are currently impossible to measure
experimentally. The fitted parameter K1, which relates
the activation of the ligand on the receptor, includes the
effect of clustering and as such it is accounted for in our
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models. To ensure that this is robust we also allowed the
concentration of the CheA proteins to vary sufficiently
and our invalidation conclusion was still correct.

Interestingly, the connectivity that best fits the experi-
mental data suggests that in R. sphaeroides CheY3-P and/
or CheY4-P do not bind co-operatively with CheY6 to
FliM. The model we have been unable to invalidate
suggests that CheY3-P and CheY4-P form a link between
the polar and cytoplasmic signalling clusters, helping
transmit the signal between the two clusters. We have
through modelling and comparing to experimental data
invalidated a model representing the previously held
hypothesis that CheY3 and CheY4 act only as phosphate
sinks for the system. We have also invalidated a model
with strict co-operative binding of CheY’s at the motor
and as such our technique adds to the body of
knowledge on R. sphaeroides chemotaxis.

Conclusion
In this paper we have developed a control engineering
method for elucidating biological signalling pathways
and applied it to a real system. This method is based on
multiple model creation and subsequent invalidation
using in silico designed experiments. This is a general
method that can be applied to other biological pathways
where it is possible to control the input and measure the
output in simultaneously. We used the method to
invalidate all but onemodel for the chemotaxis signalling
pathway in R. sphaeroides and in doing so have invalidated
models of certain possible connectivities.

Methods
Strains and growth conditions
Bacterial strains and plasmids are listed in Table 2.
R. sphaeroides strains were grown aerobically in succinate
medium [24] at 30°C with shaking. When appropriate,
the antibiotics nalidixic acid and kanamycin were used at
25 μgml-1.

Protein over expression
pIND4-Y4 was transformed into S-17 and conjugated
into R. sphaeroides as described previously [25]. IPTG was
added to cell culture at 100 μM and the cells incubated
for ~16 hours at 30°C until OD700 is 0.6, where the cells
were then used for tethered cell analysis.

Tethered cell analysis
R. sphaeroides was grown to an OD700 of 0.6 and then 4 ×
1 ml of cells were harvested. 3 × 1 ml were saved for
western blot analysis. The remaining 1 ml was pelted and
resuspended in tethering buffer (10 mM Na-HEPES pH
7.2 containing chloramphenicol at 50 μg/ml) and
incubated at 30°C for 30 mins.

The cells were then tethered in a humidity chamber by
incubation of 10 μl of cell suspension on a coverslip with
1 μl of anti-flagellar antibody for 30 mins.

The coverslip was then loaded onto a flow chamber and
tethering buffer passed through for 5 min to remove free
cells. After this period the tethered cells were observed
under phase contrast at 1000 × magnification. Real time
recordings were made on videotape. Tethering buffer
with and without Propionate (sodium salt) was passed
through the chamber at a rate of 0.09 ml/min.

The video recordings were analysed with the Hobson
Bactracker (Hobson Tracking Systems) using the pro-
gram Arot7. The rotation rate of the cells was measured
by detecting the position of the cell every 50 ms. The
data obtained were smoothed (100 points), averaged
(for as many cells as available - at least 20 per graph) and
plotted.

Western blotting
In order to determine protein concentrations semi
quantitative western blots were employed as described
previously [26].

Table 2: Strains and plasmids

Strain/Plasmid Characteristics Source

R. sphaeroides WS8N Spontaneous nalidixic acid resistant mutant of wild type WS8 [34]

R. sphaeroides JPA421 WS8N with the cheY4 gene deleted by genomic replacement [35]

E. coli S17-1 lpir A strain capable of mobilising pAE and pAY4 into R. sphaeroides, SmR [36]

Plasmids

pIND4 Over expression vector with a lac inducible promoter, capable of replication in R. sphaeroides [25]

pIND4-Y4 pAE containing cheY4 [29]

Strains and Plasmids used in this study.
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Modelling the chemotaxis pathway in R. sphaeroides
Our model is split into three modules: sensing,
transduction and actuation.

Sensing
We assumed the same underlying mechanisms for
transmembrane (MCP) and the cytoplasmic (Tlp)
receptors. The parameters of the Tlp cluster are in
brackets and labelled with a tilde superscript. In the
following, we list the assumptions for our model, which
we adopted from the E. coli literature [1,6,27]:

(i) Receptors can be in different states of methyla-
tion. For simplicity, we assume that receptors are
either methylated or not.
(ii) Only methylated receptors, Rm( �Rm ), can be in an
active state, Ra( �Ra ).
(iii) Auto-phosphorylation of CheA2-P (phosphor-
ylation of CheA3 by CheA4-P) occurs only when the
MCP (Tlp) receptor is active.
(iv) Binding of the ligand to a receptor inhibits its
activity.
(v) CheB1-P (CheB2-P) binds only to active receptors
in order to demethylate them.
(vi) CheR2 (CheR3) binds only to inactive receptors,
Ri( �Ri ).
(vii) The number of CheR2 (CheR3) is constant.

We incorporated assumptions (iv), (v) and (vii) into our
model as follows:

• We let the number of active receptors depend
reciprocally on ligand concentrations L ( �L ) - see
below for details.
• We represented the action of CheB1-P (CheB2-P)
th rough the fo l lowing te rm: K2 [R

a ] [B 1 p ]
� �K R Ba

p2 2[ ][ ]( ) .
• We represented the action of CheR2 (CheR3) by the
constant reaction rate K3( �K 3 ).

Using these assumptions, we represented the sensing
dynamics by:

R
Rm

K L
a =

+
[ ]

( 1 )
, (1)

[ ] [ ][ ] [ ] [ ] 3
2

,2 1 3 2 1 3
�R K R B K R K R B

K
K

K Rm a
p

i a
p

t= − + = − +
⎛

⎝
⎜

⎞

⎠
⎟ +

(2)

� �
� �R
Rm

K L
a =

+
[ ]

( 1 )
for all models but for the red model  for,   which:

(3)

�
�

� �R
Rm Y p Y p

K Y p Y p L
a =
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[ ] 3 4
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⎛

⎝
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⎞

⎠
⎟ + (5)

where Rt( �Rt ) is the total number of receptors, Ri = Rt - Ra

( � � �R R Ri t a= − ), the Ki s are unknown and

�L L= +α ε, (6)

where � is a small constant representing disturbances at
the input of the cytoplasmic sensing cluster, with
nominal amplitude 0.001. We let a = 0.1 and Rt =
�Rt = μM.

We assumed that the cytoplasmic sensing cluster senses
extracellular ligand concentrations indirectly; for exam-
ple, �L could be internalised attractants, a byproduct of
the internalisation process or a metabolic response to it.
For simplicity, we assumed an affine relationship
between L and �L . Note that for the red model �Ra is a
function of CheY3-P and CheY4-P concentration levels,
reflecting their effect on the activity of the cytoplasmic
sensing cluster.

Transduction
Table 3 shows the copy numbers of the major proteins
involved in the chemotaxis pathway of R. sphaeroides
[28,29]. The CheA3A4 copy number is estimated to be
the same as the CheA3 copy number; this in turn was
inferred from neighbouring gene expression because of
the lack of a CheA3A4 antibody. Assuming a cell volume
of 0.5 fl for R. sphaeroides [30], we obtained the total
concentrations of the proteins in μM; this sets the
maximum that can be phosphorylated.

Table 3: Average copy number of chemotaxis proteins

Number of copies of value

CheA2 26000

CheY3 1000

CheY4 4000

CheA3A4 12000

CheY6 51500

CheB1 23000

CheB2 3000

These were determined in microaerobically grown R. sphaeroides
determined by quantative western blotting [28,29].
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[ ] 86 [ ], [ ] 3.2 [ ], [ ] 13.2 [ ], [( )] 22 2 3 3 4 4 3 4A A Y Y Y Y A Ap p p= − = − = − =   00 [( ) ]3 4− A A p

(7)

[ ] 170 [ ], [ ] 76 [ ], [ ] 10 [ ],6 6 1 1 2 2Y Y B B B Bp p p= − = − = −  

(8)

where [A2] denotes the concentration of CheA2 and all
other expressions in brackets follow this notation.
Assuming mass action kinetics and using the dependen-
cies given by (7) and (8), we modeled the transduction
part through a set of ODEs:

[ ] [ ]( [ ] [ ] [ ] [ ] [2 2 1
*

3 3 4 4 5 6 2 1 6 2
�A A k k Y k Y k Y k B k Bp p p p p= + + + + +− − − − −

pp

pA k Y k Y k Y k B k B

])

[ ]( [ ] [ ] [ ] [ ] [ ])2 3 3 4 4 5 6 2 1 6 2− + + + ++ + + + +

(9)

[ ] [ ][ ] [ ]( [ ])3 3 3 2 3 8 3 2
�Y k Y A Y k k Ap p p= − ++ − (10)

[ ] [ ][ ] [ ]( [ ])4 4 4 2 4 9 4 2
�Y k Y A Y k k Ap p p= − ++ − (11)

[( ) ] [( )]( [ ] [ ]) [( ) ](3 4 3 4 14 12 6 13 2 3 4 1A A A A k k Y k B A A kp p p p
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22 6 13 2[ ] [ ])+ ++Y k B

(12)

[ ] [ ]( [ ] [( ) ]) [ ]( [ ]6 6 5 2 12 3 4 6 10 5 2 12
�Y Y k A k A A Y k k A kp p p p= + − + ++ + − − [[( )])3 4A A

(13)

[ ] [ ][ ] [ ]( [ ])1 2 2 1 1 7 2 2
�B k A B B k k Ap p p= − ++ − (14)

[ ] [ ]( [ ] [( ) ]) [ ]( [ ]2 2 6 2 13 3 4 2 11 6 2 13
�B B k A k A A B k k A kp p p p= + − + ++ + − − [[( )])3 4A A

(15)

The model for the transduction part presented in this
section is the same for all models except for the magenta
model, for which:

[( ) ] [( )]( [ ] [ ]) [( ) ](3 4 3 4 14 12 6 13 2 3 4 1A A A A k k Y k B A A kp p p p
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22 6 13 2

3 4 3 4 15 3 4 3
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A A A A k A A Yp p
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p i

i p p

4 3 4

3 4 15 3 4 3 4 3

]) [( ) ])

[( ) ] ([( )]([ ] [ ]) [(

−

= + −� AA i4) ]),

where [(A3A4)i] denotes the case when CheA4-P cannot
phosphorylate CheA3 due to the action of CheY3 and
CheY4, and 0.001 ≤ k15 ≤ 1; the latter is to say that the
behaviour of the magenta model remains virtually
unchanged within this parameter range of k15.

We obtained the value of k1, the reaction constant of the
auto-phosphorylation of CheA2, from in vitro experi-
ments in the absence of the influence of receptors.
However, when membrane receptors are in their active
state they accelerate the auto-phosphorylation of CheA2.
Thus, we modified the reaction constant to k R ka1 1

∗ = ;
that is, we assumed that the in vitro reaction rates
correspond to the case when receptors are fully active.
Similarly, the phosphotransfer from CheA4-P to CheA3 is

accelerated when cytoplasmic receptors are active and we
modified the reaction constant to k R ka14 14

∗ = � .

The reaction rates were obtained by fitting parameters to
data from in vitro experiments [16,31] (Table 1).

Actuation
We denoted motor activity by Mb for the blue, Mr for the
red, Mg for the grey and Mm for the magenta model. We
assumed some nonspecific interaction, which does not
lead to a long lasting binding of proteins to motor sites,
either between CheY6-P, CheY3-P and CheY4-P and the
motor, or only between CheY6-P and the motor. For the
blue model we investigated also a different type of CheY
motor binding shown below in brackets. This model
showed a similar behaviour to the other blue model in
simulations and analysis (data not shown) and so we
only discussed the findings of the first binding type.
Motor activity decreases at a constant rate in the absence
of the CheY’s, which we assumed to be 1

sec . We modeled
the behaviour of the different models as follows:

�

�

M Y Y Y M

M Y
Y p Y p

K Y p Y

b p p p b

b p

= + −

=
+

+ +

[ ]([ ] [ ])

[ ]
[ 3 ] [ 4 ]

4 [ 3 ] [ 4

6 3 4

6(
pp

M Kb]
0 754− = where . .)

(16)

�M Y Mr p r= −6 (17)

�M Y Mg p g= −6 (18)

�M Y Mm p m= −6 (19)

The output of the models is flagella activity that we can
also observe in tethered cell assays. We used the
following heuristic description to convert motor activity
into R. sphaeroides body rotations, observed in the
tethered cell assays (given in rot/sec):

y
S Mi

i b r g mi = −

+
=1

( 2)
, , , , (20)

We set S = 0.125, which means that saturation occurs at
-8 rot/sec.

Parameter fitting
In order to fit model parameters such that the model
represents well the experimental data, we minimised the
2-norm of the vector, whose entries consist of the errors
between data and predictions from the discretised
version of the ODE models representing the individual
chemical reactions investigated in vitro. The 2-norm of
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vector x is given by x x xn1
2

2
2 2+ + +… , where n is the

length of x.

In order to fit any remaining model parameters to data
from in vivo experiments, we simulated the model and
minimised the 1-norm of the vector, whose entries are
the errors between data and model predictions [32]. The
1-norm of vector x is given by |x1| + |x2| + ... + |xn|

Fitting model parameters for receptor activation
Parameters K1 - K3 are unknown and cannot be easily
measured by experiments. To determine these we fitted
the models to wild type tethering data. We performed
tethered cell experiments where we applied 100 μM of
attractant for 5 minutes and then removed it. We then
ran a simulation of each model (Figure 3). To obtain Kis
and �K i s, we minimised the error between computer
simulations and data following the online fitting
procedure. For simplicity and because we are fitting the
models to a single model output only, which is
contaminated with noise, we let Ki = �K i .

Least squares minimisation to fit phosphotransfer parameters
We used least squares minimisation to fit all other
parameters from phosphotransfer experimental data. In
general, we considered a chemical reaction network with
mass action kinetics of the following form:

�x Af x x An n m= ∈ ∈ ×( ), , ,R R (21)

where f(·) Œ Rm is a vector of known monomials. Let the
value of the entries of matrix A, which correspond to
reaction rate constants, be unknown. What we wished to
find is the entries in matrix A, given experimental data.
For that purpose, we considered the following discrete-
time system:

x t x t t t Af x tq q q q q( ) ( ) ( ) ( ( )),1 1+ += + − (22)

which is the Euler discretisation of (21). Here, each x(tq)
denotes a measurement at time tq. The set of experi-
mental measurements, which we denote by x̂ , was used
to fit the unknown entries to A such as to minimise the
error between the data and the model predictions, which
are given by (22). We solved the following optimisation
problem which minimises the 2-norm of the error
between model prediction and observation (least
squares minimisation):

min

ˆ ˆ ˆ

ˆ ˆ

x t x t t t Af x t

x t x t t tp p p p

( ) ( ) ( ) ( ( ))

( ) ( ) (

1 2 2 1 1

1

− + −

− + −− −

#

11 1
2

) ( ( ))

,

Af x t pˆ −

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

(23)

where p corresponds to the number of measurements.

Using phosphotransfer data [16,31] and the above
method under the constraint that the rates are non-
negative, we obtained values for parameters k1 - k14
(Table 1).

Online fitting
Because the least squares optimisation is applied to a
discretised version of a continuous time model, we
applied the method of steepest descent online - that is, we
minimise the error between simulations of the contin-
uous-time model and the data - to improve the fit using
the values obtained before.

Experiment design
Input design
In ordered to discriminate between models by determin-
ing an input, which results in the largest difference in the
outputs of the models we wished to determine the
optimal input frequency. For example consider the red
and the blue model, shown in Figure 2, representing
different connectivities. The models are given by
ordinary differential equations of the form:

� �x f x g x u x f x g x u1 1 1 1 1 2 2 2 2 2( ) ( , ), ( ) ( , )= + = + (24)

Here, xi is the vector with the different states (for
example, concentrations of different proteins) of the
model i, i = 1, 2, fi and gi are functions that represent the
different models, and u is the input, which can be
externally controlled; for example, ligand concentra-
tions.

If gi(xi, 0) = 0 then the two models should have the same
equilibrium point x* in order to represent the data
equally well:

f x f x1 2( ) ( ) 0* *= =

Moreover, we required that x* is asymptotically stable.
The measured output is given by

y h xi i i= ( ), (25)

where hi is the output function. In order to be able to
discriminate well between two different competing
models the outputs of the two should be as different
as possible. Thus, we determined the input that
maximised the following difference assuming all other
model parameters constant:

0
1 2 1 2( ) ( )

τ

∫ − −y y y y tT d . (26)

Here, τ denotes the duration of the experiment. To
obtain an input that maximises (27) for a nonlinear
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system of the form (24)-(25) is difficult. However, if we
relax the problem to obtaining the sinusoidal input to
the system given by the linearisation of (24)-(25) that
maximises (26) then it can be solved systematically as
we show in the following.

Consider a linear system

�x Ax Bu y Cx= + =, , (27)

where A, B and C are matrices, whose entries depend on
the model parameters, and u(t) = a sin(ωt) is a
sinusoidal input with angular frequency ω and fixed
amplitude a. System (27) is the so called state space
representation of the model in the time domain. It is
common in control systems engineering to investigate
the behaviour of such a system in dependency of ω,
which requires to transform the system to the so called
frequency domain. If matrix A is Hurwitz (stable) then
after some transient behaviour output y is given by a
sinusoidal wave that is, first, phase shifted with respect
to u and second, has amplitude â . Here we are only
interested in the maximum of â with respect to ω.

We denoted the Laplace transform of u and y by U(s) and
Y(s), where s is a complex independent variable. Then,

Y s G s U s( ) ( ) ( ).=

G(s) is called the transfer function [33] and is given by

G s C sI A B( ) ( ) .1= − −

Note that in our analysis the only independent variable
is ω. We replaced s by jω (s = jω), where j = −1 . The
Bode magnitude plot shows the value of â

a
. Thus, the

maximum in the plot provides the frequency that will
maximise the output to input ratio.

We linearised (9) to (20) to obtain a system of the form
given by (27). We determined the frequency of the
sinusoidal input that will result in the largest difference
between the model outputs as described above. Finally,
we simulated the experimental output of this optimal
frequency.

Initial conditions design
Choosing the change or possible combination of
changes that provides best discrimination between the
different models is a combinatorial problem and
difficult to solve efficiently. However, because for our
chemotaxis models the range of possible changes was
relatively small, due to being limited by what can be
implemented experimentally, we performed a brute force
search, checking all possibilities. The five-fold over

expression of CheY4 under microaerobic growth condi-
tions yielded the best result in silico in discriminating
between the red and the blue model.
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