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Abstract
Background: Two genes are called synthetic lethal (SL) if mutation of either alone is not lethal,
but mutation of both leads to death or a significant decrease in organism's fitness. The detection of
SL gene pairs constitutes a promising alternative for anti-cancer therapy. As cancer cells exhibit a
large number of mutations, the identification of these mutated genes' SL partners may provide
specific anti-cancer drug candidates, with minor perturbations to the healthy cells. Since existent
SL data is mainly restricted to yeast screenings, the road towards human SL candidates is limited
to inference methods.

Results: In the present work, we use phylogenetic analysis and database manipulation (BioGRID
for interactions, Ensembl and NCBI for homology, Gene Ontology for GO attributes) in order to
reconstruct the phylogenetically-inferred SL gene network for human. In addition, available data on
cancer mutated genes (COSMIC and Cancer Gene Census databases) as well as on existent
approved drugs (DrugBank database) supports our selection of cancer-therapy candidates.

Conclusions: Our work provides a complementary alternative to the current methods for drug
discovering and gene target identification in anti-cancer research. Novel SL screening analysis and
the use of highly curated databases would contribute to improve the results of this methodology.

Background
High-throughput analyses have provided a tremendous
boost to massive drug screening [1]. However, these
improved techniques are still blind to biological or struc-
tural knowledge. In this sense, chemogenomics provides a
complementary strategy for a rational screening that
includes structural information of chemical compounds
for gene targets [2,3]. Computational approaches in this
so-called virtual screening allow the matching of com-

pounds to their specific gene-product targets, completing
the experimental screening [4]. However, the computa-
tional approach is still limited by the huge combinatorics
represented by the chemical space of possibilities associ-
ated to the compounds and their possible targets. As a
consequence, all these experimental and computational
approaches require the use of the cumulative biological
knowledge. For this purpose, database integration into an
ontological organization of the current biological knowl-
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edge has been suggested as a way to reduce the combina-
torics either in virtual or experimental screenings [5]. The
work presented here belongs to this last framework,
intended as a tool for identifying potential targets for anti-
cancer therapy. Cancer is a heterogeneous disease with
numerous causes and typologies [6]. One of the essential
traits of cancer progression is the underlying high muta-
tional capacity of tumor cells [7-9], having as a conse-
quence the rapid adaptive capacity of the disease. It has
been suggested that these ingredients define cancer pro-
gression as a Darwinian micro-evolutionary process [10].
As a consequence, cancer cells which have lost essential
genes by a mutation are eliminated from the tumor pop-
ulation. Therefore, it is expected that essential genes are
conserved in cancer. Under this perspective, targeting
essential genes in anti-cancer therapy could kill malignant
cells, but might result to be lethal for healthy cells too.
This is the case of the anti-proliferative drugs that also
damage high turnover tissues, such as epithelium.

The problems reported from the failure of most single-tar-
get drug treatments [11] suggest that a new perspective is
needed. In this context, a different conceptual framework
related with synthetic lethality has been suggested for
anti-cancer research [12-14]. Two genes are called syn-
thetic lethal (SL) if mutation of either alone is not lethal,
but mutation of both leads to death or a significant
decrease in organism's fitness. According to screening
methodology, two main types of mutations are consid-
ered: amorphic and hypormorphic mutations. The former
causes a complete loss of gene function, while the latter
refers to a mutation leading to a decreased activity in the
respective gene function [15]. In genome-wide screenings

of genetic interactions, hypomorphs are associated to
essential genes such that the decrease of the gene expres-
sion does not result in inviable organisms [16].

The rationale of synthetic lethality offers new insights on
selective anti-cancer therapy design by exploiting the
existence of SL partners of mutated (cancer-related) genes
[12,17,18]. Accordingly, given a mutated gene causing
function deletion (amorphic mutation) or function
decrease (hypomorphic mutation) in a cancer cell, an
attack using specific drugs to block the activity of one of
its SL partners would cause a lethal condition in such
tumor cells. Meanwhile, only minor damage in healthy
cells would be expected, constituting thus a selective anti-
cancer therapy (see Figure 1). And thus, this approxima-
tion can help to overcome a dramatic limitation in drug
design.

Another relevant aspect in drug screening is that one drug
is tested only for a specific disease and related pathologies.
Given a SL pair of genes as described above, one cancer
mutated and the other non-mutated, conceptually it is
possible that an already approved and even commercial-
ized drug might block the activity of the non-mutated
gene product. Therefore, SL-partner screening has a spe-
cial interest for gene-target identification but also for drug
repositioning, i.e, the discovering of novel uses for old
drugs [19].

Unfortunately, large-scale screenings of SL gene pairs have
been performed only in yeast [20-23] and, to a signifi-
cantly smaller degree, in C. elegans [24-26] and in other
model organisms. To overcome this limitation, we pro-

The rationale of synthetic lethality applied to the design of novel anti-cancer therapiesFigure 1
The rationale of synthetic lethality applied to the design of novel anti-cancer therapies. Two linked nodes (blue 
circles) represent a SL interaction. (A) In cancer disease, one of the SL partners would appear mutated (red triangle) contrast-
ing to healthy cells where no mutation is accounted for. (B) The attack by drugs to the SL partner of the cancer-related 
mutated gene might cause a selective damage to tumor cells. In this case, the inactivation of both SL partners only happens in 
tumor cells.
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pose the use of the phylogenetic inference of SL genes
from yeast to human for pharmacological purposes.

Synthetic lethal screens in yeast have been used to identify
genes involved in cell polarity, secretion, DNA repair and
cell cycle [27,28]. Due to the high conservation of genome
integrity and cell-cycle related genes from yeast to higher
organisms and their close relation with cancer disease
[29], massive screenings of yeast SL interactions can pro-
vide a valuable information for SL inference applied to
novel cancer therapy search. We emphasize though that
the aim of this work is not to provide a general inference
method of SL network from one organism to another.
Instead, it adds to the rationale of drug design by supply-
ing a candidate-list of human gene pairs, potentially SL,
that could constitute the basis for future pharmacological
testing. Additionally, network thinking has provided an
excellent framework for the study of very large genetic sys-
tems. In particular, gene-disease [30,31], gene-target [32]
and synthetic-lethal [23,33,34] network representations
have contributed to the understanding of these systems as
a whole. Following this approach, we integrate the infor-
mation in a network framework from several databases in
order to provide supporting evidence for candidates' reli-
ability.

Methods
Our identification of potential anti-cancer gene targets
proceeds through the integration of the biological infor-
mation originating from different databases. Figure 2
illustrates the methodology for the data-collection process
and for the selection of potential anti-cancer gene targets.
The yeast SL network was constructed from the yeast SL
interaction list available from BioGRID database [35]. In
this network, nodes represent genes and the link between
them indicates a SL interaction, i.e. when both are simul-
taneously mutated, a lethal condition is satisfied. The
phylogenetic inference from yeast to human genes was
obtained from the Ensembl database noteEnsembl: http:/
/ftp.ensembl.org/pub/current_emf/ensembl_compara/
homologies, March 3rd, 2008. The yeast-genes list belong-
ing to SL network was contrasted with this database. The
inferred human SL network (in short iHSLN) is then
obtained by introducing the yeast SL interactions on their
human phylogenetically-conserved counterparts, that is
their orthologs (see also [36]). Subsequently, as we detail
below, the resulting network was filtered by different bio-
logical databases for public use: 1) COSMIC and Cancer
Gene Census, 2) Gene ontology and Gene ontology anno-
tation (GO and GOA) and 3) DrugBank database.

Obtaining the yeast synthetic lethal network
The collected data on yeast genetic screens including syn-
thetic lethality is available at BioGRID database (version
2.0.38) [35]. From this data, we retain only those genes

having a systematic name as it appears in http://
www.yeastgenome.org. The resultant compilation is
derived from 1233 articles, with half of the total of 12707
SL relations being contained in five main articles
[16,27,28,37,38]. As commented above, the data consists
of knock-out and hypomorph experiments, with the latter
corresponding to essential genes [16]. The list of essential
genes has been downloaded from the Saccharomyces
Genome Deletion Project http://www-sequence.stan
ford.edu/group/yeast_deletion_project/deletions3.html.

Obtaining the iHSLN
Homologs between H. Sapiens and S. cerevisiae were
obtained by similarity measures from the whole-genome
multiple alignments by the Ensembl comparative genom-
ics team. Human genes in this study were named accord-
ing to HUGO gene nomenclature committee (HGNC
http://www.genenames.org/). Each entry of the homology
data file contains gene's evolutionary history correspond-
ing to a gene tree that diverged from a common ancestor
(see Figures 3 and 4). In our study, gene conservation in
yeast and human can be summarized in three types of
relations. The simplest case corresponds to one-to-one rela-

Schematic representation of our methodologyFigure 2
Schematic representation of our methodology. Poten-
tial anti-cancer gene-targets are proposed for future experi-
mental validation.
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tion between yeast and human genes (orthologous rela-
tion). However, duplication events during evolution led
to two alternative cases (see Figure 3B), where one yeast
gene has more than one human homolog (one-to-m rela-
tion), and vice versa (n-to-one relation) [36]. The case of n-
to-m was rarely encountered (Figure 3C). A yeast-human
inference relation is straightforward for the one-to-one
cases, and the human gene inherits the SL neighbors of its
yeast homolog. On the contrary, the paralog cases require
the introduction of approximate relations. More precisely,
we manually curated all the cases where the inference is
not one-to-one. For the one-to-m cases, we collapsed the
multiple human genes into a single node that inherits the
SL links of the yeast ortholog (Figure 4A). This situation
does not affect the pattern of interactions derived from
yeast SL network. In addition, by checking the biological
function of these m human genes, we classify them into
subsets of similar functions, and collapse these subsets
into separate nodes. Thus a yeast gene having m orthologs
might correspond to more than one node in the human SL
network. Again, we emphasize the distinction between
the single-gene nodes in the yeast SL network and the
potentially multiple-gene nodes in the iHSLN. The statis-
tics of the genes vs nodes the from gene-inference process
is illustrated in Figure 5.

The n-to-one cases merge the SL information from the
multiple yeast nodes, and therefore a single human gene
inherits the SL interactions from more than one yeast
gene. The extreme case is the third one, n-to-m.

Gene function statistical analysis of the iHSLN
Significance of the biological-function representation in
iHSLN was evaluated by means of a hypergeometric test
using Benjamini & Hochberg false discovery rate with a P-
value < 0.05 as a minimal cut-off. All the genes belonging

to iHSLN, independent on whether they belong to multi-
gene nodes, were considered in the analysis. Only eight
genes were not associated to any GOA term. Statistics were
performed for biological-function GOA terms using
BINGO 2.3 Cytoscape plugging [39]. A detailed report
including the list of genes related to specific GOA terms is
available at Additional File 1.

Filtering the iHSLN
Biological filtering through the use of databases led to the
functional classification of the nodes forming the iHSLN
into: (1) cancer-related genes, (2) genes related to the
DNA repair mechanism and cell cycle (two relevant func-
tions altered in most cancers) and (3) drug-target genes.

In order to identify cancer-related candidates we use the
COSMIC database(COSMIC: http://www.sanger.ac.uk/
genetics/CGP/cosmic: 37th version) that stores the current
knowledge on somatic mutations and related details on
human cancers. The information was completed by the
use of the genes from the Cancer Gene Census http://
www.sanger.ac.uk/genetics/CGP/Census that is a project
to catalogue those genes for which mutations have been
causally implicated in cancer.

Gene Ontology (GO http://www.geneontology.org, April
6th, 2008) database provides the biological description of
gene products for a number of predefined functions. To
relate one gene with its GO annotation, we used the gene
ontology annotation (GO numbers) from GOA http://
www.ebi.ac.uk/GOA/ 8th,2008). We also used the availa-
ble relationships between GO terms [40] to create differ-
ent filters for different biological processes, in particular
for Cell cycle and DNA damage.

The orthology relation in the process of yeast-to-human inference methodFigure 3
The orthology relation in the process of yeast-to-human inference method. The one-to-one case of one yeast gene 
having one human homolog (A). The n-to-one case of several human genes having the same yeast homolog (B). The one-to-m 
case can be defined analogously. The n-to-m is a very rare case where more than one human gene are homologs of more than 
one yeast gene (C).
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In addition to these databases, we have also used the
information extracted from the DrugBank (http://
www.drugbank.ca, release 2.0). It provides the available
studies from the US Food and Drug Administration that

relate tested drugs and their gene targets [32,41,42]. In
this way, we inquire whether clinical studies of drugs act-
ing on our proposed candidates have been previously
described in literature. All the representations of the
resultant networks were performed with Cytoscape [43].
Networks are provided as additional files.

Results
The iHSLN
Yeast SL network is a graph of 2383 nodes and 12707
links. This network is an extension of the SL network con-
structed by [28], who remarked that SL interactions yield
a giant component with a non-random topology of small-
world characteristics.

According to Ensembl database, phylogenetic inference
revealed that 52% of yeast SL nodes (1253 of 2383 SL
yeast genes) has at least one putative human ortholog (see
Figure 5).

Previous analysis of global genomic homology between
species estimated that the coverage between S. cerevisiae
and H. sapiens is about 20% [44]. The higher percentage
observed from the set of the yeast SL genes compared with
the global coverage may suggest a possible conservation
for SL proteins. However, it is also worth noting that a cri-
terion for gene selection in SL screenings is precisely a
high conservation along evolution, and this could be the
cause of the high proportion of inferred human genes in
the SL set. From the above-mentioned 1253 genes, only
1078 genes have a SL partner, that is those genes among
the 1253 that have SL partners without any human
ortholog are eliminated (Additional file 2). The final
human SL network presented a set of 1002 nodes and

Gene-node convention for the iHSLN constructionFigure 4
Gene-node convention for the iHSLN construction. 
Every node in yeast SL network (YSLN) has associated gene. 
(A) For n-to-one, the corresponding node in the iHSLN con-
tains the human paralogs of the yeast homologous counter-
part. (B) In the case that two SL yeast partners are 
phylogenetically related to a single human gene, an autolink 
appears in the human SL network. This is and artifact of the 
method. However, we have kept this information to provide 
a more detailed picture in case such a node is a suitable can-
didate.

The statistics of the genes vs nodes the from gene-inference processFigure 5
The statistics of the genes vs nodes the from gene-inference process.
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2847 links (Figure 6 and Additional files 4 and 5), where
almost all the nodes formed a giant component (933
nodes) with a non-random topology. Considering yeast-
to-human inference relations, the nodes in the human
network resulted from 766 one-to-one homology cases, 64
human nodes are composed of 138 genes due to the n-to-
one cases, and 170 nodes are formed of 386 genes due to
one-to-m relations (more precisely, 148 nodes include
gene of similar biological function, while 21 nodes con-
tain genes with heterogeneous functionality). Only 2
nodes came from 2 n-to-m situations. We mention that
1.5% (43 nodes) of the links in the human network were
autolinks (see Figure 4B for explanation). This is a result
of the n-to-one cases, as among these n yeast genes some
may be SL partners. This is an artifact of the human SL net-
work. These autolinks in the iHSLN are not eliminated
from our network, as the discussion concerning these
nodes as candidates needs to be addressed with caution.
We stress once more that in our subsequent analysis we
refer to nodes rather than to simple genes, as a node may
contain several genes.

Statistical analysis of biological-function representation
in iHSLN indicated a marked significant overabundance
(P-value << 0.05) of genes related to genome integrity and
cell cycle among others (see Table 1). This fact is
explained by the enrichment of genes related to DNA
integrity functions due to the selection criterion applied to

yeast SL screenings, enrichment that holds in iHSLN too
by the high conservation of these genes. As previously
pointed out, such conserved functions in iHSLN are
closely related to cancer disease providing a valuable set of
potential SL candidates for humans.

Obtaining potential cancer-related SL targets
Cancer-related database approach
In order to evaluate potential candidates, we first identify
those human genes in our inference list that are known to
be involved in cancer mutations, as detailed in Material
and methods. Given this information, the SL partners of
these genes are then potential candidates for anti-cancer
therapy. In the inset of Figure 7 we represent the 124-
nodes sub-network containing those nodes in the human
SL network that have been found in the COSMIC and
Cancer Gene Census databases. In this network, we
observe the SL interactions between cancer-related genes.
However, our objective is to obtain possible candidates,
that is the SL partners of these 124 that are not described
as cancer-related genes. Therefore, we extract from the
iHSLN also the first neighbors of these 124 nodes. We
illustrate this network in Figure 7 where triangles depict
cancer-related nodes and circles indicate their neighbors
that are not known to be cancer-related in the used data-
bases. This figure represents a map of the potential SL can-
didates to be targeted when a given cancer-related
mutation is predominant in a tumor. To evaluate the sig-
nificance of cancer-cancer correlation in iHSLN, we per-
formed a randomization with 5000 runs of the cancer-
node attributes maintaining the topology of the network
from Figure 7. The statistical test using t-student revealed
that cancer-cancer links are significantly overabundant in
the iHSLN.(Additional file 6)

A word of caution is required before interpreting Figure 7.
Cancer-related information is a compendium obtained
from many samples, cancers and types of mutations.
Given a SL pair conserved in human, if amorph (or even
hypomorph) mutations occur in both genes within a
tumor cell then a lethal condition should be expected
according to our rationale. Following this reasoning, such
a combination of mutants should not be observed within
a cell. If such an event results in Figure 7, we would state
that this combination is not conserved in humans accord-
ing to SL definition. Therefore, we interpret cancer-cancer
SL interactions to occur in different samples.

Notice that the cancer-related databases include both
those genes that are also overexpressed in tumor cells.
Even though the expression level information is not
always available, this information is determinant for a
correct selection of SL candidates. The most likely candi-
dates presented in this work are chosen according to an
underexpression scenario. In relation with this issue,
among the many types of mutations encountered in the

The 933-giant component extracted from the 1002-nodes network of inferred SL human genes (Additional files 4 and 5)Figure 6
The 933-giant component extracted from the 1002-
nodes network of inferred SL human genes (Additional 
files 4 and 5). The human orthologs from yeast are related 
through a yeast SL-relation.
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databases we wish to single out a few examples of muta-
tions types. Some cancer-related genes in Figure 7 corre-
spond to cases of nonsense mutations, in other words
point mutations causing a premature stop codon. There-
fore, we expect that such mutations critically damage the
function of corresponding proteins. These genes are ATM,
NF1, FBXW7, MSH2, BUB1, ERCC2, BLM and MSH6. The
first four genes are also documented in the Cancer Gene
Census to suffer deletions in different types of cancers.

Providing a proof of the potential predictability of our
iHSLN is not straightforward due to the sparseness of data
and the lack of a systematic identification of SL in
humans. However, a number of examples can be extracted
from literature, supporting the utility of our approach.
One of them is the above cited BLM gene. It is a highly
connected gene with 24 SL partners in the iHSLN that cod-
ifies a helicase homolog to SGS1 yeast gene. Its deficiency
causes the Bloom syndrome, an autosomal recessive dis-
order with high disposition to tumorigenesis process. In a
work performed in Drosophyla, BLM-MUS81 double
mutation is an experimental verification of a SL interac-
tion observed in our iHSLN [45]. This fact has a special
interest since BLM helicase facilitates MUS81 endonucle-
ase activity in human cells [46]. More recently, a SL inter-
action between the above cited NF1 gene and RAD54B, an
homologous of the yeast RAD54, was experimentally
determined in cancer cells [47]. Although yeast screenings
identified this double mutant as a SL pair, due to database
incompleteness, the phylogenetic relation of RAD54 was
lost during inference process. As we discuss later, the qual-
ity of data is a considerable pitfall for a good performance
of this methodology.

Another indirect evidence of a potential verification
comes from the lethal effect of ATM gene deletion in
defective Fanconi anemia (FA) pathway cells. FA pathway
inactivation is strongly associated to tumorogenesis proc-
ess. Interestingly, an activator of this pathway is ATR, a SL
partner of ATM in the iHSLN [48].

One of the hubs observed in Figure 7 corresponds with
CDC73. It has been observed that mutations in this gene
(also known as HRPT2) are associated with malignancy in
sporadic parathyroid tumors and hereditary hyperparath-
yroidism-jaw tumor syndrome [49]. Parafibromin is a
tumor suppressor protein encoded by HRPT2 that binds
to RNA polymerase II as part of a PAF1 transcriptional reg-
ulatory complex. Expression inhibition by HRPT2 RNA
interference stimulates cell proliferation and increases the
levels of the c-myc proto-oncogene product [50]. Accord-
ing to Figure 7, the CDC73 hub establishes a large number
of potential SL candidates. We must stress that, due to the
long phylogenetic distance between human and yeast,
some of them are likely false positives. Nevertheless, bio-
logical arguments in favor of their relevance can be sought
in order to strengthen their candidacy. This is the case of
the SL link between CDC73 and genes related with the
RNA polymerase machinery such as RPAP2 [51], and the
transcription elongation factor TCEA3 [52] that capture
the common function in RNA processing of these part-
ners. In addition, CDC73 has as SL partner in Figure 7 the
JUP (junction plakoglobin or -catenin) protein, a compo-
nent of the catenin complex. JUP is involved in cell adhe-
sion [53], an apparently very distant function regarding
RNA processing. However, -catenin strongly activates the
proto-oncogene c-myc [54]. According to this evidence, it
seems reasonable to consider that a biological pathway
relates JUP and CDC73 (depicted as SL partners in our
study) with c-myc, but with opposite effects. In this case,
our methodology reveals a potential anti-cancer strategy:
inhibiting -catenin expression would compensate the
activation of c-myc by the HTRP2 cancer mutation.

GOA filtering approach
In a second approach, and in agreement the to statistical
significance of the functional analysis (notably, all GOA
terms presented in Table 1 produced a very significant P-
value), we added a new layer of information by using the
cancer-related functions extracted from GOA. In so doing,
we searched for candidates that might not be included in
cancer-related databases, but their functions are essential

Table 1: Statistical analysis of iHSLN biological functions. 

GO term - Biological function P-value % of genes in iHSLN % of genes in GOA

DNA replication 5.20 E-28 6.8 40.9
DNA repair 4.93 E-24 7.4 27.7

Response to DNA damage stimulus 4.00 E-23 8.1 24.9
RNA processing 4.56 E-15 8.7 17.9

Cell cycle 2.50 E-13 9.8 15.7
Proteasomal protein catabolic process 1.10 E-8 24.0 30

Golgi vesicle transport 1.70 E-8 25.0 28.4

The columns include: Column 1 - the biological function from GOA; column 2 - the P-value associated to the results; column 3 - the percentage of 
genes with a given GO term encountered in iHSLN (998 genes); column 4 - the percentage of genes with a given GO term encountered in GOA 
(14486 genes) (see Additional file 1).
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for cancer progression. These functions have an special
interest due to, it is well established that mutations in
genes involved in DNA damage repair or in cell cycle
checkpoints are associated with tumor progression [55].
In this sense, synthetic lethal relationships between DNA-
replication genes (such as certain DNA polymerases) and
DNA-repair genes (such as mismatch-repair genes) are
well documented in model organisms [29,56]. Moreover,
it seems likely that the efficiency of many anti-cancer
drugs that interfere with DNA synthesis is in some cases
due to the presence of tumor-associated mutations affect-
ing DNA repair or the response to DNA damage [18].

The connected sub-network from Figure 8 (Additional file
7) was obtained by extracting the genes annotated for
these functions. Interestingly, the analysis shows that for
six SL pairs one gene is directly cancer-related, whereas the
other is not known to be so (Table 2). These latter genes
constitute preliminary and putative candidates for future
experimental validation. It is also worth noting that, as
shown in Table 2, we also consider as candidates some SL
partners with no known relation to cancer. They are SL
partners consistent with a within pathway approach [23]
(they act, or are part of the same complex in a pathway).
Moreover, we notice that these cancer-unrelated SL pairs

Cancer-related genes and their first neighbors from the SL human network (Additional file 6)Figure 7
Cancer-related genes and their first neighbors from the SL human network (Additional file 6). The inset illustrates 
the sub-network of cancer-related nodes alone (59 nodes). Nodes without SL partners (65 of 124) were eliminated from this 
picture. In the large network, both cancer-related (triangles) and their neighbors (circles) in the SL human network. Only the 
links connecting a cancer-related gene and its neighbor (411 nodes and 694 links) are illustrated.
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(labeled with asterisk in Table 2) consist of essential genes
and thus come from hypomorph experiments. Their
essential nature strengthens the likelihood of their
belonging to the within-pathway model rather than to the
between-pathway one (they function in parallel pathways).

An illustrative case by means of the GOA filtering is again
CDC73, also observed in the previous section. In this case,
GOA filtering offers evidence of its relation with the DNA
damage related gene MMS19 (see Table 2) and helicase
component. Interestingly, helicases have been proposed
as targets for anti-cancer therapy [57] as they are closely
related with the required genetic instability for tumor pro-
gression.

Drug association to SL human target genes
DrugBank database information was used here to estab-
lish possible relations between existing drugs and inferred
SL human genes. We have found that 130 nodes of our
iHSLN contain genes associated to one or several drugs in
the DrugBank. More specifically, 17% of them are anti-
cancer drugs. See Additional file 3 for pattern of interac-
tions for this set of nodes. As we shall see in the next sec-
tion, the combination of cancer-related and drug-target
information into the iHSLN produces a set of genes that
are known drug targets and have cancer-related SL part-

ners, i.e. the suitable candidates according to our method-
ology illustrated in Figure 1.

Finding SL partners of cancer-related genes associated to drugs
As we previously argued, SL partners of cancer-related
genes constitute a set of potential targets for anti-cancer
treatment. The knowledge about drugs affecting these
genes provides, on one hand, supporting evidences of our
methodology. This is the case of cancer-unrelated genes
for which there exists an anti-cancer drug, genes that are
also SL partners of a cancer-related gene. On other hand,
when the cancer-unrelated gene is associated to a cancer-
unrelated drug, we have a potential new use of a drug that
initially has not been conceived for anti-cancer treatment.
The integration of this information is included in Figure 9
(Additional file 8). In this network, we eliminated the
cancer-unrelated nodes that are not associated to any
drug. The remaining set contains 155 nodes of which 124
are cancer-related nodes and 31 are drug-target nodes. A
subset of 47 nodes are isolated nodes that match the
number of cancer-related nodes having lost all the SL part-
ners during filtering process, and it also indicates that no
drug is associated to their SL neighborhood in the current
version of DrugBank. Moreover, we notice that 28 nodes
of 155 correspond with essential genes in yeast, according
to Saccharomyces Genome Deletion Project http://www-
sequence.stanford.edu/group/yeast_deletion_project/
deletions3.html. Randomization and the subsequent sta-
tistical test using t-student revealed that cancer-to-drug-
target links are significantly overabundant in the iHSLN.

Figure 9 also singles out (large circles and triangles) three
SL pairs that are fundamental to existent anti-cancer treat-
ments consisting in targeting SL partners of the cancer-
related genes. In the first example, ERCC2 (also known as
XPD) is a cancer-related gene [58]. Studies of its homolo-
gous gene in Drosophila show that an excess of XPD pro-
duces a titration of CAK complex and reduces CDK7
activity, leading to a cell-cycle arrest [59]. Moreover,
CDK7 is a protein of the CAK complex required for cell-
cycle progression [60]. It has already been suggested as a
potential target for anti-cancer therapies. Pharmacological
implications are discussed in [60].

In the second example, PPP6C is a phosphatase involved
in cell-cycle progression in human cells through the con-
trol of cyclin D1 [61]. Its SL partner, PSMB2, is a proteas-
ome subunit related with protein degradation processes.
Bortezomib, a therapeutic proteasome inhibitor is a target
of PSMB2 (according to DrugBank information). It is
pharmacologically approved for treating relapsed multi-
ple myeloma and mantle cell lymphoma. In addition, the
use of Bortezomib in hepathocarcinoma cells reduces the
transcriptional levels of cyclin D1, among other effects,
leading to cell-cycle arrest. It is postulated that cyclin D1

SL-inferred human orthologs organized by GO numbers (Additional file 7)Figure 8
SL-inferred human orthologs organized by GO num-
bers (Additional file 7). Genes' color denotes their biological 
function (GO number): in blue, cell-cycle related genes, in 
red, DNA damage related genes and in white, genes related 
to both processes.
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can act as an oncogene [62,63]. In this case, we observe
that PSMB2 and PPP6C affect the levels of this cell-cycle
related gene.

The third example, BUB1* (here the * symbol implies that
more than one phylogenetically-related proteins is con-
tained in this node) is a prototype member of a family of
genes, some of which encode proteins that bind to the
kinetochore and all of which are required for a normal
mitotic delay in response to spindle disruption. Mutations
in this gene have been associated with aneuploidy and
several forms of cancer [64]. Our results reveal that this
gene is associated to TUBB* in the SL network. TUBB*
represents a number of genes encoding tubulin proteins.
Tubulins are targets of the anti-cancer drug Paclitaxel and
the vinca alkaloids Vincristine and Vinblastine that also
affect the mitotic-spindle assembly process [65].

Table 3 contains a representative list of the assignment of
a potential anti-cancer use for existent cancer-unrelated
drugs. As examples, two genes (and their drugs) are com-
mented. The first one is PRDX2 (also known as peroxire-
doxin-2), a gene encoding a member of the peroxiredoxin

family of antioxidant enzymes, which reduce hydrogen
peroxide and alkyl hydroperoxides [66]. It is interesting to
mention that PRDX2 has been associated to cell prolifera-
tion and cell migration by regulation of the PDGF signal-
ling [67]. N-carbamoyl alanine and 3-sulfinoalanine
compounds were found to be inhibitors of PRDX2 activity
and it has not been yet associated to any anti-cancer treat-
ment. Two SL cancer-related partners of PRDX2, RAD50
and MRE11A are part of MRN protein-complex involved
in DNA double-strand break repair, cell-cycle checkpoint
activation, telomere maintenance and meiotic recombi-
nation [68].

The second example is the SL link between CDC42 and
the previously described PPP6C. CDC42 is a gene partici-
pating in the rearrangement of actin cytoskeleton, mem-
brane trafficking and cell-cycle progression, and it appears
to be involved in cardiovascular diseases, diabetes and
neuronal degenerative diseases [69]. This is a target gene
of two other compounds (aminophosphonic acid-guan-
ylate ester and guanosine 5'diphosphate) with no relation
to cancer treatment in the DrugBank. However, it has
been described that this gene is also involved in tumori-

Table 2: Yeast SL gene-pairs. 

Yeast Human Biological process

YMR224C MRE11A Single-strand and double-strand-3'-5' exonuclease activity for DNA repair and recombination.
YER016W MAPRE1 Microtubule assembling

YLR418C CDC73 PAF1 complex. Interacts with RNA pol II. Causes hyperparathyroidism-jaw tu- mor syndrome
YIL128W MMS19 Interacts with helicase subunits of NER-transcription factor

YNL299W PAPD5 Sister chromatid cohesion. Resistance to Campothecin anti-tumor agent
YJL115W ASF1 Histone chaperone

YJL194W CDC6 Initiation of DNA replication. Oncogenic activity through repression of INK4/ARF locus
YGL087C UBE2V2 Ubiquitin-conjugating enzymes without catalytic activity

YJL013C BUB1 Involved in cell cycle checkpoint enforcement. Colorectal cancer
YGL058W UBE2B Central roll in postreplicative DNA repair in eukaryotic cells

YKL113C FEN1 Removes 5' overhanging flaps in DNA repair and Okazaki fragments. Fast tumor progress
YGL240W ANAPC10 Component of anaphase promoting complex (APC), progression through mitosis and G1 phase

*YDL132W CUL1 Core component of multiple cullin-RING-based SCF which mediate the ubiquitination of proteins involved in cell 
cycle progression, signal transduction and transcription.

YOL133W RBX1 Component of the SCF.

*YBR087W RFC3 form a complex required by DNA polymerase delta and epsilon.
YNL102W POLA1 DNA polymerase subunit.

*YJR068W RFC4 form a complex recruited by DNA polymerase
YDL102W POLD1 DNA polymerase subunit

Human homologs of the SL gene-pairs and the biological process that they fulfill. A preliminary candidates list, where a human gene is cancer-related 
(in bold) and its SL partner is not known to be directly related with cancer. Asterisk symbol indicates SL partners that belong to the same cellular 
pathway (within-pathway model: [23]) and are essential.
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genesis and tumor progression, and the aberrant expres-
sion of CDC42 has been associated to colorectal tumors
[69,70]. It is worth mentioning that it has been observed
that CDC42 controls the cell growth of anaplastic large
cell lymphoma through its activation. Pharmacologic
inhibition of CDC42 activity by secramine results in a
cell-cycle arrest and apoptosis of these cells [71,72]. We

suggest thus that CDC42 inhibition by secramine consti-
tutes a potential anti-cancer treatment, but unfortunately
neither CDC42 nor secramine appeared in their respective
databases used in this study. This example emphasizes
once more that database information is a useful starting
point for selecting new candidates. Interestingly, yeast
ortholog of CDC42 is an essential gene and thus its

Drug-cancer SL network representing the set of cancer-related nodes and their SL drug-associated partners (Additional file 8)Figure 9
Drug-cancer SL network representing the set of cancer-related nodes and their SL drug-associated partners 
(Additional file 8). Triangles represent cancer-related nodes and circles, SL drug-associated partners. Red color indicates that 
this node has associated a gene which is target of anti-cancer drug. Green color indicates a non-cancer drug associated to the 
node. Blue color only appears in triangles representing that there is no drug in the DrugBank database associated to these can-
cer-related genes. Essential genes are overlined. Large nodes are examples of existent anti-cancer drug target with a cancer-
related SL pair (PPP6C-PSMB2, BUB1*-TUBB*, ERCC2-DCK7), and also our suggested examples of novel use for existent can-
cer-unrelated drugs that target a SL partner of a cancer-related gene (RAD50-PRDX2, MRE11A-PRDX2 AND PPP6C-
CDC42). The BUB1* node represents BUB1 and BUB1B genes, whereas TUBB* node includes TUBB2B, TUBB3, TUBB2A and 
TUBB6 tubulin family members.
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mutant in the screening experiments is a hypomorph.
Thus it suggests that partial inhibition of CDC42 could be
enough to cause a lethal condition in those tumor cells
where an amorphic mutation for PPP6C exists. In view of
these comments, novel SL screening analysis and the use
of highly curated databases would contribute to improve
the results of this methodology.

Discussion
By the present study we propose a methodology for pro-
viding liable candidates for future experimental valida-
tion as drug targets for anti-cancer therapy. The
methodology is based on the existence of synthetic-lethal
relation between pairs of genes: two genes are syntheti-
cally lethal if their simultaneous mutation leads to invia-
ble organism, while their separate mutation has no
substantial effect on the organism's fitness. As conceptual-
ized by previous works [17,18], we used here the extensive
experimental data on yeast in order to extend the knowl-
edge to the human genome, and more precisely to anti-
cancer therapy.

The rationale behind such approach is that, assuming that
there are specific mutations for cancer cells, the identifica-
tion and artificial mutation (drug action) of their SL part-
ners would result in the death of cancerous cells alone.
The mutations would affect also healthy cells, but would
not drastically injure them. The combination of different

biological databases provides potential filters for reducing
the number of false positives. In this work a gene is con-
sidered cancer-related if it belongs to COSMIC or Cancer
Gene Census databases. This implies certain limitations to
our study since it depends on the accuracy and complete-
ness of these databases. In this context, the better annota-
tion of the used database, the more reliable the results.
One example of that is the case of CDC42-PPP6C SL pair
and the use of secramine drug resulting from a literature
search but not from the current DrugBank version.

We have commented that cancer-cancer SL interactions
could be interpreted as false positives as we do not expect
them to occur in the same cell. We consider that the proof
of this statement is an interesting working hypothesis to
be tested in future research. Such a future research would
aim at providing a quantitative estimation about the like-
lihood of observing a double mutation in tumor cells as it
results from the data analysis. A supporting evidence of
this hypothesis would be that SL cancer-related gene pairs
are less likely to be observed in the double-mutation data-
set. In spite of being related to the current work, we con-
sider such a study to be outside the aim of the current
work directed at introducing the potential of this method-
ology.

In addition, false positives can result also from the long
evolutionary distance and different architectures between

Table 3: A selection of cancer-unrelated SL partners of cancer-related genes and their associated drugs. 

Drug-target name Drug (Description)

CDC25B Beta-Mercaptoethanol (Glutathione S-Transferase inhibitor); Cysteinesulfonic Acid(Peroxiredoxin inhibitor); Double 
Oxidized Cysteine (Peptide Deformylase Pdf1 inhibitor)

CDC42 Aminophosphonic Acid-Guanylate Ester (G25K GTP-Binding Protein inhibitor)
CDK2 4-(2,4-Dimethyl-Thiazol-5-Yl)-Pyrimidin-2-Ylamine (Cell Division Protein Kinase 2 inhibitor)
DDX6 D-tartaric acid (D-tartaric acid)
EIF4E 7-Methyl-Gpppa 

(Eukaryotic Translation Initiation Factor 4E inhibitor); 7n- Methyl-8-Hydroguanosine-5'-Diphosphate (Vp39 inhibitor)
GDI1 Geran-8-Yl Geran(Rab GDP Disossociation Inhibitor Alpha inhibitor)
GRB2 4- [(10s,14s,18s)-18-(2-Amino-2-Oxoethyl)-14-(1-Naphthylmethyl)-8,17,20-Trioxo- 7,16,19-Triazaspiro[5.14]Icos-11-En-10-

Yl]Benzylphosphonic Acid (Growth Factor Receptor-Bound Protein 2 inhibitor)
HSP90AB1 9-Butyl-8-(3,4,5-Trimethoxybenzyl)-9h-Purin-6-Amine (Heat Shock Protein Hsp 90-Beta inhibitor)

HSPA5 antihemophilic factor (Coagulation factor VIII precursor)
LSS Dihydrofolic Acid (Dihydrofolate Reductase inhibitor)

PPP1CC 9,10-Deepithio-9,10-Didehydroacanthifolicin (Serine/Threonine Protein Phos phatase Pp1-Gam inhibitor)
PPP2CA Vitamin E (Dietary supplement)
PPP3R2 Cyclosporine (Investigational Immunomodulatory Agents; Immunosuppressive Agents; Antifungal Agents; Dermatologic 

Agents; Enzyme Inhibitors; An tirheumatic Agents For treatment of transplant rejection, rheumatoid arthritis, severe 
psoriasis)

PRDX2 3-Sulfinoalanine (3-Hydroxy-3-Methylglutaryl-Coa Synthase inhibitor)
SEC14L2 Palmitic Acid (Enzyme Inhibitors)
SNAP25 Botulinum Toxin Type A (Anti-Wrinkle Agents; Antidystonic Agents; Neuromuscular Blocking Agents)
SOD1 S-Oxy Cysteine (Prolyl Oligopeptidase inhibitor)
SQLE Naftifine (Anti-Inflammatory Agents, Non-Steroidal; Antifungal Agents)

These drugs are not oriented to anti-cancer treatment. In this list we excluded general metabolites described as dietary supplements in DrugBank. 
A short description of drug activities are provided in parenthesis.
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yeast and human genomes. At this point, the evolutionary
conservation of SL pairs is controversial [29,73-75], even
though a recent study inclines the balance towards a sig-
nificant conservation of synthetic lethal interactions
between eukaryotes [75]. In addition, the existence of
conserved SL associated to particular functions [29,74,76]
is promising evidence for the inference methodology pre-
sented here. Even though not all yeast SL pairs are
expected to be conserved in distant organisms, those asso-
ciated to essential functions have a higher conservation
probability. The identification of only a few of such part-
ners could constitute alone an invaluable information in
the strategy of drug design.

As Lawrence Loeb stated with his mutator-phenotype sce-
nario for cancer evolution [7,9,77], some genetic instabil-
ity but not too much is required for cancer progression.
An illustrative example, the BUB1-TUBB* SL pair, is
closely related with the strategy of forcing instability in
order to kill cancer cells. It is reasonable to assume that an
attack to tubulins by drugs in tumors where BUB1 appears
mutated may drift the tumor population towards extinc-
tion by exceeding the limits of mutation tolerance. In this
particular case, we speculate that treatments with vinca
alkaloids should be more efficient in those cancers where
BUB1 is mutated. Analogously, our results reveal the suit-
ability of an attack to MMS19 helicase component when
CDC73 is mutated. As argued by [78], compensatory hel-
icase-dependent DNA repair pathways may represent a
suitable target for anti-cancer therapy strategies that are
designed to introduce DNA damage to tumors with pre-
existing defined DNA repair deficiencies. In this context,
we provide among our candidates the FEN1-BLM pair and
the already confirmed MUS81-BLM [45], both suggested
by [78] as potential targets in cancer therapy. However,
other anti-cancer strategies such as the attack to protein
degradation function by blocking PSMB2 proteasome
component has been also uncovered by the presented
methodology. In this case, our result suggests that this
therapy should be more efficient in tumors where PPP6C
is mutated.

Conclusions
We have proposed by the present study a tool for phylo-
genetic inference of candidates for future experimental
validation as drug targets in anti-cancer therapy. Once
more, we stress that we do not argue in favor of a method-
ology of SL-genes inference across distant species, as it has
been already discussed in the literature to be a controver-
sial step [73,75]. Rather our study has a pharmacological
utility and constitutes an alternative for massive drug
screenings. In addition, the arguments brought forward in
favor of the proposed candidates above justify their con-
sideration for future experimental validation.

Furthermore, we provide an additional file on the results
discussed above in order to foster the bioinformatic and
pharmacological communities towards further analysis of
this methodology.
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This file must be opened with cytoscape software.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1752-
0509-3-116-S8.ZIP]
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