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Abstract
Background: Human cells of various tissue types differ greatly in morphology despite having the
same set of genetic information. Some genes are expressed in all cell types to perform house-
keeping functions, while some are selectively expressed to perform tissue-specific functions. In this
study, we wished to elucidate how proteins encoded by human house-keeping genes and tissue-
specific genes are organized in human protein-protein interaction networks. We constructed
protein-protein interaction networks for different tissue types using two gene expression datasets
and one protein-protein interaction database. We then calculated three network indices of
topological importance, the degree, closeness, and betweenness centralities, to measure the
network position of proteins encoded by house-keeping and tissue-specific genes, and quantified
their local connectivity structure.

Results: Compared to a random selection of proteins, house-keeping gene-encoded proteins
tended to have a greater number of directly interacting neighbors and occupy network positions
in several shortest paths of interaction between protein pairs, whereas tissue-specific gene-
encoded proteins did not. In addition, house-keeping gene-encoded proteins tended to connect
with other house-keeping gene-encoded proteins in all tissue types, whereas tissue-specific gene-
encoded proteins also tended to connect with other tissue-specific gene-encoded proteins, but
only in approximately half of the tissue types examined.

Conclusion: Our analysis showed that house-keeping gene-encoded proteins tend to occupy
important network positions, while those encoded by tissue-specific genes do not. The biological
implications of our findings were discussed and we proposed a hypothesis regarding how cells
organize their protein tools in protein-protein interaction networks. Our results led us to
speculate that house-keeping gene-encoded proteins might form a core in human protein-protein
interaction networks, while clusters of tissue-specific gene-encoded proteins are attached to the
core at more peripheral positions of the networks.
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Background
One of the major aims in modern molecular biology is to
identify how living organisms are brought into existence
from the basic building blocks of life, such as genes and
their protein products. With the completion of the human
genome project and recent advances in molecular biology,
a complete understanding of the chromosomal organiza-
tion of human genes will become possible in the not so
distant future [1]. In the post-genomic era, the next step in
modern molecular biology is to understand how gene
products, or proteins, interact to perform cellular func-
tions [2]. The human body is composed of millions of
cells which differ greatly in morphology despite the fact
that they all possess the same set of genetic information.
Some genes are persistently transcribed and expressed in
all cells and are called house-keeping genes, as they are
involved in the basic cellular functions required for the
maintenance of a cell. For instance, the genes that code for
histones, proteins responsible for DNA packaging in chro-
matin [3], are universally expressed in all cells [4]. Other
genes are expressed only in cells of certain tissue types,
also known as tissue-specific genes, and are thought to be
responsible for the cell diversity observed in living organ-
isms today. A good example is found in the immune sys-
tem, where the human leukocyte antigen genes and their
regulatory proteins are specifically expressed in macro-
phages and B cells [5]. Using microarray-based [6] and
tag-based [7,8] techniques, gene expression patterns in
different tissue types can be easily quantified, and the
identification of house-keeping and tissue-specific genes
is possible with modern statistical analysis [4,9]. How-
ever, little is known about how the protein products of
house-keeping and tissue-specific genes are organized or
embedded within the protein-protein interaction (PPI)
networks that ultimately give rise to the observed similar-
ities and differences in morphology between cells. In this
paper, we employed the tool of network analysis to
address this issue.

Network analysis has its origin in sociology, but, in recent
years, has been successfully applied to different fields of
biological sciences from molecular biology, proteomics,
medicine to ecology and epidemiology [10-18]. A major
goal of network analysis is to reveal the structural organi-
zation of a network and propose mechanisms that may
give rise to the observed network topology [11,19]. For
instance, the nodal connection of several biological net-
works tends to follow a power law distribution, with the
majority of nodes having only a small number of neigh-
bors and only a few having many [10,20,21]. Such a
power law distribution in connectivity renders a network
robust against random attacks [11,22], and the preferen-
tial attachment model of network evolution has been pro-
posed as a possible mechanism that gives rise to such a
power law distribution [11,22]. Another goal of network
analysis is to quantify or characterize the position of indi-

vidual nodes in a network and relate this information to
the biological roles in which they might be involved
[10,14,17,18,23-26]. For instance, Jeong et al. [10] ana-
lyzed the yeast PPI network and found that genes coding
for proteins that have many interacting partners tend to be
essential genes vital to cell survival.

This study had two aims. The first was to use network
analysis to elucidate the topological importance of house-
keeping and tissue-specific genes (or, more precisely, their
protein products) in human PPI networks by asking
whether proteins encoded by house-keeping genes or tis-
sue-specific genes tend to occupy topologically important
positions or not. Topological importance here simply
refers to how prominent or central a node is to others in
the same network and can be measured in different ways.
The second aim was, using an anthropomorphic analogy
to humans who tend to arrange tools performing similar
tasks in close vicinity to each other, to determine how
nature organizes tools (house-keeping genes and tissue-
specific genes) in human PPI networks. Specifically, we
asked whether the protein products of house-keeping
genes or tissue-specific genes tend to connect or interact
among themselves in a PPI network; for convenience, we
define such a connection pattern as homophylic connec-
tivity. We examined these issues using two different data-
sets to test the robustness of our findings. The paper is
organized as follows. We first describe the databases used
and how the lists of house-keeping genes and tissue-spe-
cific genes were acquired, then how we constructed the
different PPI networks. We then describe the three com-
monly-used measures of topological importance, how
homophylic connectivity in a PPI network was quantified,
and how the statistical significance of our findings was
tested. Finally, we present the results and discuss their
implications.

Results
Basic network statistics
The Human Gene Expression Index (HuGE Index) data-
base [4] contains gene expression data for 19 different tis-
sue types. For simplicity, we identify here each tissue-type
by the name of the organ from which the tissue was
derived. For each tissue type, we mapped the genes
expressed to the Human Protein Reference Database
(HPRD) [27] and identified the corresponding proteins in
order to construct a tissue-specific PPI network. The HuGE
Index database provides a list of expressed genes and a list
of tissue-specific genes for each tissue type, together with
a list of house-keeping genes expressed in all tissues. Here
a node in a PPI network represents a protein, nodes repre-
senting proteins encoded by house-keeping genes are
called house-keeping nodes and those representing pro-
teins encoded by tissue-specific genes are tissue-specific
nodes. Table 1 summarizes, for each tissue type, the total
number of nodes in the PPI network and the number of
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house-keeping and tissue-specific nodes. We also con-
structed the EST-SAGE dataset (see Methods), which con-
tains gene expression data for 20 different tissue types,
and mapped the expressed genes to the HPRD and con-
structed the PPI networks for the different tissue types.
Again, we identify each tissue-type by the name of the
organ from which the tissue was derived. Table 2 summa-
rizes, for each tissue type, the total number of nodes and
the number of house-keeping and tissue-specific nodes in
the corresponding PPI network. The network data for dif-
ferent tissue types are given in additional file 1. Tables 1
and 2 also provide the proportions of house-keeping
nodes and tissue-specific nodes in the total number of
nodes for each tissue type. The proportion of house-keep-
ing nodes varied from 0.105 to 0.321 for the HuGE Index
dataset and from 0.051 to 0.224 for the EST-SAGE dataset,
while the corresponding values for the proportion of tis-
sue-specific nodes were 0.017 to 0.173 and 0.008 to
0.080. With a few exceptions, each PPI network tended to
have more house-keeping nodes than tissue-specific
nodes. Furthermore, each PPI network consists of a large
network fragment (a fragment contains nodes that are
only reachable from those in the same fragment) and sev-
eral much smaller fragments (Tables 3 and 4). The propor-
tion of total number of nodes in the largest network
fragment varied from 0.901 to 0.975 among different PPI
networks for the HuGE Index dataset and from 0.831 to
0.970 for the EST-SAGE dataset; therefore the extent of
connectivity of every PPI network constructed in this
study is high.

The HuGE and EST-SAGE datasets have 12 tissue types in
common (Table 5). For each of those common tissue
types, we determined the number of nodes common to
both PPI networks and the number of common house-
keeping and tissue-specific nodes and determined the
extent of overlap of nodes of a certain type between the
two datasets. As shown in Table 5, depending on the tis-
sue type considered, the percentage of common nodes
(number of common nodes/total number of nodes × 100)
in a HuGE-derived PPI network varied from 32.8% to
93.5%, while the percentage of common house-keeping
nodes and common tissue-specific nodes varied from
8.75% to 31.3% and from 0% to 4.48%, respectively.
Again depending on the tissue type considered, the per-
centage of common nodes in a EST-SAGE-derived PPI net-
work varied from 11.3% to 49.6%, while the percentage
of common house-keeping nodes and common tissue-
specific nodes varied from 3.85% to 10.9% and from 0%
to 1.02%, respectively. The extent of overlap between the
two datasets was low, so it is reasonable to say that the
results derived from one dataset can complement those
derived from the other.

Topological properties of the house-keeping nodes
The topological importance of a node can be quantified
using different centrality measures (see Methods). Those
commonly used are the degree centrality (the number of
direct neighbors of a node), the betweenness centrality
(an index quantifying how frequently a node appears on
all shortest paths between all node pairs) and the close-

Table 1: A summary of numbers of nodes in HuGE Index-derived PPI networks.

Tissue Total number of nodes Number of house-keeping nodes Number of tissue-specific nodes

Blood 907 179 (0.197) 59 (0.065)
Brain 1048 184 (0.176) 121 (0.115)
Breast 466 148 (0.318) 18 (0.039)
Cervix 934 184 (0.197) 26 (0.028)
Colon 684 176 (0.257) 13 (0.019)
Endometrium 1209 194 (0.160) 65 (0.054)
Esophagus 996 185 (0.186) 46 (0.046)
Kidney 1774 200 (0.113) 263 (0.148)
Liver 1646 200 (0.122) 244 (0.148)
Lung 1933 203 (0.105) 318 (0.165)
Muscle 1611 194 (0.120) 262 (0.163)
Myometrium 1112 190 (0.171) 46 (0.041)
Ovary 1239 190 (0.153) 108 (0.087)
Placenta 896 176 (0.196) 44 (0.049)
Prostate 1917 202 (0.105) 331 (0.173)
Spleen 605 160 (0.264) 13 (0.021)
Stomach 516 159 (0.308) 9 (0.017)
Testes 464 149 (0.321) 8 (0.017)
Vulva 1270 193 (0.152) 65 (0.051)

The figures in parenthesis are the proportion of house-keeping nodes and the proportion of tissue-specific nodes in the total number of nodes in a 
particular PPI network.
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ness centrality (an index measuring how close a node is to
all others in the same network). For each PPI network, we
determined these three centralities for all individual
nodes, then picked out the house-keeping nodes and cal-
culated their means. We also calculated the expected dis-
tribution of these means if the collection of house-
keeping nodes were a random subset of nodes in the PPI

network. Figures 1 and 2 summarize the results for the
HuGE Index and EST-SAGE databases, respectively.

For the HuGE Index dataset, only the house-keeping
nodes in the brain and testes tissues had observed mean
degree centralities significantly greater than the expected
means (the observed means are located well outside the
95% confidence intervals of the model distribution) (Fig-

Table 2: A summary of numbers of nodes in EST-SAGE-derived PPI networks.

Tissue Total number of nodes Number of house-keeping nodes Number of tissue-specific nodes

Blood 3613 233 (0.062) 133 (0.037)
Blood vessel 1735 177 (0.102) 34 (0.020)
Bone marrow 2278 207 (0.091) 31 (0.014)
Brain 4624 238 (0.051) 368 (0.080)
Breast 3796 235 (0.062) 47 (0.012)
Colon 2057 186 (0.090) 54 (0.026)
Eye 4003 228 (0.057) 70 (0.017)
Heart 2035 188 (0.092) 33 (0.016)
Kidney 1388 167 (0.120) 17 (0.012)
Liver 1650 166 (0.101) 55 (0.033)
Lung 2624 198 (0.075) 30 (0.011)
Lymph node 438 98 (0.224) 15 (0.034)
Muscle 1974 192 (0.097) 65 (0.033)
Ovary 1316 164 (0.125) 10 (0.008)
Pancreas 2023 191 (0.094) 21 (0.010)
Placenta 3187 214 (0.067) 101 (0.032)
Prostate 3181 221 (0.069) 28 (0.009)
Skin 950 133 (0.140) 12 (0.013)
Stomach 2440 194 (0.080) 24 (0.010)
Thyroid gland 606 113 (0.186) 10 (0.017)

The figures in parenthesis are the proportion of house-keeping nodes and proportion of tissue-specific nodes.

Table 3: The distribution of network fragment size in HuGE Index-derived PPI networks.

Tissue Distribution of network fragment size Proportion of total number of nodes in the largest network fragment

Blood 848(1), 5(1), 3(1), 2(20) 0.948
Brain 998(1), 3(4), 2(19) 0.952
Breast 441(1), 3(1), 2(11) 0.946
Cervix 879(1), 3(7), 2(17) 0.941
Colon 643(1), 5(1), 4(2), 3(2), 2(11) 0.940
Endometrium 1162(1), 3(1), 2(22) 0.961
Esophagus 955(1), 5(1), 4(1), 2(16) 0.959
Kidney 1714(1), 4(1), 3(4), 2(22) 0.966
Liver 1590(1), 4(1), 3(4), 2(20) 0.966
Lung 1873(1), 3(4), 2(24) 0.969
Muscle 1570(1), 3(3), 2(16) 0.975
Myometrium 1062(1), 3(2), 2(22) 0.955
Ovary 1173(1), 3(4), 2(27) 0.947
Placenta 848(1), 5(1), 3(1), 2(20) 0.946
Prostate 1859(1), 3(6), 2(20) 0.970
Spleen 570(1), 4(3), 3(1), 2(10) 0.942
Stomach 470(1), 5(1), 4(1), 3(3), 2(14) 0.911
Testes 418(1), 4(2), 3(4), 2(13) 0.901
Vulva 1225(1), 3(3), 2(18) 0.965

In the middle column, each number represents the size of a network fragment and in the following parenthesis is the number of fragments belonging 
to this network fragment size.
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ure 1a). Despite the non-significant results, the observed
mean degree centralities for the remaining tissue types
were all greater than the expected means (Figure 1a). For
the betweenness centrality, only the house-keeping nodes
in the testes tissue showed a significant difference from
the expected mean despite all tissues having observed
means greater than the expected means (Figure 1b). For
the closeness centrality, none of the observed means were
significantly different from the expected means, although
eight tissues had observed means that were greater than
the expected means, while eleven had observed means

lower than expected (Figure 1c and additional file 2, Table
S1).

All but four tissue types in the EST-SAGE dataset showed
that the observed mean degree centralities for house-keep-
ing nodes were significantly greater than the expected
means (note that the observed means were all greater than
the expected means for all tissue types) (Figure 2a). For
the betweenness centrality, five tissue types have observed
means significantly greater than the expected means
despite that all observed means were greater than the

Table 4: The distribution of network fragment size in EST-SAGE-derived PPI networks.

Tissue Distribution of network fragment size Proportion of total number of nodes in the largest network fragment

Blood 3493(1), 5(2), 3(8), 2(43) 0.967
Blood vessel 1658(1), 4(2), 3(5), 2(27) 0.956
Bone marrow 2173(1), 7(1), 4(1), 3(6), 2(38) 0.954
Brain 4477(1), 7(1), 5(2), 4(1), 3(6), 2(54) 0.968
Breast 3679(1), 5(2), 4(1), 3(7), 2(41) 0.969
Colon 1950(1), 4(3), 3(7), 2(37) 0.948
Eye 3853(1), 5(3), 4(2), 3(9), 2(50) 0.963
Heart 1935(1), 5(1), 4(3), 3(5), 2(34) 0.951
Kidney 1296(1), 8(1), 4(1), 3(4), 2(34) 0.934
Liver 1551(1), 5(1), 4(1), 3(8), 2(33) 0.940
Lung 2502(1), 5(2), 4(2), 3(6), 2(43) 0.954
Lymph node 364(1), 7(1), 6(1), 5(1), 3(4), 2(22) 0.831
Muscle 1878(1), 4(1), 3(8), 2(34) 0.951
Ovary 1246(1), 3(6), 2(26) 0.947
Pancreas 1920(1), 5(1), 4(1), 3(6), 2(38) 0.949
Placenta 3076(1), 6(1), 5(1), 3(8), 2(38) 0.965
Prostate 3062(1), 7(1), 5(1), 4(1), 3(7), 2(41) 0.963
Skin 891(1), 3(5), 2(22) 0.938
Stomach 2303(1), 4(1), 3(5), 2(59) 0.944
Thyroid gland 546(1), 6(1), 4(2), 3(2), 2(20) 0.901

In the middle column, each number represents the size of a network fragment and in the following parenthesis is the number of fragments belonging 
to this network fragment size.

Table 5: Tissue types that appear in both the HuGE and the EST-SAGE datasets.

Tissue Percentage of common nodes in the total number 
of nodes

Percentage of common house-keeping 
nodes

Percentage of common tissue-specific 
nodes

Blood 93.5%, 23.5% 18.7%, 4.71% 0.55%, 0.14%
Brain 92.9%, 21.1% 17.3%, 3.91% 4.48%, 1.02%
Breast 92.3%, 11.3% 31.3%, 3.85% 0%, 0%
Colon 64.3%, 21.4% 21.1%, 7.00% 0%, 0%
Kidney 38.8%, 49.6% 8.12%, 10.4% 0.28%, 0.36%
Liver 49.0%, 48.8% 8.75%, 8.73% 0.73%, 0.73%
Lung 61.0%, 44.9% 8.85%, 6.52% 0.21%, 0.15%
Muscle 53.6%, 43.7% 10.1%, 8.26% 1.18%, 0.96%
Ovary 44.6%, 42.0% 11.5%, 10.9% 0%, 0%
Placenta 82.7%, 23.3% 18.3%, 5.15% 0.67%, 0.19%
Prostate 71.4%, 43.0% 10.0%, 6.04% 0.10%, 0.06%
Stomach 72.7%, 15.4% 26.4%, 5.57% 0.19%, 0.04%

The first number for each entry is for the HuGE-derived PPI network and the second for the EST-SAGE-derived PPI network.
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Observed mean topological properties for the house-keeping nodes in different PPI networks for the HuGE Index datasetFigure 1
Observed mean topological properties for the house-keeping nodes in different PPI networks for the HuGE 
Index dataset. The mean degree, betweenness, and closeness centralities are shown in a), b), and c), respectively. Each 
observed mean is shown as a cross and each expected mean by a circle, with its 95% confidence intervals shown as a vertical 
dotted line above and below the expected mean.
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Observed mean topological properties for the house-keeping nodes in different PPI networks for the EST-SAGE datasetFigure 2
Observed mean topological properties for the house-keeping nodes in different PPI networks for the EST-
SAGE dataset. The mean degree, betweenness, and closeness centralities are shown in a), b), and c), respectively. Each 
observed mean is shown as a cross and each expected mean by a circle, with its 95% confidence intervals shown as a vertical 
dotted line above and below the expected mean.
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expected means (Figure 2b). For the closeness centrality,
all but one (the lymph node) tissue types had an observed
mean greater than expected: six tissue types had an
observed mean significantly greater than expected while
the remaining tissue types showed non-significant differ-
ences (Figure 2c and additional file 2, Table S2).

Topological properties of the tissue-specific nodes
For the HuGE Index database, none of the tissue types had
observed mean degree centralities for tissue-specific nodes
significantly different from the expected means (Figure
3a). Three tissue types had observed means greater than
the expected means, while the remaining tissue types had
observed means lower than expected. For the betweenness
centrality, the testes had an observed mean significantly
lower than the expected mean, while the remaining tissue
types showed non-significant differences (Figure 3b). For
the closeness centrality, the ovary was the only tissue with
an observed mean significantly lower than the expected
mean, while the other tissue types had observed means
not significantly different from expected (Figure 3c and
additional file 2, Table S3).

For the EST-SAGE database, only the prostate has an
observed mean degree centrality significantly lower than
the expected mean, while the others had observed means
not significantly different from expected (Figure 4a). For
the betweenness centrality, the prostate again had an
observed mean significantly lower than expected, while
those for other tissue types were not significantly different
from the expected means (Figure 4b). For the closeness
centrality, all tissue types had observed means not signifi-
cantly different from expected (Figure 4c and additional
file 2, Table S4).

Homophylic connectivity of the house-keeping nodes
For each PPI network, we calculated the proportion of
house-keeping neighbors for individual house-keeping
nodes (PHK) and their mean. Figure 5a shows how the
observed means compared with the model distribution
for the 19 tissue types in the HuGE Index database. Our
results show that the observed mean proportions were all
significantly greater than the expected means, as they were
all well above the upper limit of the 95% confidence inter-
val of their corresponding model distributions. A similar
pattern was seen for house-keeping nodes in the EST-
SAGE dataset (Figure 5b).

Homophylic connectivity of the tissue-specific nodes
For the HuGE Index dataset, 7 of the 19 tissue types had
observed means significantly greater than the expected
means, while the remaining tissue types showed a non-
significant difference (Figure 6a). For the EST-SAGE data-
set, 11 of the 20 tissue types had observed means signifi-

cantly greater than the expected means, while the
remaining tissue types showed a non-significant differ-
ence (Figure 6b). Note that, for both datasets, a few tissues
had a mean PTS of 0 due to the fact that there were no con-
nections between their tissue-specific nodes (e.g. the
colon, spleen, and testes for the HuGE Index dataset and
the lymph node and ovary for the EST-SAGE dataset).

Discussion
In this paper, we analyzed the topological properties of
proteins encoded by house-keeping genes and tissue-spe-
cific genes and their local connectivity structure in the PPI
networks for a variety of human tissues. An interesting
pattern in terms of how cells organize their inventory
tools emerged. Although the results for the average degree
and betweenness centrality for house-keeping nodes in a
PPI network derived from the HuGE Index dataset were
not statistically different from those for randomly selected
nodes, in each of the tissue types examined, the proteins
encoded by house-keeping genes tended to have a greater
number of direct neighbors (i.e. a high degree centrality)
and to occupy network positions that were incident to
many shortest interaction paths (i.e. a high betweenness
centrality) than randomly selected proteins in a PPI net-
work. This finding was more evident in the analysis of the
EST-SAGE dataset, where the results for several tissue types
were statistically significant. Such a consistent observation
across different tissue types and different gene expression
platforms indicates that house-keeping genes tend to code
for proteins of more topological importance in a PPI net-
work. In contrast, the protein products of tissue-specific
genes tended to occupy network positions no different
from those of a group of randomly selected proteins. With
relatively few exceptions, this was observed in most tissue
types across both the HuGE Index and EST-SAGE datasets.
Moreover, our results suggest that closeness centrality
does not consistently reflect the topological importance of
house-keeping genes in PPI networks. This is because the
closeness centralities of a node and any of its direct neigh-
bors should be similar, since there is only one link sepa-
rating them [13]. Some house-keeping genes are bound to
connect to some tissue-specific genes. Thus, if a house-
keeping gene occupies a highly central position in a PPI
network, as measured by closeness centrality, then its tis-
sue-specific neighbors will also be important, and this
results in many tissue-specific genes being more impor-
tant than some house-keeping genes. The observation that
house-keeping genes tend to occupy important network
positions seems to fit the general trend that topologically
important network positions tend to reflect common
characteristics or vital processes in biology. For instance,
proteins that have many interacting partners in a PPI net-
work tend to be encoded by essential genes in yeast [10],
Page 8 of 17
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Observed mean topological properties for the tissue-specific nodes in different PPI networks for the HuGE Index datasetFigure 3
Observed mean topological properties for the tissue-specific nodes in different PPI networks for the HuGE 
Index dataset. The mean degree, betweenness, and closeness centralities are shown in a), b), and c), respectively. Each 
observed mean is shown as a cross and each expected mean by a circle, with its 95% confidence intervals shown as a vertical 
dotted line above and below the expected mean.
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Observed mean topological properties for the tissue-specific nodes in different PPI networks for the EST-SAGE datasetFigure 4
Observed mean topological properties for the tissue-specific nodes in different PPI networks for the EST-
SAGE dataset. The mean degree, betweenness, and closeness centralities are shown in a), b), and c), respectively. Each 
observed mean is shown as a cross and each expected mean by a circle, with its 95% confidence intervals shown as a vertical 
dotted line above and below the expected mean.
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Observed mean proportion of house-keeping neighbors for the house-keeping nodes in the different tissue typesFigure 5
Observed mean proportion of house-keeping neighbors for the house-keeping nodes in the different tissue 
types. The results for the HuGE Index dataset are shown in a) and those for the EST-SAGE dataset in b). Each observed mean 
is shown as a cross and each expected mean by a circle, with its 95% confidence intervals shown as a vertical dotted line above 
and below the expected mean.
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Observed mean proportion of tissue-specific neighbors for the tissue-specific nodes in the different tissue typesFigure 6
Observed mean proportion of tissue-specific neighbors for the tissue-specific nodes in the different tissue 
types. Results for the HuGE Index dataset are shown in a) while those for the EST-SAGE dataset are shown in b). Each 
observed mean is shown as a cross and each expected mean by a circle, with its 95% confidence intervals shown as a vertical 
dotted line above and below the expected mean.
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and topologically important enzymes tend to be shared
by many different bacterial species [13].

The second part of our analysis revealed that the protein
products of house-keeping genes tended to connect or
interact among themselves in a PPI network. Such homo-
phylic connectivity was observed for all tissue types in the
two databases used. However, homophylic connectivity
of tissue-specific gene-encoded proteins was not so widely
observed. If one pools the results from both datasets, then
slightly fewer than half of the tissues examined exhibited
homophylic connectivity for tissue-specific genes.
Although house-keeping and tissue-specific functions are
probably the two most fundamental biological functions
in cell biology, we believe our findings still fit the general
trend that network nodes performing similar biological
functions tend to form clusters in a molecular network
[23-26]. For instance, in metabolic and biochemical net-
works, metabolites tend to aggregate in the same network
locations and form distinct functional modules or meta-
bolic pathways [28,29].

The observation that house-keeping genes tended to be
topologically important, whereas tissue-specific genes did
not led us to speculate why nature has organized a cell's
inventory tools in such a manner and to propose the fol-
lowing hypothesis. Imagine there is a hypothetical neutral
cell, neutral in the sense that it is in an undifferentiated
state. If the protein products of tissue-specific genes were
located in topologically important positions in a PPI net-
work such that they had many interacting partners, then it
might be possible that the process of differentiation to a
particular morphological state might involve other unnec-
essary tissue-specific genes. This could have two hypothet-
ical drawbacks. First, expressing unnecessary and
unrelated tissue-specific genes while performing tissue-
specific functions or tasks is not an economical or efficient
way for a neutral cell to utilize its resources when under-
going cell differentiation. Second, because of the expres-
sion of these unrelated tissue-specific genes, unwanted
functions might be performed such that a neutral cell
might fail to differentiate to the correct morphological
state. In contrast, house-keeping proteins are topologi-
cally important because they are involved in processes
that perform basic and common cell functions, without
which cells of different types would have difficulties in
their maintenance. A close inspection of our results and
PPI networks provides hints supporting our hypothesis.
For instance, beta actin is one of the house-keeping gene-
encoded proteins that ranked high in terms of topological
importance (within the 1st percentile of the degree and
betweenness distributions for all tissue types) in our PPI
networks. It has many interacting neighbors, many of
which, such as cofilin, gamma actin, profiling, and beta
tubulin, are also encoded by house-keeping genes [30-
33]. These proteins form the cytoskeleton that provides

structural integrity to a cell and organizes cellular activi-
ties [3] and their expression in all cell types is therefore
essential for a cell to function properly or even exist in the
first place. One of the non-house-keeping neighbors of
beta actin is troponin I [34], which combines with tro-
ponin T and troponin C to form the troponin complex
[35] that plays an important role in the contraction of car-
diac and skeletal muscles [3]. The constituent protein
components of the troponin complex had average rank-
ings of 688th and 558th in the degree and betweenness cen-
tralities, respectively, in the HuGE-derived muscle-specific
PPI network, while the equivalent average rankings for the
actin-cofilin-profilin-tubulin core were 279th and 334th.
As for the EST-SAGE-derived muscle-specific PPI network,
the troponin complex components had average rankings
of 736th and 537th in the degree and betweenness central-
ities, respectively, while the actin-cofilin-profilin-tubulin
core was ranked 170th and 158th. Thus, the troponin com-
plex is, on average, of lower topological importance and is
attached to the actin-cofilin-profilin-tubulin core at a
more peripheral position in the muscle-specific PPI net-
work. Another example is neurogenesis, the process of for-
mation of nerve tissue [36]. The CRMP (collapsin
response mediator protein) family plays key roles in
growth cone guidance during neural development
[37,38], and four members of this family, CRMP1,
CRMP2, CRMP3, and CRMP5, could be mapped to the
brain-specific PPI network for the EST-SAGE dataset.
CRMP1, CRMP2, CRMP3, and CRMP5 interact sequen-
tially to form a complex [39,40], which connects to the
actin-cofilin-profilin-tubulin core via CRMP2 and beta
tubulin [41], as well as via CRMP1 and profilin [42]. In
the brain-specific PPI network, the CRMP complex was
ranked on average 1864th and 1531st in terms of the
degree and betweenness centralities, respectively, while
the corresponding values for the actin-cofilin-profilin-
tubulin core were 356th and 294th. Again, this demon-
strates that the actin-cofilin-profilin-tubulin core is
located in a topologically important position in the PPI
network, while the tissue-specific proteins, such as the
CRMP complex, are more peripheral.

Conclusion
In this paper, we have shown how a cell organizes its
house-keeping and tissue-specific tools in a PPI network.
Both house-keeping and tissue-specific functions are very
broad functional categories and structural patterns in net-
work organization have been observed. In general, our
findings suggest that house-keeping genes are topologi-
cally important in a PPI network, whereas tissue-specific
genes are not, and that both sets of protein products
exhibit a tendency, although to different extents, to
homophylic connectivity. Our findings led us to hypoth-
esize that house-keeping genes tend to code for proteins
that form the core of a PPI network, while tissue-specific
genes are responsible for those at more peripheral posi-
Page 13 of 17
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tions of the network. The next challenge is to propose and
explain the evolutionary mechanism that gave rise to the
observed network organization of cellular tools.

Methods
Human Gene Expression Index
The Human Gene Expression Index (HuGE Index) [4] is a
publicly available resource http://www.hugeindex.org
which serves as a compendium of gene expression in nor-
mal human tissues. It contains gene expression patterns
for 19 different tissue types analyzed using oligonucle-
otide microarrays. Each of these 19 tissue types was
derived from a different human organ. For simplicity, we
identify here each tissue-type by the name of the organ
which the tissue was a part of. Genes that were expressed
in at least one sample of each tissue type are defined as
house-keeping genes; and a two-tailed t-test at the 99.99%
confidence level was used to select tissue-specific genes
after comparing gene expression profiles across different
tissue types [4]. The HuGE Index database provides a list
of expressed genes and a list of tissue-specific genes for
each tissue type, together with a list of house-keeping
genes expressed in these 19 tissues types. This gene list
constitutes one of the two datasets used in this study and
is referred to as the HuGE Index dataset.

Expressed Sequence Tag and Serial Analysis of Gene 
Expression
In contrast to the microarray-based methodology used in
the HuGE Index database, gene expression can also be
analyzed using the tag-based techniques. Gene expression
can be quantified using the Expressed Sequence Tag (EST)
[7], and Pao et al. [9] have used the AC-test [43] to detect
tissue-specific genes from EST gene expression profiles for
a variety of tissue types. Gene expression can also be quan-
tified using Serial Analysis of Gene Expression (SAGE) [8];
and, more recently, following the method of Pao et al. [9],
Wang and Hwang used the AC-test to identify tissue-spe-
cific genes from SAGE profiles for several tissue types (our
unpublished data). For each of the tissue types examined,
we compiled a list of genes expressed in both gene expres-
sion platforms and refer to this as the EST-SAGE dataset.
This dataset contains 20 different tissue types, and we
identify each tissue-type by the name of the organ from
which the tissue was derived. For this dataset, a gene is
identified as a house-keeping gene if it is expressed in
every tissue type and as a tissue-specific gene if, and only
if, it is identified as a tissue-specific gene in both EST and
SAGE platforms with a p value cut-off threshold of 10-6

[9].

Protein-protein interaction networks
The Human Protein Reference Database (HPRD) [27]
contains information on pair-wise protein-protein physi-
cal interactions. We mapped genes from the HuGE Index

and EST-SAGE datasets to their protein products in the
HPRD. Genes for which the protein products could not be
found in the HPRD or did not have interacting partners
were excluded from analysis. Note that such exclusions
resulted in different network sizes and in variation in the
proportion of house-keeping gene-encoded and tissue-
specific gene-encoded proteins in different tissue types.
Furthermore, such a filtering process could also omit
house-keeping genes whose protein products have no
interaction partners in the HPRD for some tissue types;
this then in turn resulted in unequal numbers of house-
keeping genes among different tissue types in our study
here. For the HuGE Index dataset, this mapping procedure
created 19 PPI networks, each for a particular tissue type.
Similarly, for the EST-SAGE dataset, the 20 different tissue
types resulted in 20 different PPI networks. Here, we
define clearly that a node in a PPI network represents a
protein, and we call nodes representing proteins encoded
by house-keeping genes house-keeping nodes and those
representing proteins encoded by tissue-specific genes tis-
sue-specific nodes. In all the PPI networks constructed, we
ignored link directions between nodes. Because of the dif-
ferent numbers of genes in the different tissue types, the
PPI networks constructed in this study were all of different
sizes.

Network fragmentation
We define a network fragment as a portion or a compo-
nent of a network that consists of nodes that are only
reachable from nodes in the same fragment. We further
define the size of a network fragment as the number of
nodes it contains. For every PPI network constructed in
this study, we determined the number of network frag-
ments and their respective sizes in order to gain insights
into the connectivity of a PPI network.

Percentage of overlap between PPI networks derived from 
the HuGE and EST-SAGE datasets
The HuGE and EST-SAGE datasets have some tissue types
in common. For each of those common tissue types (or
PPI networks), we determined the number of genes (or
nodes) and the number of house-keeping or tissue-spe-
cific genes (or nodes) that appeared in both datasets. For
each common tissue type, we then determined the pro-
portion of common nodes in the total number of nodes
in a PPI network for a given dataset, as well as the propor-
tion of common house-keeping and tissue-specific nodes
in the total number of nodes in the same database. These
proportions can be regarded as the percentage of overlap
between the HuGE and EST-SAGE datasets for a common
tissue type.

Measures of topological importance
The topological importance of a node in a network meas-
ures how prominent this particular node is to others in the
Page 14 of 17
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same network. It is also a measure of how central the posi-
tion of a node is in relation to others in the same network.
A node might be topologically important simply because
it has many connecting neighbors or occupies a network
position that is close to all other nodes. There exist several
network indices that can quantify different aspects of top-
ological importance for all nodes in a network. Here, we
used three well-known indices that measure the topologi-
cal importance or centrality of nodes in a network [44,45],
and calculated them by using UCINET [46]. The degree
centrality (Di) is simply the number of direct neighbors of
a given node i and is a local measure of positional impor-
tance. A node with a high degree centrality is important,
since it has many direct interacting partners. The between-
ness centrality of a node i (Bi) measures how frequently
node i is incident to all shortest paths in a network [44]:

where i ≠ j and k; N is the number of nodes in the network;
gjk is the number of shortest paths between nodes j and k,
and gjk(i) is the number of these shortest paths to which
node i is incident. A shortest path between a node pair is
a path with the minimum number of links when one trav-
els from one node to the other. In the above formulation
gjk/gjk(i) is the probability of node i being on the shortest
paths between connected node pair j and k (i.e. j and k can
reach each other); and betweenness centrality of a node i
is therefore the sum of those probabilities with jk covering
all connected node pairs excluding node i itself (hence the
restriction i ≠ j and k) and a node pair can only be counted
once (since node pairs jk and kj are the same, the restric-
tion j <k in the summation term is necessary). Note that
only connected node pairs with existing or finite shortest
paths are considered in the calculation of betweenness
centrality, therefore betweenness centrality can be com-
puted even for fragmented networks [44]. The between-
ness centrality is a non-local measure of topological
importance. A node with a high betweenness centrality is
important, as it participates in, or mediates, many indirect
interactions between any other two nodes. Lastly, the
closeness centrality of a node i (Ci) is a distance-based
measure [44]:

where dij is the length of the shortest path (distance)
between nodes i and j, and N is the number of nodes in
the network. Closeness centrality of a node i is simply the
inverse of the sum of the lengths of shortest paths dij
between i and all other nodes in the same network (i.e. let

j be a node other than i itself, then j covers all nodes from
1 to N excluding i = j when calculating Ci). Closeness cen-
trality simply measures how close a node is to all others in
the same network and is also a non-local measure of posi-
tional importance, since all nodes in the network are
taken into account when evaluating a node's closeness
centrality. If a node is very close to other nodes in the
same network, then its closeness centrality will be large. A
node with a large closeness centrality is important, as it
can affect others rapidly and can also be rapidly affected
by others. Another network index closely related to close-
ness centrality is the farness of a node, which is simply the
inverse of its closeness centrality (i.e. the sum of the
lengths of shortest paths between a given node and all
others in the same network). Thus, both closeness central-
ity and farness of a node contain the same information
about its position in a network. Unlike betweenness cen-
trality, the calculation of closeness centrality (or farness)
of a node requires it being reachable from all others in the
same network; in other words the network must not be
fragmented and all shortest distance must be finite. Fortu-
nately such a shortcoming can be remedied by substitut-
ing the infinite distance with the theoretical maximum
distance N during the calculation of closeness centrality or
farness of a node by using UCINET [46].

Testing the topological importance of house-keeping and 
tissue-specific nodes
We used the above network nodal indices to measure the
topological importance of individual nodes for each PPI
network in this study, therefore a node's importance can
be quantified from three different perspectives. For each
of these topological measures, we carried out the follow-
ing test to investigate whether house-keeping nodes occu-
pied important network positions in a PPI network. First,
we calculated, for each PPI network, the observed mean
topological importance of the house-keeping nodes.
Assuming that there are NHK house-keeping nodes in a PPI
network, we then randomly sampled NHK nodes to be our
new house-keeping nodes and determined their mean
topological importance. Repeating this sampling process
1000 times generated a model distribution of means
against which the significance of our observed means
could be tested. The expected value of the mean topolog-
ical importance of house-keeping nodes is the average of
this model distribution. The 95% confidence interval of
the mean topological importance of house-keeping nodes
can also be defined from the model distribution, as 2.5%
of the total number of simulations produce means greater
than the upper limit of the interval and 2.5% means lower
than the lower limit. For the degree, betweenness and
closeness centralities, if the house-keeping nodes do
indeed on average occupy important positions in a PPI
network, then the means of their degree, betweenness and
closeness centralities should be greater than the upper
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bounds of the corresponding 95% confidence interval.
The topological importance of tissue-specific nodes was
tested using the same methodology.

Homophylic connectivity of house-keeping nodes and 
tissue-specific nodes
We defined the homophylic connectivity of house-keep-
ing nodes as the tendency for house-keeping nodes to
connect to house-keeping nodes in a PPI network. For
each PPI network, we determined, for each house-keeping
node i, the number of its direct neighbors (i.e. Di, the
degree centrality) and counted how many of these were
house-keeping nodes (DHK, i); we then defined PHK, i as the
proportion of these direct neighbors that were house-
keeping nodes:

PHK, i = DHK, i/(Di).

Likewise, the homophylic connectivity of tissue-specific
nodes is the tendency for them to connect among them-
selves in a PPI network. Similarly, for a tissue-specific
node i, the proportion of its direct neighbors that are tis-
sue-specific nodes is:

PTS, i = DTS, i/(Di),

where (DTS, i) is the number of its tissue-specific neigh-
bors.

Testing the homophylic connectivity of house-keeping 
nodes and tissue-specific nodes
To test the significance of the homophylic connectivity of
house-keeping nodes in a given PPI network, we first cal-
culated the observed mean PHK (we have dropped the sub-
script i for simplicity), then we constructed a random
network of the same size and degree distribution as the
original PPI network. Such a randomization process
results in each node having the same number of interact-
ing neighbors as the original PPI network, and the only
change is the identity of its direct neighbors. We then cal-
culated PHK for all house-keeping nodes and determined
the mean PHK. Generating 1000 random networks gave a
model distribution of the mean PHK. The expected value of
the mean PHK is the average of this model distribution,
and its 95% confidence interval can be determined in the
same way as that for the mean topological importance
mentioned above. If the house-keeping nodes show a ten-
dency towards homophylic connectivity, then the
observed mean PHK should be greater than the upper limit
of the 95% confidence interval of the model mean. The
significance of the homophylic connectivity for tissue-
specific nodes in a given PPI network was also tested using
this method.
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