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Abstract

Background: Network Component Analysis (NCA) is a network structure-driven framework for
deducing regulatory signal dynamics. In contrast to principal component analysis, which can be
employed to select the high-variance genes, NCA makes use of the connectivity structure from
transcriptional regulatory networks to infer dynamics of transcription factor activities. Using the
budding yeast Saccharomyces cerevisiae as a model system, we aim to deduce regulatory actions of
cytokinesis-related genes, using precise spatial proximity (midbody) and/or temporal synchronicity
(cytokinesis) to avoid full-scale computation from genome-wide databases.

Results: NCA was applied to infer regulatory actions of transcription factor activity from
microarray data and partial transcription factor-gene connectivity information for cytokinesis-
related genes, which were a subset of genome-wide datasets. No literature has so far discussed the
inferred results through NCA are independent of the scale of the gene expression dataset. To avoid
full-scale computation from genome-wide databases, four cytokinesis-related gene cases were
selected for NCA by running computational analysis over the transcription factor database to
confirm the approach being scale-free. The inferred dynamics of transcription factor activity
through NCA were independent of the scale of the data matrix selected from the four cytokinesis-
related gene sets. Moreover, the inferred regulatory actions were nearly identical to published
observations for the selected cytokinesis-related genes in the budding yeast; namely, Mcm |, Nddl,
and Fkh2, which form a transcription factor complex to control expression of the CLB2 cluster (i.e.
BUD4, CHS2, IQGI, and CDC5).

Conclusion: In this study, using S. cerevisiae as a model system, NCA was successfully applied to
infer similar regulatory actions of transcription factor activities from two various microarray
databases and several partial transcription factor-gene connectivity datasets for selected
cytokinesis-related genes independent of data sizes. The regulated action for four selected
cytokinesis-related genes (BUD4, CHS2, 1QGI, and CDC5) belongs to the M-phase or M/GI phase,
consistent with the empirical observations that in S. cerevisiae, the Mcm [-Ndd |-Fkh2 transcription
factor complex can regulate expression of the cytokinesis-related genes BUD4, CHS2, IQG/, and
CDC5. Since Bud4, Iqgl, and Cdc5 are highly conserved between human and yeast, results obtained
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from NCA for cytokinesis in the budding yeast can lead to a suggestion that human cells should
have the transcription regulator(s) as the budding yeast Mcm|-Ndd|-Fkh2 transcription factor

complex in controlling occurrence of cytokinesis.

Background

Cytokinesis is the process that one cell divides into two
daughter cells after segregation of the paired sister-chro-
matids is completed. Cytokinesis ensures that two daugh-
ter cells have identical genetic information, cytosolic
components, and organelles. In animal cells, the midbody
is a transient "organelle-like" structure whose compo-
nents are indispensable for cytokinesis [1]. Through pro-
teomic analysis and literature reviews, 190 non-
redundant proteins were identified as conserved in the
mammalian midbody complex [1]. Inappropriate regula-
tion of midbody formation may significantly affect termi-
nal cytokinesis events and result in a multi-nucleate
phenotype, which may contribute to the development of
cancer [1-4]. Therefore, understanding the mechanism
that regulates formation of the midbody complex, and its
role in cytokinesis, may allow us to gain more insight into
cancer development.

In animal cells, the 22 conserved core components
thought to be required for cytokinesis are PRC1, KIF4,
MKLP1, CYK-4, Aurora B, Incenp, Survivin, and Borealin
on the central spindle; myosin heavy chain, regulatory
light chain, actin, formin, profilin, cofilin, and anillin in
the contractile ring; RhoA, ECT2, ROCK, MYPT, and citron
kinase in the RhoA pathway; syntaxin on the vesicle; and
septin (see review by Glotzer, 2005) [5]. In fact, these 22
core proteins, except for MKLP1, Borealin, KIF4, ROCK,
MYPT, and citron kinase, also have counterparts in the
budding yeast Saccharomyces cerevisiae [6-13]. Of note, the
polo-like kinase has recently been shown to be the key
regulator for initiation of cytokinesis in human and yeast
cells, though it is not included in these 22 core compo-
nents [12,14]. Therefore, although the cytokinesis mecha-
nism is somewhat more complex in human cells than in
yeast cells, the fundamental aspects of the cytokinesis
mechanism should be highly conserved. Furthermore,
because no systematic analysis has been performed to
identify cytokinesis-related genes in S. cerevisiae, informa-
tion from proteomic analysis of the mammalian midbody
complex will be useful as a comparable reference for cyto-
kinesis of budding yeast.

Microarray technology has made it possible to monitor
gene expression levels on a genome-wide scale. To
uncover useful information from very large amounts of
microarray data, we should consider various approaches
exquisitely suited for multidimensional problems. An
attractive approach for studying transcriptional regulation

at the genomic scale is to use transcription factor activities
(TFAs) to represent gene expression dynamics. In general,
transcriptional activity is largely controlled by a relatively
small set of transcription factors, which are themselves
regulated transcriptionally and/or post-transcriptionally.
In addition to synthesis, the level of mRNA is also control-
led by "degradation factors" that regulate mRNA stability.

Network component analysis (NCA) developed by Liao et
al. has been applied to deduce TFAs in transcriptional reg-
ulatory networks from both the microarray data and the
partial transcription factor (TF)-gene connectivity infor-
mation [15-19]. In this study, NCA will be applied to infer
the dynamic behaviors of the cytokinesis-related genes.
However, human cytokinesis-related genes have not been
completely elucidated, so that smaller datasets are availa-
ble for inferring TFAs in the cytokinesis-related genes
through NCA. In this work, various data sizes for the cyto-
kinesis-related genes will be applied to deduce TFAs.
Therefore, we can validate that NCA is independent of the
size of the collected information.

Methods

Network component analysis (NCA) is applied for deduc-
ing regulatory signals or transcription factor activities
(TFAs). NCA is a network structure-driven framework for
deducing regulatory signal dynamics. In contrast to classi-
cal approaches such as principal component analysis
(PCA) or independent component analysis, NCA makes
use of the connectivity structure from transcriptional reg-
ulatory networks to restrict the decomposition to a unique
solution.

NCA formulates gene expression as the product of the
contribution of each regulating TFA using a combinatorial
power-law model, which can be viewed as a log-linear
approximation of any nonlinear kinetic system in multi-
ple dimensions [20-23]. It captures some non-linear syn-
ergistic effects yet remains mathematically tractable and
generally applicable to most genes. The dynamics of gene
expression level is a balance between promoter activity
and mRNA degradation kinetics, which are modeled by a
power-law rate expression

d[ mRNA;(t) ]
T = Vsynthesis — Vdeg radation
- kPiHTFAJ_(t)% kg [MRNA(0)],i=1,--,N
(1)
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where mRNA,(t), i = 1, ..., N is the set of the gene expres-
sion levels, TFA; (t) is the activity of transcriptional regula-
tor j, o; represents the control strengths of transcriptional
regulator j on gene i, and kj,; and ky; are rate constants cor-
responding to synthesis and degradation of the ith mRNA.
mRNAs can reach a quasi-steady state (within 10 min)
while TFAs are 'drifting' in a time scale of hours (cell divi-
sion time). The dynamic equations are therefore expressed
as:

[ mRNA(t)] = :(’;HTFA].@)% (2)
1

Without loss of generality, dividing the above equation by
a reference point yields a log-linear relationship between
the gene expression and TFAs:

. L TFA (t
log mRNA;(t) =2a1~log j(©) 3)
mRNA;R P / TFAjR

where mRNA and TFA are the reference points for the ith
gene expression level and the activity of transcriptional
regulator j. Considering a series of M experimental meas-
urements conducted at ¢, t,, ..., ty;, equation [3] can be
equivalently expressed in matrix form:

E=AP+T (4)
where the matrix E is the multidimensional data consist-
ing of M time points of N output variables (such as the
expression ratio of transcripts), the N x L matrix A encodes
the connectivity strength between the regulatory layer and
output signals, and the matrix P consists of samples of L
regulatory signals, where L is in general much smaller
than N, thus resulting in reduction in dimensionality.
NCA is a decomposition of the data matrix E into the con-
trol strength matrix A and the TFA matrix P through min-
imizing the residual I'. Both matrices are therefore
obtained by the least-square objective as expressed in the
form:

min(|E- AP ) (5)

Three criteria for the original NCA must be satisfied
[16,24] to ensure unique solutions to the matrix decom-
position problem. The criteria can be summarized as: (i)
The control strength matrix A must have full-column
rank; (ii) When a node in the regulatory layer is removed
along with all of the output nodes connected to it, the
resulting network must be characterized by a connectivity
matrix that still has full-column rank. This condition
implies that each column of A must have at least L-1 zeros;
and (iii) The TFA matrix P must have full row rank for the
original NCA. In other words, no regulatory signal can be
expressed as a linear combination of the other regulatory
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signals. The third criterion implies that the number of
TFAs analyzed must be smaller or equal to the number of
data points. This criterion significantly limits the number
of TFAs that can be derived from microarray data. Gal-
braith et al. [19] have introduced the REDUCE method to
relax the third criterion to allow the number of TFs is
greater than the number of experiments. In this study, we
first apply the first and second criteria to reconstruct the
full-column rank data matrix and initial control matrix, As
a result, the number of genes is greater than the number
of TFs so that the third criterion is automatically satisfied.
NCA has shown its effectiveness in discovering regulators
and inferring TFAs when both microarray data and tran-
scription factor-gene connectivity information are availa-
ble. Network component mapping [25] and motif-
directed NCA [26] have introduced to deduce hidden net-
works due to limit topology information available. Sev-
eral algorithms for NCA have been applied to overcome
problems of convergence and stability. In this study, we
use the NCA algorithm downloaded from the web site,
http://www.seas.ucla.edu/~liaoj/, to compute all case
studies.

Results and Discussion

Transcriptional regulation is quite complex in mamma-
lian cells. It will become somewhat difficult to specify the
transcriptional regulation at proper spatial/temporal con-
ditions such as cytokinesis. Fortunately, the basis of the
cytokinesis mechanism is highly conserved between
human and yeast cells. Furthermore, systematic analyses
for cell cycle expression profiles of all the Saccharomyces
cerevisiae genes have been performed and are available in
databases [27,28]. Therefore, we will use S. cerevisiae as a
model system to simplify our approach to building up an
inference system for identifying the relationship between
transcription regulation of novel genes and the occurrence
of cytokinesis. Because the midbody complex is indispen-
sable for cytokinesis in animal cells, we used the Homol-

oGene database, that is available at the http://
www.ncbi.nlm.nih.gov/homologene/, to  determine

whether yeast homologs exist for 190 human midbody
proteins collected from midbody proteomics analysis and
other published observations. It turns out that 39 of 190
known human midbody proteins have homologs in S.
cerevisidge. In addition, 21 cytokinesis-related genes sys-
tematically identified in fission yeast also have homologs
in S. cerevisiae [29-31]. Altogether, 60 non-redundant
cytokinesis-related genes were collected for our analysis
(Additional File 1: Table S1).

We first analyzed the S. cerevisiae cell cycle expression
database that is available at the website http://genome-

www.stanford.edu/cellcycle/. The time-course microarray

database for 6178 genes was collected at 18 different time
points in an a-factor arrest/release experiment. Of note,
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some gene expression data are missing in this time-course
microarray database. However, many algorithms for gene
expression analysis, including NCA and PCA, require a
complete matrix of gene array values as input. Therefore,
the singular value decomposition method, the weighted
K-nearest neighbors method, and the row average method
were applied to estimate such missing values in this
microarray database [32]. We found that the K-nearest
neighbor method gave a more accurate estimation of
missing microarray data than the other two [32]. The esti-
mated values were added to the time-course microarray
database to allow us to select the expression data of 60
cytokinesis-related genes we collected to infer transcrip-
tional regulatory network through NCA.

The cell-cycle expression data of these 60 cytokinesis-
related genes were then applied to construct the matrix E
and the connective structure of the control strength matrix
A through the gene-TF database, http://jura.wi.mit.edu/
cgi-bin/young public/navframe.cgi?s= 17&f, for tran-
scriptional regulatory networks in S. cerevisiae to infer the
control strength matrix and TFAs [33]. Figure 1 shows that
the computational scheme for NCA, where we selected
various genes out of these 60 cytokinesis-related genes,
constructed the data matrix and initial structure of control
strength matrix, and then deduced their values. As shown
in Case I (Additional File 1: Table S2) of Figure 1, 16 genes
were found to be connected to 15 TFs (see the list in Addi-
tional File 1: Table S3) in the gene-TF database. As men-
tioned-above, NCA requires three criteria to be satisfied in
advance to ensure unique solutions for the matrix decom-
position problem [16,24]. Applying the second criterion,
the 15 connective TFs were used to select 592 genes from
the gene-TF database. We therefore have the 592 by 18
(different time points) data matrix E and the 592 by 15
control strength matrix A. Applying the decomposition
computation in the equation (5) (see methods), we yield
the control strength matrix A and the 15 by 18 TFA matrix
P. Figures 2 and S1 show the inferred profiles (—S—
curves) for 7 TFAs and their corresponding gene expres-
sions. Figure 3 shows the transcriptional regulatory rela-
tionships between TFs and genes.

We cannot establish a full scale NCA for the midbody due
to the lack of genome-wide cytokinesis-related informa-
tion. In Case I, we use 16 of the 60 cytokinesis-related
genes to select the 592 x 18 data matrix and 592 x 15 ini-
tial control strength matrix, and then to infer the corre-
sponding control strength and TFAs. The unique solution
could be obtained through NCA as discussed above. We
are concerned with whether the solution is scale-free for
the selected data, since we lack of full information on the
cytokinesis-related genes. We found the inferred dynamics
of TFAs through NCA to be independent of the scale of the
data matrix. To investigate this fact, we select various
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genes, as shown in Figure 1, from the 60 cytokinesis-
related genes to construct the data matrix and initial con-
trol strength, to infer the control strength matrix and the
TFA matrix. In Case II, following the similar procedures in
Case I, we use 12 of the 60 cytokinesis-related genes to
select the 510 x 18 data matrixand 510 x 10 initial control
strength matrix, and then to infer the corresponding con-
trol strength and TFAs. The genes of Cases II, I1I, and IV are
a complete subset of Case I. However, Case III is not a
complete subset of Case II, although they intersect. The
genes in Cases III and IV are selected through PCA from
the 60 cytokinesis-related genes. Table 1 lists the absolute
loading values for the first, second, and third principal
components, which consist of 9 genes because both the
first and second principal components include the gene
CHS2. The regulated strength is inferred from NCA as
shown in Table 2 and Additional File 1: Table S4, i.e.
Ndd1 regulated on gene CHS2 has a control strength of
3.1035, and Fkh2 regulated on CHS2 has -1.9908. Figure
4 shows the relations between genes and the first, second,
and third principal components, as well as the genes reg-
ulated by TF. The gene CHS2 is regulated by Fkh2 and
Ndd1.

Following similar procedures as discussed in Cases I and
11, these genes are then applied to construct the matrix E
and the connective structure of the control strength matrix
A through the gene-TF database. Some of the genes are not
included in the database. Therefore, 10 genes listed in
Case III of Figure 1 are used to select the 447 x 18 data
matrix and 447 x 11 initial control strength matrix, and
then to infer the corresponding control strength and TFAs.
In Case IV of Figure 1, 6 genes are made up from the first
principal component, except MYO1, which belong to the
M-phase, and GPA1 in the M/G1 phase of the second
principal component. These genes are used to construct
the 348 x 18 data matrix and 348 x 7 initial control
strength matrix. Applying the decomposition computa-
tion in the equation (5) (see methods), we yield the 7 TFA
profiles and their corresponding gene expressions as
shown (—o— curves) in Figures 2 and S1. The inferred

TFA profiles for Case I (— S— curves), I (— curves), and

I (— ¥ — curves) are also shown in Figures 2 and S1, and
are nearly identical to Case IV. This fact indicates that the
inferred TFA profiles are independent of the scale of the
data matrix. The inferred control strength matrix A is listed
in Table 2 and Additional File 1: Table S4. In a biological
network, elasticity coefficients, which are referred to as rel-
ative sensitivities, are used as a measurement to evaluate
how relative influence for a rate to a variable. From equa-
tion (1), we can evaluate each elasticity coefficient, i.e., to
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CDE20, CDES, 1QG, CDC20, CDCS, 1QGH,
BUD4, CHS2, GPAI,
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> gene expression
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Case 3 Case 4
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BUD4, CHS2, GPAL, CDC20, CDCS5, I1QGI1,
ERV25, BNII, KAR?2, BUD4, CHS2, GPA1
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gene-TF — initial A data matrix E -
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NCA computation: E = A-P

~ O\

control strengths: A TFA profiles: P

Figure |

Computational scheme. The computational scheme for NCA to select various genes from the 60 cytokinesis-related genes,
for constructing the data matrix and initial structure of control strength matrix, and then to deduce their values.
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Figure 3

Transcriptional regulatory relationships. The transcriptional regulatory relationships between TFs (blue circles) and
genes (yellow circles). Green lines indicate negative regulation. Red lines indicate positive regulation.

compute the relative sensitivity for each rate synthesis,
Vsynthesis, with respect to each TFA, which equals to the
control strength. Ndd1 regulated on gene CHS2 has the
higher strength of 3.1035, as observed from Table 2. On
the other hand, Fkh2 regulated on CHS2 is the highest
negative regulation.

In this work, we infer a TFA as an up-regulated action if its
log(TFA ratio) is greater than 0.2. In contrast, a down-reg-
ulated TFA means that the log(TFA ratio) is less than -0.2.
From Figure 2, we observed that Ndd1 was highly up-reg-
ulated at about 42 min, which was in the G2 phase. Dur-
ing the M phase from 49 to 56 min, Ndd1 was still up-
regulated. There is up-regulation at 42 min and down-reg-
ulation at M/G1 phase (7 min) for Fkh2. Table 3 and
Additional File 1: Table S5 lists the regulated actions for
these seven TFs as shown in Figures 2 and S1. Cytokinesis-
related genes are in M and M/G1 phases. In the M/G1
phase, Mcm1 is the up-regulated action, whereas Fkh2
and Ndd1 are the down-regulated action. In M phase,
Fkh2 [34], Mcm1 [35], Ndd1 are the up-regulated action.

Spellman et al. sought to build a comprehensive catalogue
of cell cycle-regulated genes in S. cerevisiae [28]. They per-
formed a series of microarray experiments in which they
took mRNA level measurements for all yeast genes at reg-
ular time intervals. Three different methods were

employed to arrest the cells at the same stage: a-factor
arrest, elutriation (elu), and arrest of cdc15 and cdc28 tem-
perature-sensitive mutants. The test samples were syn-
chronized so that all the cells would be at the same stage
in their cell cycle. In the previous work, gene expression
data can be used to infer TFAs through NCA. Following
the similar procedures, gene expression data collected in
cdc15, cdc28, and elu arrest/release experiments were also
applied to deduce TFAs. The inferred control strength
matrices for various gene expression data are listed in
Table 4. Ndd1 regulated on CHS?2 is the highest positive
regulation for a-factor as observed from Table 2. For the
elu/release experiment, Fkh2 regulated on BUD4/
YJR092W is the highest positive regulation. The regulated
actions for each TF in cytokinesis-related genes were also
deduced from TFA profiles, as shown in Table 3 and Addi-
tional File 1: Table S5. The regulated actions inferred from
various gene expression data almost have a similar effect.
The up/down-regulation with the star in Table 3 and
Additional File 1: Table S5 indicates that the log(TFA
ratio) is less than 0.2 or greater than -0.2. Tsai et al. have
introduced two statistical methods for identifying yeast
cell cycle transcription factors [36]. We compare the
results from NCA with those obtained by Tsai et al. [36] to
inspect whether both approaches can achieve the same
results.Some transcription factors in this study are not
shown in Tsai et al. 's report [36]. Thus, we compared with
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Table I: The first, second and third principal components for gene expression levels in an o-factor/release experiment.

PCn Gene Absolute Loading value Mutant Phenotype Phase
CHS2 0.48434 inviable M
CcDC5 0.47182 inviable M
| 1QGI 0.35847 inviable M
BUD4 0.31178 viable M
CcDC20 0.22889 inviable M
GPA| 0.53103 inviable M/GI
2 KAR2 0.25863 inviable
CHS2 0.25179 inviable M
3 SEC31 0.41762 inviable
BNII 0.234 viable
TF Mutant Phenotype
Mcmll inviable
Ndd| inviable
Fkh2 viable

the same transcription factors obtained from both
approaches. The predicted behaviors obtained by Tsai et
al. [36] are summarized in the brackets of Table 3 and
Additional File 1: Table S5. Both predicted behaviors have
identical regulation effects. In the M/G1 phase, Fkh2 has
a down-regulation, which is the same action as obtained
from NCA. In the M phase, Fkh2, Mcm1 and Ndd1 have
an up-regulation as obtained by Tsai et al. [36]. These are
almost identical to the results obtained from NCA.

We also applied NCA to a new gene-TF database (60 TFs
vs. 1082 genes) [37] and a newer cell cycle gene expres-
sion database [38] for inferring regulation action of TFs in
cytokinesis. This cell cycle gene expression database for
4774 genes was collected at 25 different time points in an
a-factor arrest/release experiment [38]. However, only 3
TFs and 4 cytokinesis-related genes were found due to the
size of the new gene-TF database [37] is smaller (Addi-
tional File 1: Table S6). Instead, using the old gene-TF
database  http://jura.wi.mit.edu/cgi-bin/young public/
navframe.cgi?s=17&f, we used above to replace this new
gene-TF database, 15 TFs and 16 cytokinesis-related genes
were found (Additional File 1: Table S6). When the old
and new gene-TF databases were combined to use, 16 TFs

and 18 cytokinesis-related genes were found (Additional
File 1: Table S$6). The inferred control strength matrices for
gene expression data are listed in Table 4, and the regu-
lated actions for seven TFs (Abfl, Fkh1, Fkh2, Mcml,
Ndd1, Phdl and Stel2) are shown in Figure S2. Using
combined gene-TF databases, Ndd1 regulated on CHS2,
CDC20, CDC5, and IQGT1 is the highest positive regula-
tion (Table 4). The regulated actions for each TF in cytoki-
nesis-related genes were also deduced from TFA profiles,
as shown in Table 5. In the M phase, Ndd1 and MCM1
have an up-regulation (Table 5). The regulated actions
inferred from this new gene expression database have a
similar effect as those from Spellman et al's database [39].

In S. cerevisiae, Mcm1, Ndd1, and Fkh2 form a transcrip-
tion factor complex to control expression of the CLB2
cluster, which is comprised of a group of 35 cell cycle-reg-
ulated genes that are transcribed from the end of the S
phase to nuclear division [27,28,40]. Of these 35 CLB2
cluster genes, BUD4, CHS2, CYK2, MYO1, IQG1, ASE1,
CDC5, DBF2, MOB1, and TEM1 have been shown to have
a role in cytokinesis [6,11,41-47]. In particular, BUD4,
CHS2, IQG1, and CDC5 were selected in NCA. More
importantly, like human polo-like kinase PLK1 [14], the
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Table 2: The control strength matrix inferred from various gene
expression data.

Gene Fkh2 Mcml Ndd|
CHS2 -1.99082 0 3.10352
0.62904b 2.5544b

0.89352¢ 1.8575¢

-0.311224 1.72834

cbc20 -0.653382 -0.909922 1.63152

2.1433b 1.6211b 1.7386b

-0.66336¢ -0.82677¢ 2.6624¢

-1.72144 -2.2758d 2.5332d
BUD4 1.86092 -1.1382 0.0100972
0.6452b -0.02278b 0.52171b
0.42555¢ 3.0205¢ -0.87744¢

5.45654 2.78634 -1.77324

CDC5 0 0 1.53172

1.3588b

2.2234¢

1.12164

1QGI 0 0 1.40972
0.094896b

0.62961¢

0.784634

The superscripts a, b, ¢, and d are indicated that the inferred results
from gene expression data respectively collected in o factor, cdcl5,
cdc28 and elu arrest/release experiments.

polo-like kinase Cdc5 is also a key regulator essential for
occurrence of cytokinesis [12]. Cdc5 has a role in activat-
ing Rhol for contractile actin ring formation at the bud
neck and hence promotes cytokinesis [12].

The activity of the Mcm1-Ndd1-Fkh2 complex is known
to be up-regulated through phosphorylation of Fkh2 by
the Clb5/Cdc28 kinase complex and Ndd1 by the Clb2/
Cdc28 kinase complex and Cdc5 [48-51]. Obviously,
expression of CLB2 and CDC5 genes are regulated
through positive feedback control. Because Mcm1, Ndd1,
and Fkh2 localize to the nucleus but not to the bud neck

Table 3: The regulated actions for each TF in midbody genes.

http://www.biomedcentral.com/1752-0509/3/110
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Relations between genes and PCA. Relations between
genes and the first, second, and third principal components,
as well as the genes regulated by TF.

where cytokinesis occurs, they are unlikely to have a direct
role in cytokinesis, but instead form a transcription factor
complex to function as a key regulator for expression of
cytokinesis-related proteins, such as Cdc5, to allow occur-
rence of cytokinesis.

Conclusion

Network component analysis is a data decomposition
method for reconstructing regulatory signals and control
strengths by using partial and qualitative network connec-
tivity information. This method contrasts with traditional
statistical techniques, such as principal component analy-
sis and independent component analysis, in that it does
not make any assumption regarding the statistical proper-
ties of the regulatory signals. Rather, network structure,
even if incompletely known, is used to generate a network
consistent representation of the regulatory signals. This
method is validated experimentally by using absorbance
spectra and then applied to transcriptional regulatory net-
works. Applying NCA deducing a regulatory network, we

phase M/IGI Gl G2 M

TFA

Fkh2 G- [ =4[ ++) (+ + + +), [4] (. + +52), [+]
Mcml (. ++ ) G+ 40 [ G [ (*, - -+ (= #), [4]
Nddl -+ +e) G [ =) (+ 5 5 4), 4] .+ + ) [F]

+ is an up regulation action, and. - is a down regulation. The up/down-regulation in the bracket is accessed from the gene expression data for (o
factor, cdcl5, cdc28, elu). (+*/-*) up/down-regulation with the a star indicates that the log(TFA ratio) is less than 0.2 or greater than -0.2. [+] up-

regulation and [-] down regulation are accessed from Tsai et al. (2005).
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Table 4: The control strength matrix inferred from various gene expression data.
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ABFI FKHI FKH2 MCMI NDDI PHDI STEI2
CHS2 -0.012 1.60342
0.0646° 2.9833b
CcDC20 -0.0162 -0.622 0.97192
-0.0063b -0.60940 1.7804>
GPAI 0.42562 2.27212
1.8835b 1.9029>
BUD4 -5.2542 -2.03612 -0.02652 1.01882
-3.8680 -2.1026P -0.1591b 1.5521b
CDC5 1.09672
2.6043b
1QGI 0.65422 1.04342
0.4898 1.8779>

The inferred results were obtained from gene expression data collected by Pramila et al [38]. a. Both old and new TF-gene databases were
combined to deduce transcription action of TFs from the new cell cycle gene expression database collected by Pramila et al [38].
b. The old TF-gene database was used to deduce transcription action of TFs from the new cell cycle gene expression database collected by Pramila

et al [38].

address whether the inference is sensitive to the size of
dataset used. This is an interesting contribution to the
field of network inference. In this study, NCA was applied
to infer regulatory actions of transcription factor activities
from a microarray database and partial transcription fac-
tor-gene connectivity information for cytokinesis-related
genes. We could not establish a full scale NCA for the cyto-
kinesis-related genes due to the lack of genome-wide
information. Four gene selection cases were respectively

Table 5: The regulated actions for each TF in cytokinesis-related
genes.

Gl S G2/M

ABFI +

FKHI + +*

FKH2 - - -
MCMI - +
NDDI - +
PHDI + + +
STEI2 - -

+ is an up regulation action. - is a down regulation. The up/down-
regulation in the bracket is accessed from the gene expression data
done by Pramila et al [38]. (+*/-¥) up/down-regulation with the star is
indicated that the log(TFA ratio) is less than 0.22 or greater than -
0.22.

applied to infer the dynamics of TFAs in order to validate
that the inferred dynamics of TFAs through NCA were
independent of the scale of the data matrix. From the
computational results, the inferred TFA dynamics are
almost identical despite variations in data sizes for cytoki-
nesis-related genes. On the other hand, PCA could be
employed to select the higher-variance genes. In this
study, we found that higher-variance genes from the first
and second principal components were cytokinesis-
related genes that belonged to the M-phase or M/G1
phase. Moreover, the control strengths are equivalent to
the elasticity coefficients in a biological network. Each
inferred value indicates the connective strength for the TF
regulated on the corresponding gene. Higher values indi-
cate higher interaction levels. Since, in the budding yeast,
the Mcm1-Ndd1-Fkh2 transcription factor complex can
regulate expression of the cytokinesis-related genes BUD4,
CHS2, IQG1, and CDC5 that were selected in NCA, our
studies revealed that NCA could be successfully applied
for inferring the transcriptional regulatory network of
cytokinesis-related proteins in cytokinesis.

Bud4, Iqgl, and Cdc5 are respectively yeast counterparts
of human midbody-associated proteins ANLN (anillin),
IQGAP1, and PLK1 that are required for cytokinesis. More
importantly, both the budding yeast Cdc5 and human
PLK1 are key regulators for initiation of cytokinesis.
Therefore, in this study, results obtained from NCA for
cytokinesis in the budding yeast can lead to a suggestion
that human cells should have the transcription regulator
for expression of ANLN, IQGAP1 or PLK1 as the budding
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yeast Mcm1-Ndd1-Fkh2 transcription factor complex in
controlling occurrence of cytokinesis.
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