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Abstract

Background: Constraint-based flux analysis of metabolic network model quantifies the reaction
flux distribution to characterize the state of cellular metabolism. However, metabolites are key
players in the metabolic network and the current reaction-centric approach may not account for
the effect of metabolite perturbation on the cellular physiology due to the inherent limitation in
model formulation. Thus, it would be practical to incorporate the metabolite states into the model
for the analysis of the network.

Results: Presented herein is a metabolite-centric approach of analyzing the metabolic network by
including the turnover rate of metabolite, known as flux-sum, as key descriptive variable within the
model formulation. By doing so, the effect of varying metabolite flux-sum on physiological change
can be simulated by resorting to mixed integer linear programming. From the results, we could
classify various metabolite types based on the flux-sum profile. Using the iAF1260 in silico metabolic
model of Escherichia coli, we demonstrated that this novel concept complements the conventional
reaction-centric analysis.

Conclusions: Metabolite flux-sum analysis elucidates the roles of metabolites in the network. In
addition, this metabolite perturbation analysis identifies the key metabolites, implicating practical
application which is achievable through metabolite flux-sum manipulation in the areas of
biotechnology and biomedical research.

Background
Cellular metabolism is more often than not represented
and analysed based on a stoichiometric modelling
framework under the stationary assumption of the
metabolic network [1]. Such stationary approaches, e.g.
flux balance analysis (FBA), circumvent issues related to
kinetic modeling, including the lack of experimental
data and the need for estimation of kinetic parameters,
and provide useful information about the characteristics

of the system as evident in various nonlinear dynamic
analysis techniques [2]. Furthermore, the assumption of
metabolic steady-state is usually valid since the intracel-
lular dynamics are typically much faster than extracel-
lular dynamics [1] and metabolite concentrations
generally equilibrate in a much shorter time (in seconds)
compared to the time-scale of genetic regulation (in
minutes) [3-5]. Consequently, the constraint-based
reconstruction and analysis (COBRA) approach provides
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an elegant method of characterizing and predicting
cellular phenotype and metabolic states through the
application of FBA which solves a linear optimization
problem by assuming some form of cellular objective as
the performance criterion [6-8].

Metabolites and biochemical reactions in the metabolic
network can be graphically represented by nodes and
edges connecting the nodes respectively. Based on this
graphical representation, it is obvious that there can be
two approaches in the analysis of the network, focusing
on the flow of materials through either the nodes
(metabolite-centric approach) or edges (reaction-centric
approach). Typical FBA can be conducted based on a
reaction-centric approach where constraints were intro-
duced to restrict the range of reaction flux values so as to
define a feasible solution space [9]. This analysis is
intrinsically reaction-centric since reaction fluxes are the
key description variables in the model formulation [10].
Previous studies involving the application of FBA mostly
dealt with gene or reaction knockouts [11-13] and
manipulation of reaction rates [14], which examined
the phenotypic morphology resulting from the alteration
of reaction fluxes. These reaction-centric approaches,
especially in [14], provided us with a quantitative
understanding of the reaction essentiality in a metabolic
network.

On the other hand, the metabolite-centric approach
towards addressing metabolite essentiality was, to date,
only attempted by a handful of studies [15-17] which
mostly presented qualitative effects of removing meta-
bolites from the network. Only [16] demonstrated the
use of a quantitative measure of metabolite essentiality
known as the “flux-sum” which indicates the turnover
rate of a particular metabolite. Recognizing the fact that
metabolites play important roles in shaping the meta-
bolic network [18], we propose a methodology for the
quantitative analysis of metabolite essentiality that can
overcome the limitations of the previous formulation
and extend the scope of analysis. As the constraint-based
modeling, we incorporated metabolite flux-sum con-
straints with the reaction flux constraints in the
mathematical formulation so as to investigate the effect
of varying metabolite flux-sum on cellular metabolism
and phenotypic change. The efficacy and usefulness of
this metabolite-centric approach was demonstrated by
applying it to the E. coli system using i AF1260 in silico
metabolic model [19].

Methodology
Defining the flux-sum
The constraint-based analysis of the metabolic network
evaluates the steady-state flux distribution which satisfies

the flux balance condition: S vij j
j

∑ = 0 for any internal/

intermediate metabolites i, where Sij refers to the
stoichiometric coefficient of metabolite i participating
in reaction j and vj, the flux of reaction j. At pseudo-
steady-state, there is no accumulation of intermediate
metabolites but the absolute rate of metabolite con-
sumption or production can be nonzero. Therefore, we
can define a new descriptive variable of “flux-sum” to
represent the turnover rate of a metabolite by summing
up all the incoming or outgoing fluxes around the
metabolite [16]. This definition clearly indicates that the
unit of flux-sum is equivalent to that of the reaction flux
(i.e. mmol/g-DCW-hr). Hence, we let Fi denote the flux-
sum of metabolite i and its mathematical form is given

by Φ i ij j
j

S v= ∑0 5. . This variable can be further
constrained to explore phenotypic changes under per-
turbed conditions such as attenuation or intensification
in the metabolic network.

Flux-sum constraint with binary variables
The nonlinear flux-sum term within the mathematical
formulation was originally recast into a series of linear
constraints based on the mathematical relationship
(a - b)2 ≤ (a + b)2 which leads to |a - b| ≤ a + b only
under the condition that a ≥ 0 and b ≥ 0 [16,20]. By
introducing two positive variables aj and bj, they let
Sijvj = aj - bj for metabolite i. Thus, the constraint

0 5. ( )a b Cj j
j

+ ≤∑ effectively ensured that the flux-sum

of metabolite i, Fi, is less than or equal to the value of
C. Since this method enables us to specify “≤” constraints
on flux-sums, it sufficed the analysis of flux-sum
attenuation. However, this technique is inadequate for
the implementation of flux-sum intensification, which
requires “≥” constraints. In order to overcome the
limitation, we reformulate flux-sum constraints as
follows: Similarly, we let the rate of consumption/
production of metabolite i due to reaction j be expressed
in terms of two positive variables: S v f fij j ij ij= −+ − , where
fij

+ ≥ 0 and fij
− ≥ 0 . Thus the flux-sum of metabolite i

can be expressed as Φ i ij j
j

ij ij
j

S v f f= = −∑ ∑ + −0 5 0 5. . .

We observed that f f f fij ij ij ij
+ − + −− = + if and only if

either fij
+ = 0 or fij

− = 0 , or simply f fij ij
+ −⋅ = 0 . Then,

the f l ux - sum of metabo l i t e i i s g i v en by

Φ i ij ij
j

f f= +( )+ −∑0 5. when either fij
+ = 0 or fij

− = 0 .

This condition can be satisfied by introducing indicators

or binary variables: I ij
+ ∈{ , }0 1 and I ij

− ∈{ , }0 1 , and the

constraints f I Mij ij
+ +≤ ⋅ ; f I Mij ij

− −≤ ⋅ ; and I Iij ij
+ −+ = 1 .
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Note that big M is some finitely large number that
should at least be larger than the largest possible reaction
flux observed experimentally. The rationale for using bigM
instead of infinity is that the product of zero and infinity
is undefined. This formulation of flux-sum circumvents

the “bad” nonlinear constraint f fij ij
+ −⋅ = 0 [20].

Flux-sum analysis
In order to conduct flux-sum attenuation and intensi-
fication analyses, we need reference values represent-
ing the base case and the range of feasible flux-sum
values. The collection of flux-sum values correspond-
ing to the unperturbed system or base case would
be referred to as the basal flux-sum distribution that
can be calculated from the flux distribution as a result
of FBA. The minimum flux-sum value of any metabo-
lite is set as zero since Fi ≥ 0 while the maximum flux-
sum can be evaluated using the new mathematical
formulation that is elaborated below. Based on these
reference values, we can attenuate or intensify each
metabolite’s flux-sum by gradually decreasing or
increasing the flux-sum value from the basal value to
zero or the maximum value, respectively. In summary,
the entire process of flux-sum analysis is carried out in
3 steps:

Step 1: Evaluate basal flux-sum distribution.

Step 2: Evaluate flux-sum maxima of individual meta-
bolites.

Step 3: Manipulate flux-sum by attenuation and intensi-
fication.

The mathematical details for every step of the procedure
are described as follows:

Step 1: Evaluate basal flux-sum distribution
The basal flux-sum distribution can be evaluated based
on the “wild-type” flux distribution which is determined
by solving the following FBA formulation under the
unperturbed or normal condition:

max

. .

,

v

S v

v

biomass

ij j

j

j j j j j j j

s t

for some and 

∑ =

≤ ≤ ∈ ≤

0

α β α β α βR� (( )

,_

Flux capacity constraints

for some anλ μ λ μi EX i i i iv≤ ≤ ∈R� dd Uptake secretion constraintsλ μi i≤ ( / )

(P1)

In this study, we assumed the cellular objective to be
biomass formation (or cell growth), vbiomass. The

preceding formulation allowed the input of experimen-
tal observations by specifying the values of aj, bj, li and
μi. In the case where upper and lower bounds of fluxes
are unavailable, the flux capacities can be set as aj = 0,
bj = +inf for irreversible reactions and aj = -inf, bj = +inf
for reversible reactions. Similarly, for metabolite uptake
or secretion constraints on exchange fluxes (vEX_i), we
can set li = 0, μi = +inf for metabolites that are secreted
only; li = -inf, μi = 0 for metabolites that are consumed
only; and li = -inf, μi = +inf for metabolites that can enter
and leave the system freely.

After solving (P1), the basal flux-sum value of
any metabolite i is calculated using the formula

Φ i
B

ij j
j

S v= ∑0 5. , indicating the summation of all

incoming or outgoing fluxes around metabolite i under
the normal condition.

Step 2: Evaluate flux-sum maxima of individual metabolites
The flux-sum maxima of metabolites can be calculated
by solving the following mixed-integer optimization
(MIP) problem:

max .

. .

Φ i ij ij

j

ij j

j

f f i

S v

= +( )

=

+ −∑

∑

0 5

0

 for given metabolite 

s t

SS v f f

f I M

f I M

I I

v

ij j ij ij

ij ij

ij ij

ij ij

j j j

= −

≤ ⋅

≤ ⋅

+ =

≤ ≤

+ −

+ +

− −

+ − 1.

α β ffor some and Flux capacity constraintsα β α β
λ

j j j j

i v

, ( )∈ ≤
≤

R�
EEX i i i i i i_ , ( /≤ ∈ ≤μ λ μ λ μfor some and Uptake secretion constrR� aaints)

, , { , }, { , }f f I Iij ij ij ij
+ − + −≥ ≥ ∈ ∈0 0 0 1 0 1

(P2)

We let Φ i
u denote the maximum flux-sum value of (P2)

for metabolite i.

Step 3: Manipulate flux-sum by attenuation or intensification
With the reformulation of flux-sum constraints we
fix the flux-sum of any metabolite at a particular
value and evaluate the corresponding metabolic state.
In order to ensure feasibility, the basal flux-sum can
be considered as the starting point, followed by
examining the effects of decreasing and increasing
metabolite flux-sums through flux-sum attenuation
and intensification analysis, respectively. The mathe-
matical formulation for this analysis is given as
follow:
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max

. .

. ( )
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(P3)

By solving this MIP problem, we can obtain the biomass
production values for different levels of flux-sum
attenuation or intensification. Note that either (C1) or
(C2) is implemented depending on whether the pro-
blem is flux-sum attenuation or intensification respec-
tively. The parameters katt and kint control the levels of
flux-sum attenuation and intensification respectively.
Initially, setting katt = 1 or kint = 0 constrains the flux-sum
at the basal level. Subsequently, we can attenuate or
intensify the flux-sum by decreasing katt or increasing kint
until katt = 0 or kint = 1, where the flux-sum would reach
zero or the maximum value, respectively. The decrement
and increment of katt and kint can be in steps of 0.1
so that they only take on values from the set {0, 0.1,
0.2 ... 1.0}.

Application
In silico model settings
The genome-scale in silico E. coli model iAF1260 was
employed to demonstrate the efficacy and applicability
of the current flux-sum approach. The model was made
up of 1668 metabolites (951 cytoplasmic and 418
periplasmic intermediates and 299 external metabolites)
and 2382 reactions including the biomass reaction, thus
making up a 1668 by 2382 stoichiometric matrix [18]. In
the current model, the metabolites are compartmenta-
lized. Hence, we distinguish same metabolites in
different compartments using suffixes [c], [p] and [e]
for cytosol, periplasm and extracellular matrix respec-
tively. For example H2O [c], H2O [p] and H2O [e]
indicate water found in three different compartments.
The cellular objective was assumed to be the maximiza-
tion of biomass production. The reaction reversibility
constraints were set as given by [19]. The non-growth
associated maintenance energy is maintained at 8.39
mmol ATP/(g-DCW-hr) while the maximum glucose and
oxygen uptake rates were assumed as 10 mmol/(g-DCW-
hr) and 20 mmol/(g-DCW-hr) respectively to simulate

the aerobic growth condition of Escherichia coli in glucose
minimal medium. All these settings were based on
previous observation for glucose and oxygen uptake rates
and experimentally determined ATP requirement for
maintenance [6,19,21]. The GAMS IDE software version
22.4 was used to solve all the mathematical program-
ming problems in this study.

Basal flux-sum
We generated a basal metabolite flux-sum distribution
(Figure 1) for the iAF1260 model by solving (P1),
resulting in 4.20 and 23.9 for average (μFS) and standard
deviation (sd) of the flux-sum values respectively. About
70% of the metabolites have zero flux-sum in the base case
while metabolites with high ( Φ i

B
FS sd> +μ ) and

ultra-high (Φ i
B

FS sd> +μ 2 (1)) basal flux-sums were
mostly essential cofactors that are involved in oxidative
phosphorylation and redox reactions with a high degree of
participation in basal active reactions (i.e. reactions with
nonzero basal flux).We define the degree of participation of
a metabolite as the number of instances the metabolite is
involved in an active reaction. Figure 2 indicates a linear
relationship between the flux-sum values and the degree of
high flux-summetabolites which were previously identified
as giant strong components forming critical links in the
metabolic network [22]. The fluxes of oxidative phosphor-
ylation reactions contributed to at least 50% of the flux-sum
of these metabolites. Among them, periplasmic hydrogen
ion appeared to be an outlier due to the low degree of
participation in metabolic reactions other than oxidative
phosphorylation. Such a low degree of participation of
periplasmic hydrogen ion is mainly due to the scarcity of
periplasmic metabolic reactions.

Figure 1
Basal flux-sum distribution. Metabolites with ultra-high
basal flux-sum values were cofactors like ATP, ADP and H+.
It was also observed that a large number of metabolites
(i.e. 795 or 58.1%) were not utilized and many of them
were found to be blocked metabolites.
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Flux-sum maxima
Interestingly, the evaluation of flux-sum maxima,
obtained from solving (P2), allowed us to identify
different types of metabolites. Firstly, we found blocked
metabolites with maximum flux-sum equal to zero. The
consumption and production of these metabolites were
blocked due to reaction pathway dead-ends (Figure 3).
The blocked metabolite is analogous to the blocked
reaction reported by [23]. Thus, similarly we can define
unconditionally blocked metabolites as metabolites with
zero maximum flux-sum even when all of the exchange
fluxes were completely unconstrained. Removing all the
reactions associated with unconditionally blocked meta-
bolites can reduce the size of the stoichiometric matrix
without affecting the simulation results. For the iAF1260
model, it was observed that 442 and 189 intermediate
metabolites were conditionally and unconditionally
blocked, respectively, under the aerobic glucose minimal
medium condition.

Secondly, we identified 75 cyclic metabolites involved in
internal cycles, also known as Type III pathways [24], in
the iAF1260 model. Cyclic metabolites have maximum
flux-sums equal to infinity regardless of any substrate
uptake constraint imposed on the system since any rate
of production of such metabolites can be balanced by
the same rate of consumption within the cycle.

Therefore, the determination of flux-sum maxima
provides an alternative method for identifying Type III
pathways.

Lastly, we identified 55 fully utilized metabolites with
nonzero maximum flux-sum which are equal to their
basal flux-sum values. As the cell strives for maximal
growth, these metabolites are turned over at their full
capacity. On the other hand, 797 partially utilized
metabolites are not turned over at their full capacity
during maximum cell growth, thus their flux-sums can
be further intensified. This phenomenon is further
examined in a later section. Note that some partially
utilized metabolites may be basal inactive.

Flux-sum attenuation analysis
In the iAF1260 model, 394 out of 1369 intermediate
metabolites had a nonzero basal flux-sum and were
amenable for flux-sum attenuation analysis. Thus, we
solved (P3) with constraint (C1) for these 394 basal
active metabolites, thereby giving rise to the flux-sum
attenuation profile (Figure 4). From the profile, we
identified 342 essential and 52 nonessential metabolites
as those with zero and nonzero biomass production,
respectively, at full flux-sum attenuation. Of the essential
metabolites, some were involved in amino acid bio-
synthesis: tetrahydrodipicolinate, L,L-2,6-diaminopime-
late and meso-2,6-diaminopimelate, and these
metabolites were in fact associated with the essential
genes reported by [25]. Thus, essential metabolites can
be associated with lethal reactions and the removal of

Figure 2
Basal flux-sum vs degree of participation. Most of the
17 metabolic cofactors with high flux-sum were highly
connected and participated in proportionally as many basal
active reactions, except for periplasmic hydrogen ions (red
marker). The R-square value for the linear relationship was
0.912 without considering the outlier (red marker). The 17
metabolites are ADP [c], ATP [c], CO2 [c], H2O [c], H+ [c],
NAD [c], NADH [c], PI [c], Q8 [c], Q8H2 [c], CO2 [p], H2O
[p], H+ [p], O2 [p], CO2 [e], H2O [e] and O2 [e]. Only ADP
[c], ATP [c], H2O [c], H+ [c], H+ [p] and PI [c] have ultra-high
flux-sum.

Figure 3
Dead-ends and blocked metabolites. In a simple system
involving metabolites A, B, C, D, E and F, metabolites D and
E are pathway dead-ends. Reactions B Æ C, B Æ E and C Æ
D are blocked reactions since metabolites D and E are
neither consumed nor secreted. Consequently, metabolites
C, D and E are blocked metabolites.

BMC Systems Biology 2009, 3:117 http://www.biomedcentral.com/1752-0509/3/117

Page 5 of 10
(page number not for citation purposes)



any of such metabolites or reactions leads to no cell
growth. Hence, they signify critical points of fragility in
the metabolic network. Interestingly, 86.8% of the basal
active metabolites were essential metabolites while only
68.5% of the basal active reactions were lethal. The
observed higher level of reaction redundancy would be
attributable to the presence of redundant pathways that
connect essential metabolites. This also elucidated that a
metabolite associated with a lethal reaction would
inevitably be essential while a reaction involving
essential metabolite(s) might not necessarily be lethal.

The flux-sum attenuation profile (Figure 4) reproduced
the general profiles of type “A”, “B” and “C” essential
metabolites as reported by [16]. In this study, we labeled
the metabolites as type “AE”, “BE” and “CE” with the
suffix “E” indicating that the metabolites were essential.
It is not surprising to observe type “AE” profile (304 out
of 342 essential metabolites) since all constraints are
linear and biomass production is expected to vary
linearly with the synthesis of some metabolites. Inter-
estingly, the type “CE” profile (6 out of 342 essential
metabolites) showed a more rapid drop than type “AE”
when the flux-sum was attenuated and these metabolites
were found to be involved in providing the ATP
requirement for non-growth associated maintenance
(NGAM). The flux-sum threshold, below which biomass
production is impossible, corresponds to the ATP
requirement for NGAM. The amount of flux-sum in
addition to this threshold value is then associated with

biomass production. Thus, the threshold flux-sums of
type “CE” metabolites allow us to calculate the distribu-
tion of the resources between growth and NGAM
requirements. The peculiar shape of type “BE” profile
(32 out of 342 essential metabolites) was attributed to
the existence of alternate optimal solutions [26] where a
small reduction of flux-sum can be compensated by
other “equivalent” fluxes. When the flux-sums of these
metabolites were further attenuated, there would be no
“equivalent” compensation for synthesizing the essential
biomass components. Thus the biomass production rate
would drop below the optimal value and hit zero
eventually.

It was also observed that some metabolites exhibited a
profile that seemed to be a hybrid between type “AE”
and “BE”. This can be due to the traversing of the
optimal solution across linear edges of the solution
space with different gradients as the attenuation of the
flux-sum reduced the solution space. These gradients of
the edges in the solution space can be interpreted as the
sensitivity of biomass production to the alteration of
flux-sum. A simple reaction network is used to illustrate
how the hybrid profile is generated (Figure 5).

Flux-sum intensification analysis
In flux-sum intensification analysis, we examined how
the increase of metabolite flux-sum affects the cell
growth. 442 blocked, 75 cyclic and 55 fully utilized
metabolites were omitted for this analysis due to
infeasibility. Thus the flux-sum intensification analysis
was only carried out for the remaining 797 partially
utilized metabolites.

By solving (P3) with constraint (C2), we generated the
flux-sum intensification profile (Figure 6). Then we
classified the metabolites in a similar fashion as in flux-
sum attenuation analysis. We defined competitive metabo-
lites as the flux-sum intensification analogues for essential
metabolites in the flux-sum attenuation case. Then, we
classify competitive metabolites as type “AC”, “BC” and
“CC” based on the shape of the intensification profile
(Figure 6), with the suffix “C” meaning competitive.
Competitive metabolites compete for the same resources
required for the biomass production. Thus, their complete
flux-sum intensification resulted in zero cell growth. On
the other hand, uncompetitive metabolites are probably
cofactors in biomass production or some intermediates
involved in alternate pathways for the production of
biomass components, thus allowing the cell to grow even
at 100% flux-sum intensification (Figure 7). In the iAF1260
model, we found 785 competitive metabolites and 12
uncompetitive metabolites.

Figure 4
Flux-sum attenuation profile. The horizontal axis
corresponds to the value of katt. The vertical axis
corresponds to the biomass production normalized with
respect to the basal biomass production. Profiles of essential
metabolites intersect the origin and each could be classified
as either type "AE", "BE" or "CE", with the suffix "E"
indicating that the metabolite is essential.
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Discussion
Flux-sum attenuation and intensification
When the E. coli system was perturbed by attenuating
and intensifying the metabolite flux-sums, we could
observe various types of metabolites and classified them
according to the profile shape (see Figure 8; refer to
Additional file 1 for the full list of metabolites in each
category). In order to understand the rationale of this
classification, we further examined the biological rele-
vance of such flux-sum attenuation and intensification.
As the cell strives to maximize its growth, it fully utilizes
its resources and distributes them optimally to synthe-
size the essential cellular components. This optimum

distribution was determined by FBA of the unperturbed
case. Based on the result, flux-sum attenuation of
essential metabolites forces the cell to utilize less of its
resources, leading to slower production of cellular
components and subsequent slower growth. On the
other hand, intensifying the flux-sum of competitive
metabolites causes the suboptimal distribution of
resources which also results in the slower cell growth.
Thus intensifying the flux-sum of a competitive meta-
bolite may attenuate the flux-sum of other essential
metabolites.

From a network topological perspective, essential meta-
bolites are found along the pathways synthesizing
essential cellular components while competitive meta-
bolites are from the pathways parallel to these essential
ones, sharing at least one common metabolite precursor
so that they can compete for the same resources.
Competitive metabolites can also be essential if there
are parallel essential pathways sharing common pre-
cursors such as 12 metabolites reported in [27]. The
combination of flux-sum attenuation and intensification
analyses allows us to identify 253 of such essential and
competitive metabolites. Interestingly, these metabolites
generally exhibited type “AC” profile during flux-sum
intensification (Figure 9), indicating that the intensifica-
tion of any essential metabolite in parallel pathways is
very detrimental to the cell growth.

Application of metabolite classification
The classification of metabolites based on flux-sum
analysis, summarized in Figure 8, allows us to consider
various practical applications. For example, in anti-
pathogen study, researchers would be interested in
developing strategies to identify targets which inhibit
the growth of pathogens. In this sense, types “AE” and
“CE” metabolites, identified through flux-sum analysis,
serve as promising targets since the attenuation of their
flux-sum may lead to the significant reduction in the cell
growth. Similarly, types “AC” and “CC” metabolites can
also be potential regulators affecting pathogenic growth
through their flux-sum intensification. We also observed
that fully utilized metabolites, except for periplasmic
oxygen and cytosolic isopentenyl diphosphate, are fully
coupled with the cell growth, thus indicating that these
metabolites are perfectly correlated with the cell growth
from the metabolite point of view. Note that the concept
of flux coupling was discussed in [23]. Consequently,
these metabolites can be considered as potential
indicators for the cell viability as well as good metabolic
engineering targets for controlling cell growth. As
another application, the identification of blocked meta-
bolites can be useful for improving the process of
metabolic network reconstruction. During automated

Figure 5
A sample network containing a hybrid metabolite.
The cellular objective of the sample network (A) was to
maximize Z and the system could be formulated as a linear
programming problem (B). We attenuate the flux-sum of
metabolite M1, which is also equal to x1, and examine the
effects on the objective Z. When x1 was attenuated by
decreasing the value of C, the maximum value of Z decreased
as the objective function (red line) traversed the edges of the
solution space (shaded region) in the direction shown by the
blue arrow. As the objective function passes x1 = 1, the
"rate" of decrease of Z changes due to the difference in
gradients of the edges.
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reconstruction, it is common to have gaps in the draft
metabolic network which would result in the failure to
predict experimentally observed cellular phenotypes and
thus it is required to consider a systematic way to fill
these gaps [28]. The first step in the gap-filling process is
to identify the location of these gaps in the metabolic
network. Through flux-sum analysis, we can identify
metabolites which are in vivo essential and in silico
blocked. Then appropriate metabolic reactions can be
introduced into the incomplete metabolic network
model, thus bridging the gap between these metabolites
and the other in silico active metabolites.

Biotechnological application of flux-sum analysis
In this study, we demonstrated the effects of changing
metabolite flux-sums on the cell growth in E. coli. In a
similar vein, we can also analyze the effects of metabolite
flux-sums on the production of desired biomolecules for
the biotechnological application. Here, we carried out
flux-sum attenuation and intensification analyses,
thereby identifying potential metabolite targets to be
manipulated so as to increase anaerobic succinate
production in E. coli (see Additional file 2). Surprisingly,
we found that pyruvate is the only candidate for flux-
sum attenuation leading to the enhanced production of

succinate. This result was previously validated in an
experiment whereby knocking out the genes of pyruvate
producing and assimilating enzymes increased succinate
production in E. coli [29]. In addition, we also identified
flux-sum intensification targets, such as glyoxylate,
2-phosphoglycerate and 3-phosphoglycerate, which
were also reported as effective targets for increasing
succinate production (see Additional file 2).

Conclusions
This paper presents a novel method for analyzing the
metabolic network using a metabolite-centric approach
within the context of constraint-based flux analysis. We
utilized flux-sum constraints to understand the role of
metabolites and apply this knowledge to generate testable
hypotheses about the relationship between target meta-
bolites and physiological changes, indicating the poten-
tial application of the metabolite-centric approach to
biomedical research. Flux-sum analysis was also shown to
be useful in the biotechnological application for improv-
ing the production of desiredmetabolite such as succinate
in E. coli. In summary, the flux-sum analysis methodology
can be considered as a useful technique providing better
understanding of the cellular metabolism and alternative
perspectives on how to engineer the system.

Figure 6
Flux-sum intensification profile. The horizontal axis corresponds to the value of kint. The vertical axis corresponds to the
biomass production normalized with respect to the basal biomass production. Metabolites with profile that intersected the
point (1, 0) were competitive metabolites which could be classified as either "AC", "BC" or "CC" with the suffix "C" indicating
that it is competitive and the other metabolites are considered uncompetitive.
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Figure 7
Flux-sum intensification of competitive and
uncompetitive metabolites. In the base case, the
maximum biomass production can be achieved due to
optimal distribution of carbon fluxes to all the
biomass components. If we intensify the flux-sum of any of
the competitive metabolites (red nodes), the metabolite
would compete for the limited resources and perturb the
optimal distribution of carbon fluxes, resulting in reduced
biomass production. On the other hand, intensifying the
flux-sums of uncompetitive metabolites (blue nodes) does
not perturb the optimal carbon flux distribution while the
flux-sum of fully utilized metabolites (orange nodes)
cannot be intensified. It is obvious that all metabolites
contributing to biomass production shown in the figure
are both essential and competitive.

Figure 8
Summary of metabolite classification. The numbers
of metabolites in each category is shown in brackets.
The abbreviations “E” and “NE” denote essential and
nonessential metabolites respectively. “AC”,“BC”, “CC”
and “AE", “BE”, “CE” refer to the types of metabolites
identified in flux-sum intensification and
attenuation analyses respectively.

Figure 9
Composite profile of essential and competitive
metabolites. This profile is considered a "composite"
profile because different regions of x-axis represents
different variables: negative values on the x-axis correspond
to the value of (katt - 1) while the positive values correspond
to the value of kint. When the x-axis is equal to zero, the flux-
sum is at basal value where there is no attenuation or
intensification.
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Additional file 1
List of different types of metabolites identified in this study.
Metabolites are abbreviated in a similar fashion as in Feist et al.
(2007).
Click here for file
[http://www.biomedcentral.com/content/supplementary/1752-
0509-3-117-S1.XLS]
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Demonstration of flux-sum analysis for increasing succinate
production in Escherichia coli.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1752-
0509-3-117-S2.DOC]

Acknowledgements
The work was supported by the Academic Research Fund (R-279-000-
258-112) from the National University of Singapore. We thank the
reviewers for the constructive comments which helped to improve the
quality of the manuscript.

References
1. Llaneras F and Pico J: Stoichiometric modelling of cell

metabolism. J Biosci Bioeng 2008, 105:1–11.
2. Strogatz SH: Nonlinear dynamics and Chaos: with applications to physics,

biology, chemistry, and engineering Reading, Mass.: Addison-Wesley
Pub; 1994.

3. Segre D, Vitkup D and Church GM: Analysis of optimality in
natural and perturbed metabolic networks. Proc Natl Acad Sci
USA 2002, 99:15112–15117.

4. Heinrich R and Schuster S: The regulation of cellular systems New
York: Chapman & Hall; 1996.

5. Fell D: Understanding the control of metabolism London: Portland
Press; 1997.

6. Varma A and Palsson BO: Stoichiometric flux balance models
quantitatively predict growth and metabolic by-product
secretion in wild-type Escherichia coli W3110. Appl Environ
Microbiol 1994, 60:3724–3731.

7. Becker SA and Palsson BO: Context-specific metabolic net-
works are consistent with experiments. PLoS Comput Biol 2008,
4:e1000082.

8. Raman K and Chandra N: Flux balance analysis of biological
systems: applications and challenges. Brief Bioinform 2009,
10:435–449.

9. Price ND, Reed JL and Palsson BO: Genome-scale models of
microbial cells: evaluating the consequences of constraints.
Nat Rev Microbiol 2004, 2:886–897.

10. Oberhardt MA, Chavali AK and Papin JA: Flux balance analysis:
interrogating genome-scale metabolic networks. Methods Mol
Biol 2009, 500:61–80.

11. Burgard AP, Pharkya P and Maranas CD: Optknock: a bilevel
programming framework for identifying gene knockout
strategies for microbial strain optimization. Biotechnol Bioeng
2003, 84:647–657.

12. Motter AE, Gulbahce N, Almaas E and Barabasi AL: Predicting
synthetic rescues in metabolic networks. Mol Syst Biol 2008,
4:168.

13. Thiele I, Vo TD, Price ND and Palsson BO: Expanded metabolic
reconstruction of Helicobacter pylori (iIT341 GSM/GPR): an
in silico genome-scale characterization of single- and
double-deletion mutants. J Bacteriol 2005, 187:5818–5830.

14. Pharkya P and Maranas CD: An optimization framework for
identifying reaction activation/inhibition or elimination
candidates for overproduction in microbial systems. Metab
Eng 2006, 8:1–13.

15. Imielinski M, Belta C, Halasz A and Rubin H: Investigating
metabolite essentiality through genome-scale analysis of

Escherichia coli production capabilities. Bioinformatics 2005,
21:2008–2016.

16. Kim PJ, Lee DY, Kim TY, Lee KH, Jeong H, Lee SY and Park S:
Metabolite essentiality elucidates robustness of Escherichia
coli metabolism. Proc Natl Acad Sci USA 2007, 104:13638–13642.

17. Kim TY, Kim HU and Lee SY: Metabolite-centric approaches for
the discovery of antibacterials using genome-scale meta-
bolic networks. Metab Eng 2009 in press.

18. Schmidt S, Sunyaev S, Bork P and Dandekar T: Metabolites: a
helping hand for pathway evolution?. Trends Biochem Sci 2003,
28:336–341.

19. Feist AM, Henry CS, Reed JL, Krummenacker M, Joyce AR, Karp PD,
Broadbelt LJ, Hatzimanikatis V and Palsson BO: A genome-scale
metabolic reconstruction for Escherichia coli K-12 MG1655
that accounts for 1260 ORFs and thermodynamic informa-
tion. Mol Syst Biol 2007, 3:121.

20. Drud AS: CONOPT. GAMS - The Solver Manuals 2006 http://www.
gams.com/dd/docs/solvers/allsolvers.pdf.

21. Varma A, Boesch BW and Palsson BO: Stoichiometric inter-
pretation of Escherichia coli glucose catabolism under
various oxygenation rates. Appl Environ Microbiol 1993,
59:2465–2473.

22. Ma HW and Zeng AP: The connectivity structure, giant strong
component and centrality of metabolic networks. Bioinfor-
matics 2003, 19:1423–1430.

23. Burgard AP, Nikolaev EV, Schilling CH and Maranas CD: Flux
coupling analysis of genome-scale metabolic network
reconstructions. Genome Res 2004, 14:301–312.

24. Schilling CH, Letscher D and Palsson BO: Theory for the systemic
definition of metabolic pathways and their use in interpret-
ing metabolic function from a pathway-oriented perspec-
tive. J Theor Biol 2000, 203:229–248.

25. Gerdes SY, Scholle MD, Campbell JW, Balazsi G, Ravasz E,
Daugherty MD, Somera AL, Kyrpides NC, Anderson I and
Gelfand MS, et al: Experimental determination and system
level analysis of essential genes in Escherichia coli MG1655.
J Bacteriol 2003, 185:5673–5684.

26. Mahadevan R and Schilling CH: The effects of alternate optimal
solutions in constraint-based genome-scale metabolic mod-
els. Metab Eng 2003, 5:264–276.

27. Neidhardt FC, Ingraham JL and Schaechter M: Physiology of the
bacterial cell: a molecular approach Sunderland, Mass.: Sinauer
Associates; 1990.

28. Satish Kumar V, Dasika MS and Maranas CD: Optimization based
automated curation of metabolic reconstructions. BMC
Bioinformatics 2007, 8:212.

29. Lee SJ, Lee DY, Kim TY, Kim BH, Lee J and Lee SY: Metabolic
engineering of Escherichia coli for enhanced production of
succinic acid, based on genome comparison and in silico
gene knockout simulation. Appl Environ Microbiol 2005,
71:7880–7887.

Publish with BioMed Central   and  every 
scientist can read your work free of charge

"BioMed Central will be the most significant development for 
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central 

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

BMC Systems Biology 2009, 3:117 http://www.biomedcentral.com/1752-0509/3/117

Page 10 of 10
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/pubmed/18295713?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18295713?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12415116?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12415116?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7986045?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7986045?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7986045?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18483554?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18483554?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19287049?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19287049?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15494745?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15494745?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19399432?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19399432?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14595777?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14595777?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14595777?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18277384?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18277384?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16077130?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16077130?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16077130?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16077130?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16199194?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16199194?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16199194?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15671116?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15671116?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15671116?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17698812?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17698812?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19481614?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19481614?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19481614?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12826406?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12826406?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17593909?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17593909?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17593909?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17593909?dopt=Abstract
http://www.gams.com/dd/docs/solvers/allsolvers.pdf
http://www.gams.com/dd/docs/solvers/allsolvers.pdf
http://www.gams.com/dd/docs/solvers/allsolvers.pdf
http://www.ncbi.nlm.nih.gov/pubmed/8368835?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8368835?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8368835?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12874056?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12874056?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14718379?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14718379?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14718379?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10716907?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10716907?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10716907?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10716907?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/13129938?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/13129938?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14642354?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14642354?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14642354?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17584497?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17584497?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16332763?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16332763?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16332763?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16332763?dopt=Abstract
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusions

	Background
	Methodology
	Defining the flux-sum
	Flux-sum constraint with binary variables
	Flux-sum analysis
	Step 1: Evaluate basal flux-sum distribution
	Step 2: Evaluate flux-sum maxima of individual metabolites
	Step 3: Manipulate flux-sum by attenuation or intensification


	Application
	In silico model settings
	Basal flux-sum
	Flux-sum maxima
	Flux-sum attenuation analysis
	Flux-sum intensification analysis

	Discussion
	Flux-sum attenuation and intensification
	Application of metabolite classification
	Biotechnological application of flux-sum analysis

	Conclusions
	Authors’ contributions
	Additional material
	Acknowledgements
	References

