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Abstract
Background: In yeast, genome-wide periodic patterns associated with energy-metabolic
oscillations have been shown recently for both short (approx. 40 min) and long (approx. 300 min)
periods.

Results: The dynamical regulation due to mRNA stability is found to be an important aspect of the
genome-wide coordination of the long-period yeast metabolic cycle. It is shown that for periodic
genes, arranged in classes according either to expression profile or to function, the pulses of mRNA
abundance have phase and width which are directly proportional to the corresponding turnover
rates.

Conclusion: The cascade of events occurring during the yeast metabolic cycle (and their
correlation with mRNA turnover) reflects to a large extent the gene expression program
observable in other dynamical contexts such as the response to stresses/stimuli.

Background
Ultradian self-sustaining energy-metabolic oscillations
arising spontaneously in high density Saccharomyces cere-
visiae continuous cultures exposed to glucose-limited
growth have been known and studied for decades [1,2],
and have more recently been observed to induce genome-
wide periodic patterns in different series of microarray
experiments [3,4], although with widely different perio-
dicities, ~40 min for [3] and ~300 min for [4].

Many studies aim at understanding the mechanisms
inducing these sustained oscillations and the rigorous
temporal compartmentalization they induce, see [5,6] for
surveys. Suggested causes range from a single critical path-
way (like the feedback effect of cysteine on the sulfur
assimilation pathway [7]) to the alternation of aerobic

and anaerobic respiratory modes (as deduced by the fluc-
tuations in the concentration of dissolved O2 and of other
observed metabolites [4]), from the interaction with cell
cycle [8,9] to the mutual incompatibility of different
redox biochemical processes [10,11].

The scope of this work is to emphasize a different aspect,
intrinsically dynamical and post-transcriptional, which is
likely to play an important role in the coordination of the
"slower" yeast metabolic cycle (YMC) of [4], namely
mRNA stability. We will show that there is a roughly lin-
ear relationship between the average half life (HL) of the
transcripts, clustered according to expression or function,
and the phase at which their concentration peaks in the
cycle. More generally, there seems to be a strong correla-
tion between HL and the shape of the pulses of gene
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expression: genes with short HL have short and sharp
(almost impulsive in the time scale considered) pulses,
while genes with long HL have pulses that are not only
delayed but also broader and with more gentle slopes.

In recent years, post-transcriptional control is being recog-
nized as an important aspect of gene regulation, especially
in eukaryotic DNA, which lacks operonal structure [12-
15]. It can occur in many guises, through mRNA turnover
[16-20], or through "RNA regulons" [21] i.e., groups of
genes coordinately guided in the RNA processing, locali-
zation and protein synthesis by RNA-binding proteins
(RBPs) [22,23], or even through the mediation of a meta-
bolic substrate (typically a nutrient [24-26] or an enzyme
[27]). Our result confirms the importance of post-tran-
scriptional control, and points at mRNA turnover as a reg-
ulatory mechanism at a genome-wide level. Its peculiarity
consists in putting the time axis into the picture in an
intrinsically dynamical way. Consequently, in order to be
observed, it requires times series sampled at a sufficiently
high frequency and dynamics in the right time window, a
combination seldom occurring in current expression pro-
filing datasets. So for example the correlation between HL
and phase/shape of the oscillations cannot be observed in
the much faster YMC of [3], where HL and the period are
of comparable duration, hence the system has no time to
decay before the arrival of the next wavefront.

In order to emphasize the dynamical aspects, we shall
treat the YMC as the time response of a genome-wide
dynamical system to a sequence of impulsive "inputs" of
transcription activation. We will show that grouping
genes in terms of progressively delayed and broadened
responses to a sequence of "input pulses" of transcrip-
tional activation allows to see in a remarkably fine detail
the causal chain of events constituting the transcriptional
program of the cell. The few ambiguities resulting from
this classification can be interpreted in terms of some
other annotation, typically compartmental localization.

In the following we shall proceed in two complementary
ways: first the YMC time series are clustered in a com-
pletely unsupervised manner, only according to gene
expression. The linear relationship between pulse phase
(also pulse width) and HL then emerges in a straightfor-
ward way. Next, we consider families of genes whose
products share some common annotation, for example
genes on the same pathway or genes that are subunits of
the same protein complex, and look at the type of time
series they produce and at their "position" along the YMC.

Both approaches confirm that the YMC represents an
organized cascade of events, in response to precisely
equispaced bursts of transcriptional activation, with the
temporal order reflecting the transcript turnover rate.

Extrapolating from the specific YMC context, this cascade
of events is observable to a good extent also in other gene
expression time series (such as the response to a pulse of
nutrient of [28], or the stress responses of [29]), suggest-
ing it might reflect a prototypical dynamical mode of
action of transcriptional response.

Results and discussion
The ~2000 genes labeled as periodic by a periodogram test
are subdivided into 16 clusters, see Fig. 1. In Fig. 1(a) the
clusters are sorted in increasing order of HL (computed as
the average of the HLs of the cluster elements). It is imme-
diately evident that the typical profiles, both in terms of
the phase of the peaks (for each gene the phase is com-
puted maximizing the correlation with respect to a train of
shifted sinusoids) and of their width (although in a less
regular way) is modified in an almost continuous manner
as we move along the clusters figures. Notice in particular
how the peaks of the first clusters match the "valleys" of
the last ones. For the average phase on each cluster, the
phase/HL relationship is almost linear (Fig. 1(b)). The
scatter plot in (d) confirms this linear proportionality, but
also shows a growing variance along the HL axis (see
Table 1 for details). The deviations from linearity of clus-
ters 6 and 9 admit a reasonable explanation, mostly in
terms of compartmental localization. Cluster 6 is essen-
tially composed of retrotransposons (all Ty1 and Ty2) and
long term repeat mRNAs (mostly of δ type) for a total of
73 out of 102 genes. For most of these genes (59) an HL
measure is missing. Hence the average HL for this cluster
(and this cluster alone) may be biased or unreliable. Clus-
ter 9 instead is almost entirely composed of cytoplasmic
ribosomal subunits (109 out of 151 genes). In between,
Clusters 7 and 8 contain to a large extent genes with mito-
chondrial localization and/or function (mitochondria
organization and biogenesis, protein import into mito-
chondrial matrix, oxidoreductase activity for Cluster 7,
mitochondrial ribosomes, envelope and membranes for
Cluster 8). As is explained in detail in the next paragraph,
the large deviation from linearity seen in Cluster 9 can be
due to an extremely fast and short lived response of the
mRNAs deputed to the biosynthesis of the cytoplasmic
ribosomal complexes, not deducible from the available
HL data, neither from the current literature (in [30] it is
affirmed that cytoplasmic ribosomal genes tend to be sta-
bilized by nutrient uptake). Although less precise, also the
relation between HL and pulse width on each cluster (Fig.
1(c)) is approximately linear. Unlike the phase/HL pro-
portionality, this last result is expected from simple
dynamical considerations, as longer HL means longer
"kernel width", see also the dynamical model explanation
below. The emergence of a linear relation between HL and
phase once the genes are arranged in classes according to
profile similarity suggests that a corresponding cascade of
causally organized events may be taking place during the
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YMC. To some extent this is already visible through an
ontological analysis of the clusters of Fig. 1 (see Table 1),
but in order to investigate more in detail the biological
meaning and significance of such a genomic "assembly
line" we computed HLs, phases and pulse widths along
the main yeast pathways and for some of the annotated
yeast protein complexes. The data for the pathways (see
Fig. S2 in Additional file 1) are then lumped together into
the 15 functional macrocategories shown in Fig. 2. In
terms of these macrocategories (sorted by phase), the
result is that the mRNAs activation reflects tightly the gene
expression program expected to take place in the cell,
especially for the "fast" categories, i.e., transcription,
nucleotide metabolism and translation starting essentially
synchronously in the time scale of the YMC, followed by
DNA replication and repair and amino acid metabolism.
Progressing further toward the slow processes, one
encounters the metabolism of energy, carbohydrates and
lipids. Also for this classification, the progression in terms
of phase along the cycle is substantially faithful to the
increase in HL (in the top plot of Fig. 2(b) the most signif-
icant outlier is still the category "translation" already men-
tioned, see also Fig. 3), and the progression in phase is
paralleled by an increase in pulse width (see bottom plot
of Fig. 2(b)).

A detailed functional analysis
Using the ordering by phase of pathways and protein
complexes (see Fig. S2 and S5 in Additional file 1), we can
zoom on these categories in much more detail. The first

phase of this cascade consists of the activation of the tran-
scription machinery with the synchronous bursts of tran-
scription of the three RNA polymerases (see Fig. S1 in
Additional file 1) and of most of the RNA processing com-
ponents, like the tRNA processing complexes (RNase P)
and rRNA processing complexes (exosome, RNase MRP,
SIK1, NOP1), with the nuclear splicing complexes follow-
ing closely. While the mRNAs for the polymerases are
highly coordinated, the same cannot be said for the basal
transcription factors (TFs) required for their initiation.
Overall only a few of these genes follow the bursting trend
of the RNA polymerases, notably, among them, SPT15,
which forms the TATA-binding protein and is also a com-
ponent of the polymerase I core factor and of TFIIIB. Most
other genes involved with these general TFs do not show
any periodic pattern, and their mRNA concentrations
never surpass very low levels.

From Fig. 2, the peak of mRNA concentrations associated
with the category "translation" seems to be synchronous
with the RNA processing burst. However, a more careful
analysis reveals that this phase is an average of two "com-
partmentalized" activations of the translation machinery,
having fairly different phases: while cytoplasmic transla-
tion follows almost simultaneously the RNA machinery,
the mitochondrial translation activation has a phase lag of
more than one sixth of the period. In terms of time delay,
this amounts to approximately 50 min, see Fig. 3. More in
detail, most of the mRNAs of ribosomal small and large
subunits for both cytoplasmic and mitochondrial locali-

Table 1: Statistics for the 16 clusters for Fig. 1

cl. genes HL phase width ontology

mean std mean std mean std
1 101 13.26 (9.54) 32.4 (9.4) 2.2 (0.56) RNA, rRNA, and tRNA processing and metabolism, ribosome biogenesis 

and assembly
2 58 16.02 (19.07) 26.3 (7.6) 2.3 (0.66) RNA, rRNA and tRNA processing and metabolism, RNA helicase, 

ribosome assembly
3 101 16.46 (8.65) 43.3 (15.4) 2.1 (0.65) RNA polymerase, translation initiation, regulation, and termination, 

nucleotide biosynthesis
4 34 19.44 (10.19) 98.2 (9.7) 6.3 (3.54) transferase activity, DNA replication, cell cycle
5 102 22.99 (10.27) 67.7 (11.8) 3.3 (1.95) glycine metabolism, nitrogen and sulfur metabolism, amino acid biosynthesis
6 102 24.59 (11.67) 177.4 (51.0) 5.2 (3.43) retrotransposons, long term repeats
7 124 24.59 (13.45) 109.6 (15.8) 5.0 (2.88) mitochondrial membrane organization and biogenesis, mitochondrial 

transport
8 151 24.72 (11.80) 128.3 (9.4) 7.6 (2.96) mitochondrial ribosome, envelope, and membranes
9 232 25.76 (13.78) 44.8 (22.5) 2.6 (1.46) cytoplasmic ribosomes, translation processes
10 154 28.34 (16.36) 169.7 (20.3) 6.0 (3.59) ion/cation transmembrane transport, electron transport, oxidative 

phosphorylation
11 230 31.99 (19.05) 246.7 (35.5) 5.4 (3.90) endopeptidase activity, protein catabolic process, proteasome, actin 

filament organization, glycolysis, gluconeogenesis
12 65 32.69 (18.68) 214.8 (14.8) 5.5 (2.28) lipid and alcohol metabolic process, peroxisome
13 223 38.24 (28.35) 245.8 (12.6) 9.2 (3.71) kinase activity, vacuolar transport, membrane organization and biogenesis
14 128 39.10 (29.27) 285.5 (16.1) 10.1 (4.19) arginine biosynthesis, protein folding
15 117 42.83 (28.02) 258.7 (11.5) 10.2 (4.59) hydrolase activity, fatty acid oxidation, cytokinesis
16 29 45.74 (26.30) 307.8 (15.1) 8.7 (2.84) catalytic activity
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Linearity of the relation phase/HL in the clustered YMCFigure 1
Linearity of the relation phase/HL in the clustered YMC. In (a) the time series (on the x axis: time in min.) of the peri-
odic genes is clustered according to a nonnormalized correlation distance function (see Table 1 for details on the clusters). The 
clusters are then sorted (from left to right from top to bottom) according to the average HL. Moving along the clusters, a 
change in the phase and in the width of the pulses is clearly visible, thus suggesting a direct relationship between HL and phase/
width of the pulses. This is made explicit in (b), where the average HL is plotted against the average phase for each cluster, and 
in (c) where the average HL is shown against the average pulse width. In the scatter plot of HL versus phase (d), the color indi-
cates the cluster number (see colorbar on the right). As can be noticed, along the HL axis the standard deviation of a cluster 
grows with the mean, see Table 1 for exact values, and the cloud of points looks like a cone (the cone delimited by the two red 
lines contains 95% of the periodic genes). Still the increase of the phase with the HL is clearly visible. In the least-squares linear 
fit in (b) (green) half of the L2 norm of the residues is due to Cluster 9 (cytoplasmic ribosomes, see text). The p. value for both 
linear regressions is < 10-5. Further details on these regressions are provided in Additional file 1. It is worth remarking that the 
direct proportionality phase/HL is robust with respect to the number of clusters chosen.
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zations are highly correlated within their complex (aver-
age Pearson correlation for both is around 0.8) and
correlated with the translation complexes at the corre-
sponding location. In particular, among the cytoplasmic
translation complexes, the initiation factors eIF and the
termination factors eRF are very coordinated and respond
very fast, while of the three elongation factors only eEF2
and eEF3 are well-coordinated, whereas the larger com-
plex eEF1 shows a less-defined response pattern, with
only the subunit eEF1-β clearly expressed. Overall for the
class of translation complexes the pattern of activation of
the response reflects closely the corresponding HL distri-
butions [20] (eIF and eRF have short HL, eEF has not).
Notice that a simple comparison of the HLs of the cyto-
plasmic and mitochondrial ribosomal and translation
machineries (both approximately 24 min) does not show
the significant difference which can be seen on the time
series profiles and which is instead revealed by the phase
delay analysis. For cytoplasmic ribosomal biogenesis, a
similar anomaly is encountered also in the stress/stimuli
responses analyzed below. For mitochondria, the same
type of pattern is verified also by other complexes, for
example by both the translocases located in the outer and
inner mitochondrial membranes (TOM and TIM) which
are known to mediate the protein import into the mito-
chondria, see Fig. 3.

A neat organization can be seen also in the phase of the
nucleotide and amino acid metabolism: while pyrimidine
and purine synthesis, as well as e.g. the CTP synthase
enzyme involved in pyrimidine biosynthesis, are synchro-
nous with the burst of transcription, the peaks for most of
the enzymes involved in amino acid pathways tend to be
in phase with the activation of the translational machin-
ery. Also the synthesis of aminoacyl-tRNAs, necessary for
the delivery of the amino acids to the ribosomes during
translation has a similar phase. As expected, the "synthe-
sis" pathway of an amino acid always anticipates its "deg-
radation" pathway (see Fig. S2 in Additional file 1). In
order to start translation, the initiator tRNA carrying
methionine is required, and in fact, among the amino acid
metabolic pathways, methionine is one of the fastest. As a
matter of fact, the pathways of sulfur metabolism and of
the sulfur-related amino acids (methionine, cysteine, as
well as the closely related selenoamino acid metabolic
pathway) present very similar and very compact time
series (see Fig. S3 in Additional file 1), with an early (syn-
chronous with the main burst) but long lasting activation
(duration of the pulse is more than 100 min). This tight
coordination may hint at a special role played by the sul-
fur pathways in the yeast population synchronization
[31,32].

To conclude the protein synthesis, the nascent polypep-
tide chains must fold into 3D structures. The molecular

chaperonin-containing T-complex and the Gim complex,
which help in the folding, behave synchronously with the
main burst. On the contrary, ubiquitin and proteasome,
that proceed to the recognition and degradation of anom-
alous proteins, as well as the SCF and anaphase promot-
ing complexes, that cause the proteolysis of the cyclin-
CDK complexes, have patterns of activation which are
more delayed and broadened. Actually, this class of prote-
olytic processes (macrocategory "folding, sorting and deg-
radation" in Fig. 2) has the highest values of phase i.e., it
has the slowest response to the transcription bursts.

The macrocategory "DNA replication and repair" (see Fig.
2) contains what remains of the "fast" responses to a large
extent synchronous (protein complexes: DNA damage
checkpoint, DNA repair, pre-replication, replication, rep-
lication fork, which includes all DNA polymerases, heli-
cases and ligases, cyclin-CDK) or within a short time delay
from the initial bursts of transcription. The peculiarity of
this class is that the pulses are more long lived than in the
"transcription" and (cytoplasmic) "translation" catego-
ries. Also the complexes regulating the cohesion and sep-
aration of sister chromatids during the S-phase (nuclear
cohesion family of complexes) follow the same pattern
(see Fig. S5 in Additional file 1).

Moving to the core of the cell's metabolic activity, the
average phase increases further (see Fig. 2), but the main
qualitative difference is on the shape of the pulses, which
are now broader and often with an asymmetric rise/decay
profile: still sufficiently fast activation but slower and less
abrupt decay. This difference is likely to reflect the longer
HL associated to these categories (all have average HL ≥ 30
min), and implies metabolic functions more overlapping
than sequential. Along each metabolic pathway, the
degree of correlation among enzymes catalyzing neigh-
boring reactions is higher than it is expected (the
"expected value" is inferred from a large collection of yeast
microarray experiments, see Fig. S4 in Additional file 1)
implying a coherent and coordinated temporal behavior
along the metabolic routes. Especially for mitochondrially
localized pathways such as citric acid cycle and oxidative
phosphorylation the pulses are very broad, with a neat
downregulation only in correspondence of the bursts of
transcription and an overall profile often exhibiting a
double peak on each period (occurring with a phase lag of
~100° one from the other, see Fig. S8 in Additional file 1).
The four respiratory chain complexes for example follow
this pattern in a fairly precise manner. As shown in Addi-
tional file 1, this double peak characteristic is often asso-
ciable with pairs of genes whose products are isoenzymes
oscillating in antiphase, especially for enzymes involved
in oxidoreductive processes (e.g. along the pentose phos-
phate pathway).
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Gene expression program emerging from the YMCFigure 2
Gene expression program emerging from the YMC. (a): The periodic genes of the YMC are grouped according to 
KEGG pathways (see Fig. S2 in Additional file 1) and then in the 15 macrocategories shown. For each macrocategory we calcu-
late the average phase, HL, pulse width, and correlation of the periodic genes (in blue), and also the average HL and correlation 
of all genes (in red). Sorting by phase reveals the expected concatenation of events of the yeast gene expression program, 
especially in the first part with transcription preceding protein synthesis and DNA replication, followed by the slower catego-
ries of central metabolism. (b): Comparing HL and phase (or pulse width) roughly the same type of direct proportionality still 
appear. The trend in the average profiles of each category (black thick lines in (c)) reflects to a large extent that of Fig. 1. The 
third plot in (b) shows that also phase and pulse width are directly correlated: pulses that are delayed are also broadened. Lin-
ear regression for these plots is discussed in Additional file 1.
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Regulation via TFs versus RBPs
In terms of regulatory influence, while the importance of
transcription initiation via TFs is widely studied and a
large amount of data (computational and experimental)
is available about the binding of TFs to target genes, simi-
lar post-transcriptional systematic data on the regulation

by means of RBPs are still sporadic [33]. Notable exam-
ples are mRNAs associable to the nuclear export proteins
Mex67 and Yra1 [34], the Puf family of RBPs [23], and the
3' UTR motif collection of [22]. Inspired by [35], we
applied these RBP lists as well as the list of TF binding sites
from [36,37] to the YMC time series comparing the aver-

Mitochondrial compartmentalizationFigure 3
Mitochondrial compartmentalization. (a): Cytoplasmic vs. mitochondrial splicing, ribosomal (small and large subunits are 
lumped together) and ribosomal translational complexes. All genes are nuclear-encoded. Black profiles represent mRNAs clas-
sified as periodic. Within each of the two compartments, the time courses of gene expression are similar and fairly coordi-
nated. Even the amount of correlation among the complexes subunits is similar, with e.g. ribosomal mRNAs in both 
compartments being more tightly coordinated than the corresponding translational machineries. The bursts for the cytoplas-
mic localizations are much sharper, higher and shorter than in the mitochondria. These last accumulate an average phase lag of 
~90°, or around 50 minutes of delay (recall that the phase is computed by autocorrelation with a train of sinusoids, hence the 
value for the phase represents the "center" of the pulse). The cytoplasmic ribosomal complex substantially overlaps with clus-
ter 9 of Fig. 1(a), while the mitochondrial ribosomal complex is contained in cluster 8 of the same Figure. (b): Mitochondrial 
translocases across outer and inner membranes, and mRNAs having Puf3p as a RBP (220 genes, 134 periodic). Of the 236 
mRNAs belonging to at least one of the mitochondrial categories shown in the Figure, 62 have Puf3p as RBP. This tells us that 
in this case the "localization" constraint is stronger than co-sharing a single RBP, but that the two conditions are coupled and 
induce a similar pattern of dynamical regulation.
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age correlation among genes being common targets of a
TF or of a RBP. The two distributions are shown in Fig. 4.
For both TFs and RBPs, only a few motifs emerge as having
a significantly high correlation. The number of genes reg-
ulated by the same TF varies between 1 and 226 with a
mean of 35.2, while the number of genes with a common
target mRNA motif varies between 6 and 1138 with a
mean of 81.7. If we draw from a null distribution repre-
senting random grouping, increasing the number of genes
in a group the probability of finding a high mean correla-
tion obviously decreases, so we expect the distribution for
the second set to be tighter around 0. In our case, on the
contrary, there are 6 groups out of 110 with a mean corre-
lation ≥ 0.4 for the TF target genes (versus an expected
value of 1 for random groups of genes with the same car-
dinalities of these groups) and 7 groups out of 83 for the
genes with a target mRNA motif (versus the expected 0 for
random groups with same cardinalities). This suggests
that post-transcriptional regulation is more significant
that transcriptional regulation in the coordination of the
metabolic cycle, although the evidence is not conclusive.
When checking the groups of periodic genes with high
correlation we found the following significant annota-
tions:

• 44 genes out of 56 having Fhl1p as TF and 10 genes out
of 12 having Sfp1p as TF are constituents of cytoplasmic
ribosomes; notice that instead other cytoplasmic ribos-
omal TFs such as Rap1p do not correspond to a suffi-
ciently high correlation;

• 22 genes out of 26 having Hap4p as TF code for subunits
of respiration chain complexes;

• 62 out of 220 genes whose mRNA is bound by Puf3p are
annotated for mitochondrial transcription/translation
(56 are part of mitochondrial ribosomes, of which 47 are
periodic), see Fig. 3.

Dynamical features of the unfolding cycle
Possible origins of the sustained oscillations are discussed
at length in the literature [3,5-8,10,11,38]. Also Tu et al.
explain the cycle and its time compartmentalization in
terms of metabolism and redox balance [4,32,39]. Rather
than adding to the list of mechanisms for metabolic regu-
lation, by viewing each cycle as the dynamical response to
a burst of transcriptional activation, this work aims at pro-
viding a characterization of the dynamics of the unfolding
of the cycle, i.e., of how these "impulse responses" are
progressively delayed and broadened with respect to the
input pulses, and of how this correlates with the stability
of the corresponding transcripts. The compactness in
terms of phase and width of the early categories over
repeated oscillatory cycles is an argument in favor of the
existence of a single triggering event for each cycle, corre-

sponding to the transcriptional activation bursts men-
tioned above. In fact, sharp, equispaced pulses are
maintained in spite of the broader and less coordinated
profiles of the events immediately preceding them. This
hypothesis is not in contradiction with the observations
about the metabolic origin of the YMC, neither with the
observed alterations of the period following a genetic dis-
ruption [8,32,39] (which could in principle preserve the
sequence of events described). On the contrary, it merges
the metabolic control level described in [4] with an extra
regulatory element which is known to play a role in
dynamical contexts. In fact, the mRNA stability reflects
known properties of the corresponding gene products:
while mRNAs encoding transcriptional machinery or reg-
ulatory components tend to be short-lived and to turn
over more quickly, transcripts encoding core enzymatic
proteins are typically more stable [15,19,20]. For what is
known, protein synthesis tends to follow the concentra-
tion of the corresponding mRNA [40] and to be at least as
stable, if not longer-lived [41,42]. Hence, it is expected
that the concentration of the gene products follows pro-
files that are similar to those of the mRNAs. The observa-

TF regulation versus RBP regulationFigure 4
TF regulation versus RBP regulation. Top row: Distri-
bution of the mean correlations for groups of genes having a 
common DNA motif likely to be the target of a TF [36]. Bot-
tom row: Distribution of the mean correlations for groups of 
genes having a common mRNA motif likely to be the target 
of a RNA-binding protein (Yra1, Mex67 [34] or the five Puf 
proteins [23]) or having a common 3' UTR motif implicated 
in the stability or in the subcellular localization of the mRNA 
[22]. The mean correlation of a group of genes is defined as 
the average of the correlations between the expressions of 
each gene pair in the group. The mean correlations calcu-
lated for all the gene pairs are shown on the left, while on the 
right only the periodic genes of each group are considered.
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tion that the dynamics through a metabolic pathway can
be considered as a timed and sequential process at the
level of gene expression appears in several papers in the
literature, see [43,44]. The same principle seems to be
reflected in the YMC, although it is not observable at the
level of detail investigated e.g. in [44], but more macro-
scopically and at genome-wide level.

An input-output dynamical model
In terms of dynamical models, the progressive broadening
and smoothing of the response to a sequence of (tran-
scriptional) pulses can be described by means of simple
linear input-output models (i.e., transfer functions in the
Laplace domain) of increasing order having "low-pass"
characteristics. As the time constant of this low-pass filter
is essentially given by the HL of the mRNA, this type of
model naturally predicts the correlation HL-pulse width.
In order to describe correctly also the phase along the
cycle, a time delay is added to the response, see Methods
for a thorough description and Fig. 5(a, b) for an example.
If the order of such a fitted minimal dynamical model is
used to sort the annotated macrocategories of Fig. 2, we
still recover both the same expected cascade of events and
the same direct proportionality with HL, see Fig. 5, mean-
ing that even in terms of the simplest possible dynamical
model the kernels providing the best fitting become
increasingly complex as we progress through the cycle.
This is of course expected as the mRNAs gradually pass
from fast turnover to high stability.

A common dynamical gene expression program
As the YMC is obtained only in particular conditions
(long-term continuous cultures in chemostats), an
intriguing question is whether this highly organized
unfolding of the dynamical response to pulses of tran-
scriptional activation is peculiar only of the YMC or can
be observed also in other experimental conditions. For
this purpose, we consider the gene expression response of
steady-state yeast to pulses of glucose described in [28]. In
this case, the yeast shows a transient dynamical response
but no oscillatory behavior. Furthermore, the transient
peaks are more or less synchronous for all genes, i.e., there
is no time-ordering in the dynamics, unlike in the YMC.

However, if for a gene we compare the maximal signed
amplitude of each expression profile on these time series
with the corresponding phase and pulse width in the
YMC, a sizable anticorrelation emerges, see Fig. 6(a). If,
on the contrary, we consider the stress responses time
series of [29], the YMC phase/pulse width turn out to be
positively correlated (rather than anticorrelated) with
amplitude, i.e., categories appearing early in the YMC
tend to be downregulated in most stress responses, while
"late phase" categories tend to be upregulated, see Fig.

6(b). It is known that in the stress responses genes anno-
tated for ribosomal proteins and/or RNA metabolism are
in general downregulated, while e.g. respiratory genes
(such as those of the citric acid cycle and of the oxidative
phosphorylation) become upregulated [29]. On Fig. 6,
notice that also in all these responses cytoplasmic ribos-
omes (cluster 9 in Fig. 1) are aligned with the rest of the
(cytoplasmic) transcriptional/translational machinery
rather than with the assigned HL values.

The conclusion of this analysis is therefore that in intrin-
sically dynamical contexts some form of common
response might indeed be taking place, although exerted
by different means. Such genome-wide coordinated
response shows a graded ordering which reflects the
degree of stability of the genes involved.

Conclusion
In [4,39] the time compartmentalization of the cycle is
interpreted in terms of the need to accumulate sufficient
products from the metabolic reactions in order to move
on to the next phase of the cycle and to autoinduce further
cycles of oscillations. This picture is not contradicted by
our observations.

If, as we do in this paper, rather than looking at the YMC
merely as cyclic oscillations, we study it as a highly organ-
ized dynamical response to pulses of transcriptional acti-
vation, then this response can be analyzed in much more
detail at genome-wide level and we can observe how an
important role in the coordination seems to be played by
the mRNA turnover rate. The self-sustained character of
what we consider the most upstream event of the cycle,
the transcriptional activation burst, can still be condi-
tioned to the accumulation of the required metabolites,
while the unfolding of the cycle, which from the analysis
of [4] is already known to be functional to the distribution
of e.g. the redox load of the cells, is enriched of an extra,
intrinsically dynamical feature. This feature is a fine-
graded detail of our notion that genes with a fast turnover
are typically regulatory, while slow genes are enzymatic
and metabolic [15,19]. It can be used to describe the
sequence of events occurring in the YMC as a "natural"
gene expression program.

Extrapolating from the specific YMC context, the ordered
pattern of events described for the YMC is to a good extent
similar to that found on other intrinsically dynamical
contexts such as the stress/stimuli responses. Whether the
mRNA stability is the cause of this coherent behavior or is
simply another effect of a more profound regulatory
mechanism is a question to which we cannot provide a
definitive answer at the moment.
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Dynamical model of the response to a sequence of transcriptional pulsesFigure 5
Dynamical model of the response to a sequence of transcriptional pulses. Dynamically, the response of the system 
to the sharp pulses of transcriptional activation can be modeled in terms of input-output transfer functions (i.e., convolution 
integrals in the Laplace domain, see Methods for details). The main feature of a simple zero-pole transfer function with low-
pass characteristic is that in correspondence of an impulse-like input it yields an output which is a smoothed and broadened 
version of the input. Concatenations of such zero-pole transfer functions describe accurately the progressive broadening and 
delaying of the YMC gene expression time series. Typical time profiles obtained for transfer functions of order 1 to 4 sketched 
in (a) are shown in (b). The top plot in (b) shows the larger kernels obtained by concatenating up to 4 first order transfer func-
tion blocks. The lower plot in (b) shows how consecutive impulse responses look like for the various orders of transfer func-
tions and an extra delay element as in eq. (4). A simple fitting of the ni, di and Ti parameters and of the best model order for 
each gene allows to accurately reconstruct the average profiles for the 15 macrocategories of Fig. 2 (in (c) the model-based 
time courses are shown in red). With the usual exception of the category "translation", the best transfer function order is 
roughly proportional to the corresponding HL values, coherently with the other variables discussed in the paper.

1

1

d
ns+

s+

1

1

d
ns+

s+

1

1

d
ns+

s+

1

1

d
ns+

s+

2

2

d
ns+

s+

2

2

d
ns+

s+

2

2

d
ns+

s+ 3

3

d
ns+

s+

3

3

d
ns+

s+

4

4

d
ns+

s+
4T

3T

2T

1T

e

e

e

−s

−s

−s

−se

(a)

100 150 200 250 300 350 400 450 500

0

0.2

0.4

0.6

0.8

1 T.F. order = 1
T.F. order = 2
T.F. order = 3
T.F. order = 4

0 100 200 300 400 500 600 700 800

0

0.2

0.4

0.6

0.8

1

(b)

0 200 400 600 800 1000
5

10

15
FOLD, SORT AND DEGRAD.

0 200 400 600 800 1000
0

10

20

30
XENOBIOTICS BIODEGR, MET.

0 200 400 600 800 1000
5

10

15

20
LIPID METABOLISM

0 200 400 600 800 1000
10

20

30

40
SECONDARY METABOLITES

0 200 400 600 800 1000
10

15

20

25
CARBOHYDRATE MET.

0 200 400 600 800 1000
4

6

8

10
SIGNAL TRANSDUCTION

0 200 400 600 800 1000
5

10

15

20
OTHER AMINO ACIDS

0 200 400 600 800 1000
10

15

20

25
ENERGY METABOLISM

0 200 400 600 800 1000
5

10

15

20
AMINO ACID METABOLISM

0 200 400 600 800 1000
0

5

10

15
COFACTORS AND VITAMINS

0 200 400 600 800 1000
0

2

4

6
REPLICATION AND REPAIR

0 200 400 600 800 1000
2

4

6

8

10
GLYCAN METABOLISM

0 200 400 600 800 1000
0

20

40

60
TRANSLATION

0 200 400 600 800 1000
0

5

10

15

20
NUCLEOTIDE METABOLISM

0 200 400 600 800 1000
0

5

10

15

20
TRANSCRIPTION

(c)

10 20 30 40
1

1.5

2

2.5

3

3.5

4
T

ra
ns

fe
r 

F
un

ct
io

n 
or

de
r

HL (min)

TRANSCRIPTION

REPLICATION AND REPAIR

NUCLEOTIDE METABOLISM

COFACTORS AND VITAMINS

GLYCAN METABOLISM

TRANSLATION

OTHER AMINO ACIDS

SECONDARY METABOLITES

SIGNAL TRANSDUCTION

AMINO ACID METABOLISM

XENOBIOTICS BIODEGR, MET.

FOLD, SORT AND DEGRAD.

ENERGY METABOLISM

LIPID METABOLISM

CARBOHYDRATE MET.

(d)



BMC Systems Biology 2009, 3:18 http://www.biomedcentral.com/1752-0509/3/18

Page 11 of 15
(page number not for citation purposes)

Common unfolding of gene expression responsesFigure 6
Common unfolding of gene expression responses. The short-term responses of steady-state yeast to pulses of nutrient 
discussed in [28] and the stress responses of [29] show a transient peak of up/down regulation. The peaking times are substan-
tially uniform on the genes. For each gene we compute the maximal signed amplitude at the peak and lump together genes 
belonging to each of the known protein complexes (see Fig. S5 in Additional file 1). If for [28] we compare this amplitude with 
the phase (left) and the pulse width (right) of the corresponding genes for the YMC, we can observe that both scatter plots 
have a consistent anticorrelation: complexes upregulated in the glucose stimulations of [28] correspond roughly to "early" 
complexes in the YMC and also to genes with a fast turnover. At the other end, complexes downregulated in [28] are late in 
the YMC and are more stable, see (a). This shows how, in spite of different growth and stimulation conditions, the gene 
expression program is substantially faithful. On the contrary stressful stimuli such as those described in [29] yield correlated 
pattern with phase/width of the YMC (b). Just like for the YMC, for both types of responses cytoplasmic translation behaves 
differently from the mitochondrial one. In red circles the first 3 complexes of Fig. 3(c) are highlighted, in magenta squares their 
mitochondrial counterparts. Hence the anomaly represented by cluster 9 of Fig. 1 with respect to the HL classification is con-
firmed by these other dynamical responses.
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Methods
Data sources
The YMC time series of [4], the compendium of 790 gene
profile experiments (all performed with the Affymetrix
GeneChip Yeast Genome S98 platform) and the data
series from [28] were downloaded from Gene Expression
Omnibus [45]. The time series of [28] are performed with
cDNA, hence values of the area under the profiles are
intended as relative (to the basal mRNA abundance). For
each gene, the values obtained for the two different glu-
cose stimuli are averaged. Five stress responses from [29]
(two heat shocks of different amplitude, hydrogen perox-
ide, diamide, and sorbitol responses) are considered. The
amplitudes are averaged over the five data series (the signs
of these responses are known to be highly similar, see
[29]).

The metabolic pathways used are those of the Kyoto Ency-
clopedia of Genes and Genomes (KEGG) [46]. Also the
assembling into the 15 macrocategories follows the KEGG
hierarchy.

The HLs are computed averaging the values of the three
experimental datasets [17,18,20]. While the magnitudes
of the HLs in the three collections show some differences,
in "normalized" terms (looking e.g. at rank-ordered val-
ues), the agreement between the three sets is sufficiently
good, see [17] for a comparison. No turnover data specific
for long-term continuous cultures are currently available.
However, it is not unlikely that even in this setting the rel-
ative differences of HL rates (and also their ordering)
remains more or less unchanged. In any case, we expect
the correlation phase/HL to improve in presence of more
tailored mRNA turnover data.

Time series analysis

To each of the genes labeled as periodic, we associated a
phase, computed maximizing the correlation with respect
to a train of 360 shifted sinusoids (resolution of 1°). The
0 phase was chosen so as to anticipate of ~30° the "cru-
cial" transcription bursts [see Additional file 1]. Given
that the period is approximately 287.5 minutes (see Fig.

S1 in Additional file 1), the phase delay ϕ can be trans-

formed into time delay τ by means of the relation

. Under the convention for the 0 phase, each

period "begins" approximately 24 min before the tran-
scription bursts. For each gene, the pulse width is com-
puted estimating on each period the interval in which the
expression level stays above the median value across con-
secutive samples.

Least squares regressions
The p.values for the least squares regressions in Fig. 1, 2
and 5 are computed via Fisher test statistics [see Addi-
tional file 1].

A minimal dynamical model: low-pass transfer functions 
and their dynamical system realizations
The aim of this Section is to set up a minimal dynamical
model describing the response to the periodic bursts of
transcriptional activation represented as "impulsive
inputs" to the system. Such a model has to be able to
reproduce the following features observable in the data-
set:

• impulse responses get delayed and broadened in a way
which is roughly proportional to HL;

• profile changes get progressively less steep with HL;

• the system "discharges" completely (i.e. the mRNA con-
centrations return to a basal level) in absence of further
pulses.

At the same time, to be internally consistent a dynamical
model has to:

• respect causality (i.e., be non-anticipating);

• preserve positivity of the mRNA concentrations.

In the Engineering practice of Systems Theory, one of the
most elementary formalism that can be used to build
dynamical models is the input-output design based on
Laplace transform and elementary transfer functions [47],
see e.g. [48] for an application to a transcriptional time
series.

The concentration of mRNA of a gene y can be described
as the response to the pulse of transcriptional activation u
by the linear integral

In the Laplace domain, a convolution integral such as (1)
corresponds to

where s is the Laplace variable and G(s) is called a transfer

function. If u(t) is a perfect impulse δ0 (Dirac delta) then

U(s) = [δ0(t)] = 1. When the transfer function G(s) rep-

resents a linear differential equation (i.e. it derives from a
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linear convolution such as (1)), it can be expressed as a
rational polynomial in the Laplace variable s. A simple
such polynomial is

where s = -d1 is called the pole of G1 and s = -n1 its zero.

Choosing d1 > 0 the transfer function is stable (the pole is

in the left half of the complex plane), i.e., a bounded
input will always result in a bounded output. When n1 > 0

the system is said to be minimum phase. In this context
this is an important condition in order to guarantee posi-
tivity of the output signal for all times. The requirements
above can be translated into easy-to-handle design speci-
fications on the values of the poles and zeros of the trans-
fer function. For example, the first requirement (at least
for what concerns pulse broadening) is met by the class of
so-called low-pass filters, the most basic of which has the
form given in (3), provided we choose 0 <d1 <n1. The term

"low-pass" literally means that low frequencies in the
input signal pass unchanged through the transfer function
G1(s), while high frequencies get damped, hence the

impulsive input exits from G1(s) smoothed and with more

gentle slopes. Such a transfer function is proper and there-
fore respects causality; it discharges completely as
required (since it has no integrator, i.e., no factors of the
form 1/s in G1(s)). Strictly speaking, it is not a positive fil-

ter [49], however as long as u(t) > 0 and 0 <d1 <n1 it is also

y(t) > 0. In the Laplace domain, a time delay T1 has

Laplace transform equal to . This operator does not
add poles or zeros to (3) but yields the irrational transfer
function

In the time domain, each convolution integral (1) can be
expressed as a linear input-output systems (of ordinary
differential equations). For the transfer function in (3)
and the delay operator in (4) this corresponds to

i.e., the pole d1 plays the role of "degradation rate" while
the activation amplitude is proportional to n1 - d1 (> 0).
The typical impulse response of a low-pass filter transfer
function such as (3) is shown in the top plot of Fig. 5(b).
Given a pulse shape, the capabilities of a single low-pass

filter in terms of broadening and smoothing of the
responses are limited, hence, in order to obtain a progres-
sive effect of delayed and broadened impulse responses,
several delayed low-pass filters should be put in cascade.
For example the order-2 transfer function obtained con-
catenating 2 filters is

or, in the time domain,

In this case both d1 and d2 contribute to forming the deg-
radation profile of the mRNA concentration y2(t). Like-
wise both dynamical variables x1 and x2 contribute to
shape the pulse of a gene. Typically this model induces a
steeper upregulation and a slower degradation front,
coherently with what we observe on the YMC time series.
The intermediate variables xi are only meant to describe
the complexity of the input-output relationship. Qualita-
tively, they might reflect intermediate steps in the gene
expression program. For example, the transcription of the
genes of the central metabolism is activated downstream
of the genes for translation and amino acid synthesis,
which in their turn follow the principal bursts of tran-
scription machinery (polymerases and other RNA
processing components). Downstream activation of the
genes of a category translates in this modeling framework
into delayed and broadened pulses. Typical output
responses for 1, 2, 3, and 4 such concatenated blocks are
shown in Fig. 5(b).

A simple parameter search can be set up to identify values
of ni, di and Ti, i = 1,...,4, that guarantee for each gene a suf-
ficiently well-reproduced time course. The best transfer
function order for each gene is identified as that maximiz-
ing the correlation between true and model-based time
series.

HL and the short-period YMC of [3]
The HL of a gene is defined as the time needed to halve the
concentration of mRNA in absence of new transcription.
Hence in order for a "full" degradation of mRNA to be
observed, the interval between two consecutive waves of
transcription has to be at least twice or three times the HL.
For yeast, the mean HL extrapolated from [17,18,20] is
~26 ± 17 min. Hence for the long-period YMC the
response to bursts of transcription has the time to exhaust
completely before the arrival of the next wavefront. On
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the contrary, for the short-period YMC described in [3] the
period is approximately 40 min, meaning that excitation
and degradation fronts are substantially overlapping.
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