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Abstract

Background: Nitrate-induced reprogramming of the transcriptome has recently been shown to
be highly context dependent. Herein, a systems biology approach was developed to identify the
components and role of cross-talk between nitrate and hormone signals, likely to be involved in
the conditional response of NO;- signaling.

Results: Biclustering was used to identify a set of genes that are N-responsive across a range of
Nitrogen (N)-treatment backgrounds (i.e. nitrogen treatments under different growth conditions)
using a meta-dataset of 76 Affymetrix ATHI| chips from 5 different laboratories. Twenty-one
biclusters were found to be N-responsive across subsets of this meta-dataset. N-bicluster 9 (126
genes) was selected for further analysis, as it was shown to be reproducibly responsive to NO;-as
a signal, across a wide-variety of background conditions and datasets. N-bicluster 9 genes were then
used as "seed" to identify putative cross-talk mechanisms between nitrate and hormone signaling.
For this, the 126 nitrate-regulated genes in N-bicluster 9 were biclustered over a meta-dataset of
278 ATHI chips spanning a variety of hormone treatments. This analysis divided the bicluster 9
genes into two classes: i) genes controlled by NOj- only vs. ii) genes controlled by both NO;" and
hormones. The genes in the latter group showed a NOj response that is significantly enhanced,
compared to the former. In silico analysis identified two Cis-Regulatory Elements candidates (CRE)
(E2F, HSE) potentially involved the interplay between NO;"and hormonal signals.

Conclusion: This systems analysis enabled us to derive a hypothesis in which hormone signals are
proposed to enhance the nitrate response, providing a potential mechanistic explanation for the
link between nitrate signaling and the control of plant development.

Background and yield [1]. Thus, nitrate signaling constitutes a key
Higher plants acquire nitrogen mainly as NO;~. The soil ~ point of plant adaptation to environment. This is why
concentration of this mineral ion can fluctuate dramati-  nitrate signaling has so far been intensively studied by

cally in the rhizosphere, often resulting in limited growth  transcriptomic assays, involving more than 75 ATH1
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chips in various background conditions and treatments.
Taken together these transcriptomic data showed that
NO;-responses are very context dependent [2,3], suggest-
ing that evolution probably built very adaptable and
robust networks involved in the integration of NO;  with
other signals including light, sugar, and hormones. For
instance, as sessile organisms, plants have developed a
strong capacity to modulate growth according to nutrient
availability. On a molecular scale, this coordination
between nutrition and growth can be mediated by the co-
control of metabolism and hormonal signaling. For
instance, a recent work reports that molecular reprogram-
ming induced by nutritional starvation treatments signifi-
cantly involve hormone regulated genes [4]. Moreover, it
has also been shown that such cross-controls exist
between NO; and: cytokinin (for review see [5]), auxin
[2,6,7], and ABA [8]. To date, molecular players underly-
ing those events are still under investigation. One striking
example of such coordination at a molecular level is pre-
sented by the role of the iso-pentenyl-transferase 3 (IPT3)
involved in the critical step of cytokinin biosynthesis.
Transcription of the NO; induced gene IPT3 has been
shown to be involved in the production of NO;- induced
cytokinins, hypothesized to coordinate shoot growth in
response to NO; provision [9-14].

Root architecture is also under the coordinated control of
nutrient availability and hormone signaling [15]. For
instance, NO; controls root branching under various
pathways (for review see [16,17]). Hormones have been
shown to play important roles in the adaptation of root
development to NO;- availability. Indeed, NO;- triggers
root colonization in NOj-rich patch of the soil. Zhang et
al [18] have shown that this adaptation could involve
AXR4, a gene initially demonstrated to be involved in
auxin signaling. Later, AXR4 was shown to be involved in
targeting the auxin influx transporter AUX1 to the plasma
membrane [19]. Thus AXR4 may provide a molecular link
between the NOj;-signal and auxin signaling through reg-
ulating auxin transport. Furthermore, the dual affinity
(high and low affinity NO; uptake) NOj;- transporter
NRT1.1/CHL1, hypothesized to be a part of the NO;-sens-
ing system [20-23], was previously shown to be regulated
by auxin [7]. This evidence uncovers one facet of how the
NOj sensing system is likely tuned by a hormonal/growth
signal.

The complexity of the NO; effect on root development is
further complicated by the fact that high NO;- concentra-
tions (50 mM) trigger an almost complete repression of
the lateral root development (LRD). Abscisic acid (ABA)
seems to be required for this effect, since the NO;-inhibi-
tory effect on LRD is reduced by mutating either the ABI4
or ABI5 genes [8].

http://www.biomedcentral.com/1752-0509/3/59

Despite these striking examples, very little is known con-
cerning the transcriptional gene regulatory networks
involved in NOj  /hormonal cross-talk. Here, as a step
towards understanding such transcriptional co-control,
we present a computational biology approach (Figure 1)
designed to discover genes that are regulated in response
to nitrate treatments across a range of background condi-
tions. Further analysis identified a refined subset of gene
clusters to be under the control of both NO;-and hor-
mone signaling. We found that genes controlled both by
hormones and NO;- are more responsive to NO5" and/or
have a significantly higher level of baseline expression,
than genes controlled by NO;-alone. This analysis lead us
to generate a new hypothesis that hormone signals play a
role in enhancing the effects of the NO;-signal. Moreover,
we identified cis-regulatory elements (CREs) in the pro-
moters of these genes that are candidates for enhancing
the nitrate-regulation of gene expression.

Results

Bicluster analysis identifies a nitrate-responsive
"biomodule"

In a previous study, meta-analysis of transcriptomes of
NOj; treated plants revealed that gene responses to nitro-
gen were very context-dependent, and only a very small
number of core genes are regulated by NO;- in a context-
independent manner [2]. The underlying rules of such
coordination/context dependence between signals had
recently been proposed at a genome wide level concerning
the interaction of carbon, nitrate, and light [3]. Moreover,
in light of the context dependent nature of the N-
response, mono-dimension clustering algorithms will
miss genes that are co-regulated by N across a subset of
treatment conditions. By contrast, an approach also
known for decades [24] called biclustering can be used to
identify nitrate responsive genes that are co-regulated, as a
group, in response to a subset of nitrogen treatments across
a matrix of meta-data (Figure 1) [25], likely susceptible to
tackle the context dependence response to NOj;-. Thus,
detected biclusters are subsets of the studied genes exhib-
iting consistent patterns over a subset of N-treatment con-
ditions. Such sets of genes would not be found using
mono-dimension clustering approaches, which require
that the genes in the cluster behave the same across all
treatments. We used this biclustering method to analyze
five microarray data sets from N-treatments of Arabidop-
sis generated by three different laboratory groups: the
Crawford lab [26,27] (16 Affymetrix chips including con-
trols), the Stitt lab [28] (14 Affymetrix chips including
controls) and the Coruzzi lab [29,30] (46 Affymetrix
chips including controls). This combined meta-data set
resulting from N-treatments corresponded to a total of 76
microarray chips with controls [For details see Additional
File 1].
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Schematic representation of the in silico strategy used to decipher a N/hormone crosstalk module. (A) The
strategy was to discover via sequential biclustering filtering stages, co-regulated genes in response to: i) N treatments, and also
if) hormone treatments. (B) This delimitation of gene groups (whole genome, NO;--regulated, Bicluster9 NO;-regulated and
NO;/hormone co-regulated) and the comparison of their behavior allowed us to hypothesize how NO;-and hormonal signal-
ing pathways are connected in gene networks.
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To identify N-regulated genes in this meta-dataset, we first
used a filtering step that consisted of selecting genes that
are significantly regulated by at least one N-treatment
across the various data sets (for filtering conditions see
Methods, Figure 1). We found 3,782 such genes under the
control of nitrogen in at least one of the considered N
treatment conditions. This gene list was then used to gen-
erate 21 biclusters (containing 1,124 genes) using the
SAMBA algorithm as implemented in the Click and
Expander software package [31,32] (Figure 2). In order to
identify whether the N-regulated biclusters had biological
significance, we used the BioMaps analytical tool [30] to
determine significantly over-represented functional cate-
gories using the MIPS annotation [33] in each of the 21 N-
biclusters generated [Additional File 1]. Significant over-
representation was determined based on a p-value that
passed a 5% False Discovery Rate (FDR) cutoff (see Meth-
ods). Of the 21 N-responsive biclusters, we selected the
bicluster # 9 (N-bicluster 9) for further investigation,
based on the following criteria: i) genes in bicluster 9
show a reproducible response to N-treatment across sev-
eral microarray datasets from several different studies
(Figure 2), ii) the annotation of genes in N-bicluster 9 sug-
gests that the genes in this bicluster have an important
biological function since it comprises genes from all the
known steps of N-uptake and N-assimilation (Table 1)
[N-bicluster 9 gene list is provided in Additional file 1],
and iii) N-bicluster 9 contained significant overrepresen-
tation of MIPS functional categories spanning Amino Acid
Metabolism, Carbohydrate Metabolism, and Transported
Compounds, suggesting that the underlying regulatory
mechanism serves to coordinate systems-wide responses
to N (see Table 1). Here, it is noteworthy that this bicluster
gathers relevant gene functions. As a matter of fact this
coordination of a group of gene involved in the same
functions can be designated as a "biomodule" [34-36].
Thus in this context, we used this terminology in the rest
of our work.

To determine the connectivity between the genes in N-
bicluster 9, we queried the Arabidopsis multinetwork as
described in [30] using the Virtual Plant software package
http://www.virtualplant.org. The Arabidopsis multinet-
work is a model that integrates information for gene inter-
actions based on a variety of data including: Arabidopsis
metabolic pathways, known protein:protein, pro-
tein:DNA, miRNA:RNA interactions, and predicted pro-
tein:protein and protein:DNA interactions [30]. From the
network analysis of 126 genes in N-bicluster 9, a network
comprised of information from metabolic and pro-
tein:protein connections included 179 nodes (52 genes
and 127 metabolites) linked by 261 functional relation-
ships (Figure 3). To test whether this level of connectivity
was greater than expected by chance, we computed a p-
value by comparing this network to networks generated

http://www.biomedcentral.com/1752-0509/3/59

from a collection of genes of the same size, randomly
sampled from the 22,746 genes present on the full
genome chip (p-value < 0.0001), computed as described
in [37]. Thus, this analysis confirms that the 126 genes in
N-bicluster 9 display a significant level of connectivity,
providing added support that the biclustering approach
has identified a biologically functional regulatory module
or "biomodule" [34-36].

The genes in the N-bicluster 9 "biomodule" are induced by
nitrate as a signal

Here, we asked which N-signals were involved in mediat-
ing the regulation of genes in N-the bicluster 9 biomod-
ule. Nitrogen-responsive genes are known to be regulated
by various endogenous and external nitrogen signals. For
example, nitrate itself as been identified as a signal that
regulates a large number of genes genome-wide [27]. In
specific examples, nitrate can act as an inducer and a
repressor of NRT2.1, which codes for a major component
of the nitrate high affinity transport system [21,22,38].
Moreover, N-reduced metabolites such as NH,*, and
organic forms of nitrogen (glutamine or glutamate) have
been shown to also control gene expression, again at a
genome-wide level [39,40], which was also demonstrated
in specific examples [38,41]. Because NO; is quickly
assimilated into N-reduced and organic-N compounds,
we tried to elucidate which form of nitrogen regulates the
expression of genes in N-bicluster 9. For this, we mined
Affymetrix microarray data obtained from nitrate treat-
ments of a nitrate-reductase T-DNA double mutant
knockout from Wang et al [27], which was not included
in the biclustering data set. This microarray data set was
derived from wild-type (WT) and nitrate reductase (NR)
null mutant Arabidopsis plants treated with KNO; for 2 hrs.
The NR double mutant is a T-DNA knockout mutant that
is deficient in both structural genes encoding nitrate
reductase (nial and nia2) and is therefore unable to
reduce nitrate to downstream forms of nitrogen [27].
Thus, any genes that respond to nitrate in wild type and
the NR double mutant are likely to be controlled by
nitrate itself. We found that genes in the N-bicluster 9 bio-
module are regulated in response to nitrate, since their
nitrate responsiveness is preserved in the nial/nia2 NR
double mutant at levels identical to wild-type (Figure 4).

Identification of nitrate/hormone responsive biclusters

As stated above, the N-regulation of the bicluster 9 "bio-
module" appears to have biological relevance as it con-
tains genes covering all steps in the N-uptake/assimilation
pathway, and genes integrating the regulation of genes in
N-metabolism with other related metabolic processes
including C-metabolism and Energy. As many of the
genes in these pathways have been shown to be under
control of other hormones [7,42,43], we hypothesized
that hormonal control might play a role in the regulation
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Figure 2

Identification of 21 N-responsive biclusters: Nitrogen-responsive genes sets identified across subsets of N-
microarray meta-data. Heatmap of the responsive conditions of N-biclusters. The colors in the heatmap represent the kind
of regulation (induced/depressed) and the degree of reproducibility for each data set captured in the N-biclusters. NI to N5
represent the data sets from 3 different labs. N1:(Wang et al,, 2003); N2: (Wang et al., 2004); N3: (Scheible et al., 2004); N4:
(Palenchar et al., 2004); N5 (Gutierrez et al., 2007). The details of the experimental conditions of these data set is described in
Additional File I. N-bicluster 9 had the greatest degree of reproducibility over the greatest number of experiments.
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Table I: Over-represented functional categories in N-bicluster 9
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Term Observed Frequency % Expected Frequency % P-value
ENERGY 14.30% 1.50% 1.99E-11
pentose-phosphate pathway 4.80% 0.10% 3.13E-08
metabolism of energy reserves (e.g. glycogen, trehalose) 3.20% 0.10% 0.00073
glycolysis and gluconeogenesis 5.60% 0.60% 0.00027
METABOLISM 21.40% 6.50% 9.80E-07
C-compound and carbohydrate metabolism 13.50% 2.80% 2.62E-06
amino acid metabolism 6.30% 0.90% 0.00059
assimilation of ammonia, metabolism of the glutamate group 4.00% 0.20% 5.35E-05
nitrogen and sulfur metabolism 4.80% 0.30% 4.35E-05
TRANSPORTED COMPOUNDS (SUBSTRATES) 5.60% 1.10% 0.0161

This table indicates the functional terms that are over-represented in N-bicluster 9 vs. the whole genome using BioMaps with a 5% FDR cutoff to
determine the statistical significance of p-values (see Methods for approach). The frequency of these terms in the functional annotation of the genes

from N-bicluster and the p-value generated by BioMaps are indicated.

of the genes in the N-bicluster 9 biomodule. To test this
hypothesis, and to uncover the possible mechanistic basis
for nitrate/hormome signaling interactions, we performed
an in silico analysis of N-bicluster 9 gene regulation in
response to hormones. For this analysis, we constructed a
meta-data matrix of microarray experiments from the
NASC repository (Nottingham Arabidospsis Stock Center,
[44]) covering all available hormone and hormone inhib-
itor treatment experiments (including auxin, abscisic acid,
ethylene, cytokinin, brassinosteroids, giberellic acid and
jasmonic acid). We included all data sets having replicates
and a relative control (see Methods). The data were con-
verted to a log base 2 ratio of treatment/control, and
biclustering was used to identify sets of genes co-regulated
under various hormone treatments. Biclustering of the
126 genes in the N-bicluster 9 biomodule over the hor-
mone meta-data set generated 22 hormone biclusters
referred to as N/H-biclusters (Nitrogen/Hormone respon-
sive). These N/H biclusters encompass 77 genes contained
within N-bicluster 9 [see Additional File 1 for a complete
list of N/H-biclusters]. Each of these N/H biclusters has an
average number of 8 genes with extensive overlap between
several N/H biclusters. These results show that 77 of the
genes (out of 126) in N-bicluster 9 are reproducibly regu-
lated by both nitrate and hormone treatments. Further the
fact that these genes overlapped between N/H biclusters
suggested that they may be responsive to several different
types of hormone treatments. The 22 N/H-biclusters were
classified according to filtering criteria described in Meth-
ods section (Table 2). Out of the 22 N/H-biclusters, five
biclusters which showed the most extensive and reproduc-
ible responses to hormones were selected for further anal-
ysis (Figure 5). The metabolic and functionally interacting
genes contained in these N/Hormone biclusters are high-
lighted in the 77 N/H responsive genes in the network
view of the N-bicluster 9, as depicted in Figure 3.

The analysis of the N/Hormone biclusters (biclusters 1, 6,
16, 19, 20) revealed that cytokinin and ABA are the main

hormone treatments under which the NOj; regulated
genes from N-bicluster 9 are co-regulated (Figure 3 and 5).
N/H-biclusters 1 and 19 are both mainly driven by ABA
treatments, although their respective regulation is in
opposing directions (induced vs. repressed). N/H-biclus-
ters 6, 16, and 20 are comprised of genes almost exclu-
sively regulated in response to cytokinin treatment (Figure
5). Together, our results suggest that the coordinated reg-
ulation of these genes to nitrate as well as cytokinin or
ABA may be part of a regulatory network that mediates the
responsiveness of these genes.

Functional interactions within the nitrate/lhormone
biclusters

As all N/H-biclusters were derived from the 126 genes
contained in N-bicluster 9, we used a modified version of
BioMaps analysis to determine which if any of the five
selected N/H-biclusters were enriched for specific MIPS
functional categories (see Methods). This analysis demon-
strated that N/H-biclusters 1, 16 and 19 had at least one
over-represented MIPS category, when compared to N-
bicluster 9 [see Additional File 1]. The most significantly
over-represented categories from these N/H-biclusters are
genes involved in metabolic pathways, suggesting that
this NO;-/Hormone "crosstalk" may be directed towards
the coordinate regulation of genes in interconnected met-
abolic pathways (see Network View of N-bicluster 9). Fur-
ther, genes from N/H-bicluster 1 have several additional
categories over-represented including Energy, Pentose
phosphate pathway and Photosynthesis.

Elucidation of a hormone "enhancement" of gene nitrate
responsiveness

With the aim of elucidating the mechanisms which medi-
ate differences in regulation between genes that are con-
trolled by NOj- only vs. genes that are co-regulated by
NO;- and hormones, we analyzed the expression of the
genes N-bicluster 9 and N/H bicluster in the NR double
mutant data set [27]. This analysis uncovered a strong and
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N-bicluster 9 gene network: A highly connected network of biologically related gene functions. The metabolic
layer of information about gene connectivity in the Arabidopsis Multinetwork [30] was queried with the 126 genes belonging to
the N-bicluster 9. Nodes represent genes (colored squares) and metabolites (yellow circles) connected by edges (metabolic
interactions are colored in grey, protein:protein interactions are colored in green). Genes belonging to: i) N-bicluster NO;-
exclusive genes are colored in blue, ii) Significant N/H-biclusters are colored in red, iiij) Other N/H-bicluster are colored in

grey.
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The 126 genes in N-bicluster 9 are NO;- regulated.
Average raw MASS processed signal values for the 126 genes
from N-bicluster 9 in the nitrate reductase double mutant
data [27]. Values in these plots indicate the average expres-
sion for each condition taken from the nitrate reductase
double mutant data set where plants were treated with
KNO; or an equal concentration of KCI (Control).

unexpected difference between: a) the NO; responsive-
ness of genes in all of the five N/H-biclusters vs. b) genes
from N-bicluster 9 that did not appear in any hormone
bicluster (termed "N-bicluster 9 exclusive") (Figure 6) (see
also informatic analysis scheme Figure 1B). Based on the
analysis described below, genes belonging to N/H-biclus-
ters 1, 16, 19 and 20 are significantly more NO; respon-
sive as measured by the amplitude of expression in genes
from N-bicluster 9 that do not fall into any N/H-bicluster
(N-bicluster 9 exclusive genes) (see results of ANOVA,
Table 2). Further, we validated that the enhanced nitrate
responsiveness for the genes belonging to the N/H biclus-
ters, is exhibited not only in the NR double mutant data
set, but also in the entire N-treatment meta-data set used
to build the N-biclusters [N1 to N5, see Additional File 1]
(data not shown).

http://www.biomedcentral.com/1752-0509/3/59

To quantify and statistically validate the regulation and
nitrate-responsiveness of the genes in the N/H biclusters
in the NR double mutant data set (Figure 6), we modeled
the expression of genes from these groups using the Im,
summary.lm and ANOVA functions in [R] [45]. In this
analysis the gene-expression response variable was mod-
eled as a function of 4 explanatory-variable factors: i)
Treatment, with 2 levels (nitrate treatment and control); ii)
Tissue, with 2 levels (roots and shoots); iii) Genotype, with
2 levels (mutant (NR double mutant) and wild-type); iv)
N/H-bicluster, with 6 levels (N/H bicluster 1, 6, 16, 19, 20
and N-bicluster 9 exclusive). To avoid any ambiguity
between factor levels, overlapping genes from H-biclus-
ters were removed from the analysis. The response varia-
ble (signal values) were taken from the normalized MAS5
data from the Wang et al, dataset [27] (These data were
used to build Figure 6). In our ANOVA analysis, we started
with an initial model that included main effects for each
of the factors and an interaction term for the Treatment
and N/H-bicluster factors. We simplified the model sys-
tematically in a step-wise procedure as outlined in Craw-
ley [46] and fully described in Additional File 2. Briefly,
our results from ANOVA analysis showed that the main
effects of Tissue and Genotype factors were not significant
(p-values of 0.13 and 0.94, respectively). Further it
revealed that the factor levels of N/H-biclusters were not all
significantly different from each other. Specifically NH-
bicluster 16 19, and 20, in one hand, and 6 and N-biclus-
ter 9 exclusive, in the other hand, were not significantly
different from each other so that these levels could be
combined into a single compound level. The final result
of our simplification procedure was a model with main
effects of Treatment (with 2 levels), N/H bicluster (with 3
compound levels), and an interaction term between N/H
bicluster and Treatment. The R code and output for this
model simplification are fully available in Additional File
2.

Using this final model, we were able to show that the N/
H bicluster 1 level and the compound level for N/H
biclusters 16, 19 and 20 are both significantly different
from the compound level of N/H bicluster 6 and N-biclus-
ter 9 exclusive in both having a stronger baseline response
and a stronger response to nitrate (see Figure 6). Taken
together our combined bicluster analysis data from N-
treatment and hormone-treatment meta-datasets, leads us
to propose a new hypothesis that hormone signaling (spe-
cifically ABA, and/or cytokinins which are represented in
N/H biclusters 1, 16, 19 and 20) may act as an enhancer
of NO; signaling/induction.
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Table 2: NO;/Hormone Response Interaction.

http://www.biomedcentral.com/1752-0509/3/59

Description of Comparison Coefficient Estimate P-value
N/H-bicluster | vs. Exclusive +N/H-bicluster 6 1721.4 4.08E-05
N/H-Bicluster 16, 19, 20 vs. Exclusive + N/H-bicluster 6 761.8 0.0099

Treated vs. Control 1290.1 5.82E-07
N/H-bicluster: Treated 2190.2 0.00022
N/H-Bicluster 16, 19, 20: Treated 1011.9 0.01539

Analysis of variance that examines the response to nitrate treatment of N-bicluster 9 genes that fell into various hormone biclusters or failed to
appear in a hormone bicluster. Coefficients and p-values in the simplest model that retained explanatory power. The gene-expression response
variable is determined by main effects of Treatment (with 2 levels: control and treated), N/H bicluster (with 3 compound levels), and an interaction
term between N/H bicluster and Treatment. In this model, N-bicluster 9 exclusive genes and N/H bicluster 6 genes form an aggregate "control" group
with no significant difference between them. A second, significantly different, aggregate group is comprised of genes in N/H-biclusters 16,19 and 20.
A third group includes genes from N/H-bicluster | only. The control level for the Treatment factor is KCI. In this table each main-effect coefficient
represents a difference in expression from the group comprised of N-bicluster 9 exclusive and N/H bicluster 6 genes under KCI treatment. The
interaction term is over and above the main effects. For example, the difference between the mean expression of N/H-bicluster | genes under
nitrate treatment and the mean expression of the control-group genes under control treatment (KCI) is obtained by summing: the main effect of N/
H-bicluster | (1721.4); the main effect of (nitrate) Treated (761.8); and the term representing the interaction between N/H-bicluster | and Treated

(2190.2).

Identification of candidate cis-binding elements involved in
the hormonal enhancing effect of the nitrate response and
in silico validation

In order to determine candidate cis-regulatory elements
(CREs) involved in the proposed 'enhancing' effect of hor-
mones on nitrate signaling, we first scanned the ~3,000
bp parsed upstream promoter sequence of the genes in N-
bicluster 9 for known transcription factor binding sites
using a DNA pattern search tool [47]. We next determined
the over-representation of these CREs in the 126 N-biclus-
ter 9 genes using the Fisher Exact Test (see Methods).
Based on this analysis, 23 CRE elements were found to be
significantly over-represented in N-bicluster 9, compared
to the genome-wide frequency of these elements. These
CREs could potentially be involved in nitrate responses,
or in a yet to be defined signal (or complex of signals)
controlling this gene cluster as a whole (Table 3). Using a
similar approach we tested for a significant difference in
the CRE frequency for these CREs between two groups:
one containing the N/H bicluster 1, 16, 19 and 20 genes
and the other containing the N-bicluster 9 exclusive
(background). N/H bicluster 6 was removed from this and
all subsequent analysis as it was shown to not be signifi-
cant in the previous ANOVA and contained very few genes
(2 genes) when overlapping genes were removed. This
analysis revealed that 2 CREs, HSE element [48] and E2F
element [49]. These two CRE elements are significantly
over-represented in the N/H biclusters (See Table 4) ana-
lyzed as a group compared to their frequency within the
subset of N-bicluster 9 genes not present in any of the N/
H-biclusters (termed NOj exclusive). The specific over-
representation of these CREs in the N/H biclusters impli-
cates them as potential candidates to be involved in the
cross-talk between hormone and NOj;- response. The
known physiological roles of the E2F and HSE CREs are
discussed below.

Discussion

Biclustering identifies a "biomodule" of biologically
related nitrate-regulated genes involved in metabolism and
signal transduction

In a previous meta-analysis of nitrate-regulated genes, we
demonstrated that a very small number of genes are
nitrate regulated across a variety of background condi-
tions, while the vast number of nitrate-regulated genes are
regulated in a context-dependant manner [2]. This obser-
vation suggests that the NO;- signaling pathway is also
under the influence of other (as yet) unidentified con-
trols. Taking this observation as a starting point, we
decided to use biclustering technique: an approach that
clusters both genes and treatments, as a tool to discover
genes that are co-regulated by nitrate across a wide variety
of background conditions corresponding to a subset of
the meta-data analysis. This biclustering approach
allowed us to uncover a "biomodule" of 126 NO;, regu-
lated genes that are related in expression pattern and in
biological function (N-bicluster 9, Figures 2 and 3, Addi-
tional file 1, table s2). Indeed, as a group, the genes in N-
bicluster 9 comprise a set of 52 metabolic genes including,
for example, all steps in the pathway of nitrate uptake &
reduction (NRT1.1, NRT2.1, NRT3.1, NIA1, NIA2, NIR),
as well as genes involved in N-assimilation into organic
form (GDH1, ASN2 and GLT1). In addition, the N-biclus-
ter 9 also contains significant overrepresentation of genes
involved in Energy, Nitrogen and Carbon metabolism
(Table 2). This strong functional coherence of the genes in
N-bicluster 9 is illustrated by the interactions between 52
genes in the metabolic/protein interactions shown in the
subnetwork (Figure 3).

It is noteworthy that the concept of the 126 genes in
bicluster 9 constituting a "biomodule" in our study is
comparable to ideas that have been already developed by
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Figure 5 (see previous page)

Hormone responsiveness of the five selected N/H-biclusters from N-bicluster 9. Centroid plots of the expression
patterns for genes across the 5 significant (> 50% reproducibility; > 1.5 fold change) N/H-biclusters. Black bars below the plots
indicate replicate experiments and grey bars indicate singleton experiments. N/H-biclusters | and 19 show a strong response
to ABA treatment during seed imbibition (induction and repression respectively), N/H-biclusters 16 and 6 show an induction
to cytokinin in roots and shoots of mutant and wildtype plants respectively. N/H-bicluster 20 shows a strong depression due to
cytokinin in root tissues of mutant and wild type plants. Treatments are taken from the NASC data set: |- Brassinolide 10 nM
3 hours (Seedlings), 2- ABA 3 1M 24 H (during Seed Imbibition), 3- ABA 30 uM 24 H (during Seed Imbibition), 4- Zeatin 20 uM
| H (Seedlings), 5- Zeatin 20 pM | H (Shoots), 6- Zeatin 20 uM | H (Roots), 7- arrl0/12 Zeatin 20 pM | H (Roots), 8- arr! 0/
12 Zeatin 20 uM | H (Shoots), 9- AtIPT8/pga22 (Seedlings), 10- gal-5 GA3 | uM 0.5 H (Seedlings), I I- IAA | uM 0.5 H (Seed-

lings), 12- IAA | uM | H (Seedlings).

others in the field of systems biology. For instance, i)
Baliga et al. [50] state that "a biomodule is a group of pro-
teins that execute a particular function", and ii) Bonneau
etal. [51] also used a biclustering approach (cMonkey) to
define "biologically meaningful biclusters". The conjunc-
tion of both above definitions match our concept/defini-
tion of a "biomodule".

As an insight into potential TFs that regulate the genes in
this network, it is noteworthy that N-regulated bicluster 9
contains 17 transcription factors (based on AGRIS tran-
scription factor annotation) whose regulation is by defini-
tion correlated with targets in N-bicluster 9, as well as with
genes from other functional and unknown categories. N-
bicluster 9 also contains other regulatory genes potentially
involved in signal transduction such as kinases or phos-
phatases (6% of the genes from this N-bicluster fall into
this category) (Table 1).

Hormones enhance the NOj responsiveness of genes
within the bicluster 9 biomodule: what are the
physiological consequences?

To identify potential regulatory mechanisms for the NO;-
responses of these genes to by other stimuli, we examined
the regulation of the 126 genes in N-bicluster 9 across a
metadata set of hormone microarrays. This was done in
order to try to understand whether these genes, or subsets
of these genes, are coregulated by hormones as well. Hor-
mone treatments have been previously shown to have
strong interactions with nitrogen signaling [5]. This anal-
ysis identified a subset of 77 genes in N-bicluster 9 that
also cluster together across a subset of hormone treat-
ments. The position of these 77 genes present in the N/
Hormone biclusters are shown in the context of the meta-
bolic/protein interaction network presented in Figure 3.
This view demonstrates a strong potential effect of diverse
hormonal controls on the level of response of NO;-con-
trolled metabolic processes [See Figure 3 color coding for
nodes: Red squares = significant N/H-bicluster genes
(genes from N/H-biclusters 1, 16, 19 and 20), Blue
squares = genes controlled only by NO;-and not co-regu-
lated by hormone treatments, based on results of hor-

mone biclustering, Grey squares = non-significant N/H-
bicluster genes controlled by hormones (i.e. no reproduc-
ible hormone response in N/H biclusters, see Methods)].
This hormonal control of nitrate-regulated genes repre-
sents a potential mechanism to fine tune and co-ordinate
response levels of genes in a biomodule so that metabolic
processes (here N-assimilation, carbon metabolism, and
signaling components) can be regulated according to the
growth rate of the plant. This is consistent with the obser-
vations made for phosphate [52,53], sugar [54], sulfate
[55], and iron metabolism [56]. In all of these previous
studies, when the hormone receptor is mutated, the
response of genes to the nutrient under investigation is
maintained, but the hormone response of the same genes
is abrogated. This implies that hormonal control of nutri-
tion pathways has a broad effect and controls metabolism
as a whole, and is distinct from nutrient signaling. Our
current work supports this view and also goes a step fur-
ther. Indeed, our systems approach has enabled us to
derive the hypothesis that hormone signals can interact
with NOj;-signals to enhance the responsiveness of genes,
and we have performed and in silico test of this hypothesis.
This hypothesis is based on the finding that genes control-
led by NOj; only, were shown to be less responsive to
NO; than genes under the control of NO; and hormones
(Figure 6, Table 2). This kind of interaction has to our
knowledge never been reported, and is a particularly
novel aspect of for the effect of hormones as they relate to
NO;- induction. Although the effect of external hormone
supply on genes belonging to NO; assimilation pathway
or sensing system has already been documented, our
results propose a new dimension of interaction at the
transcriptional level between hormonal and NO;- signal-
ing. The existence of specific links between different nutri-
ent and hormonal signals reported herein is also of
particular interest and deserves further investigation.

Putative roles of the E2F and HSE Cis Regulatory Elements
(CRES) in mediating cross talk between nitrate and
hormone signaling

Our study has identified two putative regulatory elements
that are over-represented in the four significant N/H-
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Changes in NO;" responsiveness for genes in significant N/H biclusters vs. N-bicluster 9 exclusive genes. Histo-
gram plots of average expression over NOj- treatment conditions in both WT and NR double mutant microarray data showing
the nitrate responsiveness of genes that were present in significant hormone biclusters and genes that were not present in any
N/H-bicluster (N-bicluster 9 exclusive (E)), data indicates root and shoot responses in WT and NR double mutant plants).
Comparison between treatment and control across the different groups indicates a clear difference in both the baseline
expression level and average response to nitrate for N/H-biclusters |, 16, 19 and 20 and was confirmed with ANOVA (see

text). (+) KNO;j treatment, (-) KCI treatment.

biclusters identified by ANOVA (Table 2). To identify the
potential role of such elements in mediating the hormone
enhancing effect on nitrate responsiveness, we performed
an in silico analysis aiming at deciphering the potential
effect of each candidate binding site. By removing all
genes from N-bicluster 9 exclusive gene list that contained
these CREs (E2F and HSE), we were able to "virtually”
examine their respective role in the enhancement of the
baseline and NO; response by comparing these genes to
genes from significant N/H-biclusters 1, 6, 16 and 20. The
analysis demonstrated that E2F and HSE CREs are poten-
tially involved in the hormonal enhancing effect of

expression of these NO; responsive genes (Table 4, 5, and
6). To date, the heat shock elements (HSE) were not
shown to be involved in the control of N-regulated genes
though their role in Arabidopsis in the transcriptional con-
trol of responses to heat stress has been extensively stud-
ied [57]. However, a heat shock transcription factor HsfA9
has been shown to be under hormonal control in seeds
(ABA through ABI3) [58]. This observation leads to the
tentative hypothesis that heat shock elements could
potentially be involved in conveying a hormonal signal.
Moreover, to further have insight into the HSF/hormonal
connection we ran a Sungear [59] analysis to decipher if
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Table 3: Over-represented known CREs in N-bicluster 9.
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Cis Regulatory Element % Present in Whole Genome % Present in N-bicluster 9 P-value
Boxll 49.32% 66.67% 6.90E-05
RAVIA 84.00% 94.44% 1.94E-04
Whbox 80.83% 92.06% 3.40E-04
MYB2CONSENSUSAT 63.96% 78.57% 3.43E-04
RY_repeat 5.36% 13.49% 4.09E-04
ebox 86.24% 95.24% 5.87E-04
DPBF1&2_binding_site_motif 64.32% 77.78% 9.66E-04
ARF 45.03% 59.52% 0.001096
AtMYC2_BS_in_RD22 44.10% 57.94% 0.001509
MYB4 72.72% 84.13% 0.001727
Bellringer/replumless/pennywise BS| IN AG 42.04% 55.56% 0.001932
SV40 25.69% 38.10% 0.001954
ATB2/AtbZIP53/AtbZIP44/GBF5BS in ProDH 48.52% 61.90% 0.002188
CCAl 34.48% 47.62% 0.002400
ABRE like 26.46% 38.10% 0.004204
AtMYB2 BS in RD22 16.57% 26.19% 0.005280
T box 58.94% 70.63% 0.006024
LFY 62.88% 73.81% 0.007078

Results of a promoter sequence analysis of genes from N-bicluster 9 with the Fisher Exact Test used to determine CRE frequency over-

representation in N-bicluster 9. Over-representation of CREs was determined by comparing the frequency of these sites in N-bicluster 9 genes to
the frequency in the whole genome as a background. Significance was determined using a 5% FDR cut-off. Indicated in this table is the percentage of
genes from the whole genome and N-bicluster 9 that contain these elements and the respective p-values for over-representation. *P-values 0.0 -

0.05; **P-values 0.001-0.01; ***P-values < 0.001.

these factors are under any other hormonal controls. To
do so, we queried gene annotation for HSF term. We
found 21 HSF, and looked to see if they were found regu-
lated by any hormone as reported by Nemhauser et al.
[60]. Out of the 21 HSF detected we found that 6 (28%)
are regulated by ABA (2 of which are also regulated by
methyl-jasmonate), and 1 gene is regulated by cytokinins.
This kind of co-regulation might further support the
potential connection between HSF and hormonal signals.

E2F binding elements and the role of their associated tran-
scription factors are still poorly understood in plants.
However, what is known in plants as well as in other
organisms is that these factors (considered in animals as
oncogenes) are involved in the control of the cell cycle

Table 4: Over-represented CREs for 4 significant N/H-biclusters.

[61,62]. Remarkably the role of E2F in the control of gene
expression related to N-assimilation has already been
shown in Arabidopsis, providing an independent valida-
tion of our results. Vlieghe et al. [63] demonstrated that
the over-expression of the E2Fa-DPa transcription factor
leads to the induction of nitrate reductase (NIA2),
glutamine synthetase (GS), glutamate synthase (GOGAT),
and nitrite reductase (NIR) gene. It is noteworthy that all
of these genes respond to both nitrate and hormonal sig-
nals in our analysis (Figure 3). Furthermore, several genes
in the N/H biclusters that are involved in C-metabolism
are also mis-regulated in plants over-expressing E2Fa-
DPa. Interestingly, E2F CREs were also identified in the
nitrate reductase promoter of the green algae, Chlorella
vulgaris. The protein binding activity at this site was vali-

CRE Name P-value

% Present in N/H-

% Present in N-bicluster 9 % Present in N-bicluster

(N/H-Bicluster vs. N-bicluster  bicluster Genes Exclusive Genes 9 Genes
9 Exclusive)
E2F 0.0022** 60.5% 27.08% 40.48%
HSE 0.0089** 60.5% 31.25% 42.06%

Results of a promoter sequence analysis of genes from 4 significant N/H biclusters based on ANOVA with the Fisher Exact Test used to determine
CRE frequency over-representation of in the collective gene list (38 genes) vs. N-bicluster 9 exclusive genes. Indicated in this table are the p-values
for over-representation, the frequency of these CREs in the 4 N/H biclusters, the frequency of the same CREs in the N-bicluster 9 exclusive gene
list and the frequency of these CREs in the full N-bicluster 9 gene list. Based on the analysis of the 4 significant N/H-biclusters, only the p-values for
the HSE and E2F CREs were significant, indicating over-representation of these CREs (significance based on a 5% FDR cutoff). **P-values 0.001-0.01
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dated but was not dependent on nitrate in the media [64].
This confirms the idea that E2F CREs are involved in the
interaction of the NO;-response with other signals such as
hormones and may be mediating crosstalk between these
signals. Finally, the cell cycle is known to be an important
target of hormonal signaling. For instance the Arabidopsis
E2FC-DPB transcription factor was demonstrated to be
involved in the control of the cell cycle. Also, cell division
(monitored by CYCB1-GUS) in plants over-expressing
E2FC-DPB was found to be less sensitive to auxin than cell
division in wild types plants. This supports the hypothesis
that E2F transcription factors are involved in mediating
hormonal control of cell division [65].

Conclusion

In conclusion, our results suggest and highlight a signifi-
cant level of control of NO; signaling by hormones. This
control may allow plants to modulate biomodules of
genes spanning N and C metabolism according to growth-
dependant hormone signals. The systems biology
approach presented herein demonstrates the inference of
relationships between signals a postriori using extensive
microarray data sets (76 chips for Nitrogen + 278 chips for
hormones) to uncover new hypotheses for mechanisms
underlying the much studied but poorly understood inter-
actions between nutrient and hormone signaling. This in
silico approach opens the door toward unraveling new
biological concepts by systems analysis of existing micro-
array and other genome scale data sets within the public
domain.

Methods

Nitrogen Microarray Meta-Data set used for bicluster
analysis

Expression values for all genes within the Arabidopsis
genome present on the Affymetrix chip were taken from
published data on nitrogen treatments vs. controls for all
the available experiments from the data sets published
in:[26-28,30]. All microarray data used in this analysis
was processed and normalized using Affymetrix Suite 5.0
or MAS5 Software (as implemented in the R statistical
package [45] the two normalization Methods gave equiv-
alent results. For biclustering analysis (see below), signal
values were converted to log base 2 ratios with the treat-
ment condition compared to its relative baseline condi-
tion (control). Genes with raw signal values less 100 in
their treatment or control conditions in either replicate
had their signal log ratio values replaced with a non-
numerical NA value which is ignored by the biclustering
algorithm. Finally, Log 2 ratio data from the microarray
data was analyzed to determine which genes in the
genome were greater then 1.5-fold responsive in any pair
of replicate experiments in this meta data set. The result-
ing list of 3,752 N-responsive genes was used for bicluster-
ing, as described below.

http://www.biomedcentral.com/1752-0509/3/59

Hormone Microarray Meta Data Analysis

All hormone microarray data was taken from the MAS5-
processed NASC Microarray database (Nottingham Arabi-
dopsis Stock Center [44]) data. Data was chosen based on
annotation and experimental conditions that referred to a
hormone or hormone inhibitor treatment vs. a relative
control, with only replicated data used for biclustering
analysis. A total of 19 data sets comprising 278 microarray
experiments were compiled based on these criteria. The
full list of data sets and the contributing number of micro-
arrays from each data set is provided in Additional File 1.
All hormone data with signal values of < 100 had their sig-
nal values replaced with a non-numerical NA value. Fur-
ther, all data was converted to log base 2 ratios prior to
biclustering analysis. The 126 genes from N-bicluster 9
were biclustered over all hormone data as described (see
below).

Biclustering of Microarray Data

Biclustering was performed using the SAMBA algorithm as
described by [32] and as implemented in the CLICK and
EXPANDER program [31]. Biclustering was performed
using default parameters except as follows: amount of
overlap allowed (50%), gene coverage (set to cover all
genes) and the number of genes expected (set to maxi-
mum number of genes in the data set). Biclusters that
were used for further analysis were chosen based on genes
being > 1.5 fold regulated across reproducible experi-
ments and the presence of replicate experiments for > 50%
of the experiments.

BioMaps Analysis of N-biclusters

BioMaps analysis of N-biclusters was performed as
described in [30] as accessed via http://www.virtual
plant.org. The program was run using the MIPS [33] anno-
tation option for functional definitions. A 5% FDR (False
Discovery Rate) cut-off was computed using the R statisti-
cal package [45] to determine significant p-values.

Modified BioMaps of N/IHormone Biclusters

As N/H-biclusters were derived from N-bicluster 9, over-
representation of MIPS [33] functional terms were deter-
mined using the Fisher's Exact Test as implemented in the
R statistical package [45] to compare the proportions of
genes from N/H-biclusters containing a MIPS term vs. the
proportion of genes from N-bicluster 9 not in N/H biclus-
ters containing that same term.

Multinetwork Analysis of Bicluster 9

To understand the relationships among the 126 genes
from N-bicluster 9, the Arabidopsis multinetwork analysis
tool was used [30] as accessed by http://www.virtual
plant.org. This network contains many validated connec-
tions for gene interactions in the Arabidopsis genome. Net-
work interactions were visualized using Cytoscape [66].
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Computing the False Discovery Rate (FDR)

An FDR control method was used to determine a signifi-
cance cutoff for p-values. This value was computed using
a script written for the R statistical package [45]. This script
was derived from the Storey and Tibshirani method [67]
which determines a cut-off based on the expected propor-
tion of false positives incurred when calling a feature sig-
nificant.

Cis Regulatory Element (CRE) Detection Using Known
CREs

In order to detect known CREs that may be over-repre-
sented in a group of genes (e.g. N-bicluster 9, N/H-biclus-
ters), sequence analysis of the promoter regions of these
genes was performed. We used Cis Regulatory Element
(CRE) annotation from the AGRIS Database (Arabidopsis
Gene Regulatory Information Server [68]) as well as our
own literature search to identify biologically active CREs
that have been validated by in vivo experimentation. CRE
detection was performed using the DNA pattern search
tool available from RSA Tools [47] upon 3,000 bp of
parsed upstream promoter region (taken from the AGRIS
database).

The test for over-representation of CREs was performed
using Fisher's Exact Test. This test compared the propor-
tion of promoters in which a particular CRE of interest
appeared in one group with the proportion of these same
CREs detected in another group. A p-value cutoff was
computed using a 5% FDR cut-off for significance.
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