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Abstract

Background: A salient purpose for studying gene regulatory networks is to derive intervention
strategies, the goals being to identify potential drug targets and design gene-based therapeutic
intervention. Optimal stochastic control based on the transition probability matrix of the
underlying Markov chain has been studied extensively for probabilistic Boolean networks.
Optimization is based on minimization of a cost function and a key goal of control is to reduce the
steady-state probability mass of undesirable network states. Owing to computational complexity,
it is difficult to apply optimal control for large networks.

Results: In this paper, we propose three new greedy stationary control policies by directly
investigating the effects on the network long-run behavior. Similar to the recently proposed mean-
first-passage-time (MFPT) control policy, these policies do not depend on minimization of a cost
function and avoid the computational burden of dynamic programming. They can be used to design
stationary control policies that avoid the need for a user-defined cost function because they are
based directly on long-run network behavior; they can be used as an alternative to dynamic
programming algorithms when the latter are computationally prohibitive; and they can be used to
predict the best control gene with reduced computational complexity, even when one is employing
dynamic programming to derive the final control policy. We compare the performance of these
three greedy control policies and the MFPT policy using randomly generated probabilistic Boolean
networks and give a preliminary example for intervening in a mammalian cell cycle network.

Conclusion: The newly proposed control policies have better performance in general than the
MFPT policy and, as indicated by the results on the mammalian cell cycle network, they can
potentially serve as future gene therapeutic intervention strategies.
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Background

Boolean networks (BNs), and more generally, probabilis-
tic Boolean networks (PBNs) [1,2], have been used for
finding beneficial interventions in gene regulatory
networks through the study of network dynamics. Upon
describing these dynamics via Markov chains, optimal
stochastic control policies can be determined via dynamic
programming [3-5] to change the long-run dynamics,
which are characterized by the steady-state distribution
(SSD) of the network (Markov chain), the purpose being
to reduce the risk of entering aberrant states and thereby
alter the extant cell behavior. Three problems arise with
this approach. First, the dynamic programming algorithm
used to find optimal policies has complexity which
increases exponentially with the number of the genes in
the network. Approximate, or model-free, control policies
have been proposed to alleviate this computational bur-
den [6,7]. Second, the classical infinite-horizon approach
to control requires a cost function and this requires sub-
jective input. Third, and most importantly relative to the
algorithms proposed in the current paper, optimization is
with respect to the cost function and is only secondarily
related to the steady-state distribution. Here, our purpose
is to reduce the mass of the steady-state distribution corre-
sponding to undesirable states and increase the mass cor-
responding to desirable states, and to do this directly
without the mediating factor of a cost function.

In [7], a stationary mean-first-passage-time (MFPT) con-
trol policy is proposed that circumvents the need for a cost
function and works directly with the transition probabil-
ity of the Markov chain associated with the network. Bio-
logically, it can be motivated by the following example. In
a stable cancer cell line, the cells will keep proliferating
without intervention. Assume that the goal of the inter-
vention is to push the cell into programmed cell death
(apoptosis) by intervening two candidate genes: p53 and
telomerase. The p53 gene is the most well-known tumor
suppressor gene [8-10]. The telomerase gene encodes tel-
omerase, which maintains the integrity of the ends of
chromosomes (telomeres) in germ cells and progenitor
cells; therefore, it is responsible for replenishing cells dur-
ing the normal cell turnover (homeostasis). In somatic
cells, the telomerase gene is turned off, resulting in tel-
omere shortening each time the cell divides - a key reason
for the limited life-span of normal cells [11]. In the major-
ity of tumor cells, telomerase is activated, which is
believed to contribute to the prolonged life-span of the
tumor cells [12]. This worsens prognosis for cancer
patients [13,14]. Extensive experimental results indicate
that when p53 is activated in the cells, for example in
response to radiation, the cells undergo rapid growth inhi-
bition and apoptosis in as short as a few hours [15]. In
contrast, inhibition of the telomerase gene also leads to
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cell growth inhibition, differentiation, and cell death, but
only after cells go through a number of cell divisions
(allowing telomere shortening). Cell death takes a longer
time through this latter process than through p53 activa-
tion. The use of mean first passage times for finding the
best control gene is intuitive because the activation of p53
can lead more quickly (or with higher probability) to
apoptosis than the inactivation of telemerase. Based on
this kind of observation, the MFPT control policy employs
two heuristics: (1) it is preferable to reach desirable states
(apoptosis in the example) as early as possible; (2) it is
preferable to leave undesirable states (cell proliferation) as
early as possible.

Motivated by the success of the MFPT algorithm, in this
paper, we propose three stationary control policies under
the assumption that we have the transition probability
matrix and the state transition diagram for the Markov
chain of the network. Given that the intervention objec-
tive is to shift the steady-state distribution to desirable
states, we propose to directly use the long-run behavior as
our criterion for control instead of using the mean first
passage time, which is an indirect measure. For the first
control policy, we directly investigate the attractor states,
which have been conjectured to correspond to pheno-
types of the modeled cell. We replace the mean-first-pas-
sage-time criterion by the distance to (un)desirable
attractor states of the underlying Markov chain, which can
be computed efficiently. Since the shift of steady-state dis-
tribution can be computed efficiently using the analytic
formula derived in [16-18], a second new control policy,
having similar time complexity as the original MFPT con-
trol policy, is proposed based on the shift of steady-state
distribution. A third policy also uses the steady-state dis-
tribution as the criterion, but gives up some computa-
tional efficiency in order to increase the certainty that
applying the derived control policy will lead to the reduc-
tion of the total stationary mass for undesirable states.
Because these new policies directly utilize the long-run
characteristics of the network, we expect them to perform
better than the MFPT policy with respect to shifting the
steady-state distribution. A simulation study supports this
expectation. In addition, a preliminary example of apply-
ing these control policies on a mammalian cell cycle net-
work has shown that we can successfully identify gene E2F
as the best potential control target, which has been conjec-
tured in [19] through different mathematical modeling.

Methods

Background

Probabilistic Boolean networks

We focus on intervention in binary PBNs in this paper but
these results directly extend to more general PBNs having
any discrete range of values since the underlying models
are always finite Markov chains. Following the standard
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definitions of the Boolean network model [1,2], PBNs are
described by truth tables determined by Boolean regula-
tory rules and the related parameters, including various
probabilities. In a binary Boolean network of n genes, the
state of each genex; € {0, 1} attimet + 1 is determined by
the values of a set V; of predictor genes at time t via a

Boolean "predictor” function f; : {0,1} - {0,1}, where
K; = |V;| denotes the number of predictor genes in V; and
is called the input degree of x; in the network. Given a
truth table, the network evolves as a trajectory of gene-
expression vectors (states) X, € {0, 1}", each known as a
gene activity profile (GAP). From the initial state, a BN will
eventually reach a set of states through which it will cycle
forever. Each such set is called an attractor cycle and states
within attractor cycles are attractors. The set of states lead-
ing to a specific attractor cycle is known as its basin of
attraction (BOA).

For the stochastic extension of basic Boolean network
model, we can have different variations. For Boolean net-
works with random perturbations (BNps), perturbation is
introduced with a positive probability p by which the cur-
rent state of each gene in the network can be randomly
flipped. To further model the stochastic properties arising
from either latent variables affecting network dynamics or
the uncertainty from model inference, we allow m vector-
valued network functions, F = {f|, f,,..., f,}, to determine
the expression states of genes in the network model
through time. We consider the network model which con-
sists of a family {B,, B,,..., B,,} of BNps governed by the
corresponding functions, each BNp being referred to as a
context. At any time point there is a positive probability g
of switching the current governing context. Once a switch
is called for at time point ¢, then one function from among
f,,..., f,, is randomly selected according to the probability
distribution ¢ = {cy,..., ¢,,}, where it is possible for the cur-
rent function to be chosen. There are two types of PBNs
with different interpretations regarding ¢. If ¢ < 1, the PBN
is context-sensitive and q is usually assumed to be small. If
q = 1, as in the original formulation of PBNs [2], the PBN
is said to be instantaneously random. All of these various
PBNs inherit the attractor cycles of their constituent BNs
governed by predictor functions. Introduction of random
perturbation makes the corresponding Markov chain of a
PBN irreducible. Hence, it possesses a steady-state distri-
bution 7 describing the long-run behavior. With suffi-
ciently small p, 7 will reflect the attractor structure. For
developing therapeutic intervention, we are especially
interested in the proportion of time the network occupies
an attractor in its steady state.

http://www.biomedcentral.com/1752-0509/3/61

The dynamics of PBNs can be analyzed via their associated
homogeneous irreducible finite Markov chains. For
instantaneously random PBNs, the states of the associated
Markov chain are the states (GAPs) of the network; for a
context-sensitive PBN, the chain states are (context, GAP)
pairs. We can derive the transition probability matrix P
from the truth tables and the involved probabilistic
parameters, and from there derive the steady-state distri-
bution 7. The computation of the transition probabilities
between states in PBNs has been discussed in several
papers [5,20,21]. We re-iterate them in the following the-
orem. The proof of the theorem can be referred to in Addi-
tional file 1.

Theorem 1: The transition probabilities from y to x for a
BNp and an instantaneously random PBN are given by

Py(x) = 1j(y)x)(1=0)" + 1[x¢y]Pn(x'Y)(1 — p)" ),
(1)
where 7 (x, y) is the Hamming distance between x and y,
and 1;gy) -y is the indicator function that takes value 1 if

f(y) = x according to the truth table and is equal to 0 oth-
erwise; and

m
Py ()= D611 31oxi(1 = )"+ Ty "2 1 )10,
j=1

(2)

respectively. The transition probability from (s, y) to (r, x)
for a context-sensitive PBN is given by

Ps,y(rfx) = l[rzs]((l - 4) + qcs){1|(5(y):x|(1 - p)n + 1[x¢y|pn(XVY)(1 - p)n—n(x,y)}
+ g6 g (y)ex) (1= P)" + Ty p "V (1= p) P10},

3)

where 7, s denote the rth and sth BNp, which are the BNps
attime ¢t + 1 and t.

For a given transition matrix P for any type of PBN, we
have

! = ﬂTP, (4)

where 7 is the corresponding steady-state distribution for
P and T denotes transpose.

In this paper, we focus on BNps and instantaneously ran-
dom PBNs. Subsequently we will comment on extension
to context-sensitive PBNs. For the moment, we note that,
for the purposes of intervention, the reduction of a con-
text-sensitive PBN to an instantaneously random PBN has
been proposed in [5]. This reduction results in a large
computational savings when deriving control strategies.
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Moreover, from the perspective of gene-expression infer-
ence of a context-sensitive PBN, the variables r and s in P,
y(7, x) are hidden variables because we only observe the
transition of gene-expression states. Hence, it is difficult to
accurately infer the transient structure of context-sensitive
PBNs without a large amount of data [22]. In [21], the
effect of the reduction from context-sensitive PBNs to
instantaneously random PBNs in [5] is investigated and it
is shown that, while there is some loss of control perform-
ance using the reduced model, the loss depending on the
structure of the PBN, generally there can still be significant
therapeutic benefits for these control strategies in situa-
tions where it is impractical to utilize the full model.
Hence, our focus on the control policies on instantane-
ously random PBNss still leads to practical benefits to shift
steady-state distributions beneficially.

Stochastic optimal intervention
The problem of optimal intervention for PBNs is formu-
lated as an optimal stochastic control problem. Assuming
that we can only control a single gene g in the network as
in previous applications [5,7], the policy is of the form
ug(t) € C = {0, 1}. If the control at time step  is on, u,(t)
= 1, then the expression state for g is flipped; if u,(¢) = 0,
then the state of the control gene g remains unchanged.
We consider the intervention as perturbing the transition
probability of the original underlying Markov chain.
Absent control, we have the transition probability P,(x) =
P (X, with

Py(x)=P(X,; =x| X, =y, u,(t)=u), u € {0, 1}, where

x|X, = vy) control, we have

X, and u,(t) jointly determine P;’(x) . The new transition

probability P;,‘ (x) decides the steady-state distribution of

the underlying Markov chain for the controlled PBN. A
natural way to intervene is to find a stationary control pol-
icy u, = {u,(y)ly € {0, 1}} for all possible states y in the
network so that the perturbed transition probabilities of
the controlled Markov chain lead to the most beneficial
steady-state distribution. In this way,

P)’,’(x)=P(X[+1=X|X[=y,ug(y)=u), (5)

the policy being independent of time in this stationary
policy. Because the size of the search space for this optimi-

*

zation problem is O(22n ), the optimal solution u,

quickly becomes computationally infeasible as network
size increases.
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The previous algorithms [3-5] assign a cost function
ry(x) for each intervention in the system and propose to

solve the corresponding optimization problem in both
finite and infinite horizon frameworks. In general, the
cost depends on the state y at time ¢, the successor state x
attimet + 1, and the control input u. The expected imme-
diate cost is defined for state y, when control u is selected,
by

= Y PyXe)ry (Xe)

X;1€{01}"

The finite-horizon control problem deals with control of the
underlying Markov chain over a finite horizon and does
not change its steady-state distribution. The infinite-hori-
zon control problem finds the optimal stationary control

policy uj; that is independent of time with respect to the

expected total discounted cost and does affect the steady-
state distribution. The discounting factor, & € (0, 1),
ensures the convergence of the expected total cost over the
long-run [23]. In the case of cancer therapy, the discount-
ing factor emphasizes that obtaining treatment at an ear-
lier stage is favored over later stages [7]. The expected total
discounted cost formulation is given by

N-1

Ju,(Xo)= lim B3 Y a'rf (X)) [Xo . (6)
t=0

In this stochastic control problem, we seek an interven-

tion strategy u;; among all the admissible intervention

strategies I', that minimizes the above objective function

for each state X, = y in the network, i.e.,
u,(y)=arg urnlp Ju, (¥): (7)

Based on the results given in [23], it has been shown in [5]
that an optimal intervention strategy exists for the dis-
counted optimal stochastic control problem and the opti-
mal cost function J* satisfies

Sy =minfly e Y PEI®E (g

xe{0,1}"

J* is the unique solution of this equation within the class
of bounded functions. Equation 8 is known as the Bellman
optimality equation. An optimal control policy is a station-
ary policy that attains the minimum in the right-hand side
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of the Bellman optimality equation for all the states in the
network.

From a strictly long-run perspective, absent any assigned
costs, the preceding solution can be considered as an
approximate way to find a control that most beneficially
shifts the steady-state distribution. The problem here is
that the algorithm requires appropriate settings for the

cost function ry/(x), which are difficult to obtain. Moreo-

ver, the existing iterative algorithms to find an optimal
control policy in the above framework still have high
computational complexity O(23") for each iteration [7].

Mean-first-passage-time (MFPT) control policy

In [7], a greedy stationary control policy using mean first
passage times of the underlying Markov chain is pro-
posed. When considering therapeutic interventions, the
state space can be partitioned into the set D of desirable
states and the set U of undesirable states according to the
expression values of a given set of genes. Based on the
intuition that an effective intervention strategy should
reduce the likelihood of visiting undesirable states by
increasing the time to reach undesirable states or decreas-
ing the time to desirable states, a greedy mean-first-pas-
sage-time control policy can be derived.

To describe the MFPT control policy, without loss of gen-
erality, we assume that gene x; decides x = {xx,...x,,} to be
desirable when x; = 1 and undesirable when x; = 0. We
also assume there is a set of control genes which are differ-
ent from x,. For simplicity, and as is often done, we
assume there is a single control gene denoted as g. The
intuition behind the MFPT algorithm is that when a desir-
able x reaches U on average faster than x, the state with
the control gene g flipped from x, it is reasonable to apply
control to flip g and start the next network transition from
x.. The transition matrix of the original PBN can be written

as
P P
p=|‘pp 'pu
Pyp Py
From general Markov chain theory [24], we can compute

the mean first passage times K;; and K, by solving the fol-
lowing system of linear equations:

Kp=e+ Py Kp
Ky =e+PppKy'

where e denotes column vectors of 1's with the appropri-
ate length; the vectors K;; and K}, contain the MFPTs from
each state in D to U, and from each state in U to D,
respectively.
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To design the MFPT control policy, we check Kj(x) -
Kp(x.) or K, (x,) - Ky (x) for each state x and the corre-
sponding flipped state x_. If x is undesirable, we check
whether K,(x) - Kp(x,) = 4 to make the time to reach the
desirable states D faster; Otherwise when x is desirable, we
check whether K; (x.) - K;; (x) 2 4 to make the time to
leave the undesirable states U faster. The parameter A is set
to a higher value when the ratio of the cost of control to
the cost of the undesirable states is higher, the intent
being to apply the control less frequently; if we are not
interested in limiting application of control, we set 4 = 0.
The computational complexity for finding the MFPT con-
trol policy in the original PBN is O(2").

The pseudocode for the MFPT algorithm in Appendix 1,
reproduced from [7], summarizes the procedure when
applied to all possible control genes.

As noted in [7], even if one wishes to apply a cost-based
optimization, the MFPT procedure can serve to find a
good control gene and also gain insight on the controlla-
bility of the network.

Control policies directly based on long-run behavior

Basin of Attraction (BOA) control policy

Although mean first passage time is closely related to the
steady-state distribution, the MFPT control policy does
not use the shift of stationary mass directly as a criterion.
Given the basins of attraction (BOA), which determine
the long-run behavior of a PBN, we can use this informa-
tion to derive a control policy more directly related to the
steady-state distribution. For this BOA control policy, we
again assume that the state space is partitioned into the
sets D and U of desirable and undesirable states. For any
state x, let Ai(x) be the set of attractors (the cycle) for the
basin containing x in the jth constituent BNp, keeping in
mind that a state x belongs to exactly one basin of attrac-

tion in each constituent BNp. Let B(x) = U;":l Al(x), the

union of attractors for the basins of x taken across all con-
stituent BNps. Further, for each constituent BNp, we com-
pute the minimal distance of each state to states in D or to
states in U, and then we compute the respective PBN dis-
tances d, and d;; by taking weighted averages with respect
to the selection probabilities. Since most of the stationary
mass is distributed in the attractors, the structural proper-
ties of the basins, including the properties of their attrac-
tors and their sizes, determine the long-run behavior and
the steady-state distribution of the network [20]. Hence, it
is reasonable to design a control policy based on the BOA
structure.
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We proceed in similar way to the manner in which the
MFPT policy is derived in [7] to obtain a basin of attraction
(BOA) control policy. For a pair of undesirable states x and
x,, we first check whether B(x) or B(x,) contains any desir-
able attractors. If only one of them contains desirable
attractors, then we decide the control policy to always go
to that state so that we increase the likelihood of entering
into desirable attractors. Otherwise, if both of them have
desirable attractors or neither B(x) or B(x,) has desirable
attractors, we compare dp(x) and dj(x.): Whichever is
minimum, we apply control to get that state so as to reach
the desirable states D faster. We do not apply any control
if dp(x,) = dp(x). For a pair of desirable states x and x, we
first check whether B(x) or B(x,) contains any undesirable
attractors. If only one of them contains undesirable attrac-
tors, then we apply control to flip to that state so that we
reduce the risk of getting into undesirable attractors. If the
condition is satisfied for both of the states or neither of
them, we then check d; (x) and d;; (x.) to make the time
to reach the undesirable states U slower. The computa-
tional complexity for finding this control policy in the
original PBN is O(2"), similar as in deriving the MFPT
control policy. Since finding BOA structures of PBNs does
not involve computing matrix inversions and is relatively
less expensive than computing mean first passage times,
especially with increasing number of genes in the net-
work, the algorithm to find the BOA control policy is
more efficient than the previous algorithm to find the
MFPT control policy. The pseudocode in Appendix 2 sum-
marizes the BOA procedure for finding the best control
gene and the corresponding stationary control policy.

Steady-state distribution (SSD) control policy

Although the BOA structural properties constitute one
determinant factor for the steady-state distribution that
we aim to shift, the BOA algorithm does not use the
steady-state distribution directly. Thus, we consider a con-
trol policy directly using the shifted stationary mass as the
criterion of applying control. A key issue for such an algo-
rithm is the efficient computation of the shifted stationary
mass resulting from intervention. Recently, we have
adapted the perturbation theory in finite Markov chains
[18,25] to derive an analytic solution to compute the
shifted mass efficiently [17]. We next state a theorem for
general Markov chains which has appeared in [17,18,25].

Theorem 2: For a perturbed Markov chain with P =P + E
by a rank-one perturbation E = ab?, where a and b are two
arbitrary vectors, the steady-state distribution is given by

o _(lapt+-play!

(9)
(zlaygTe)r1-pTa
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where e is a vector with all its elements equal to 1, t and u
are any vectors such that 77t # 0 and uTe # 0, and f7=bT|I
- P+ twT] 1.

If welett=eand u = zin (9), we can derive

~ ﬂTa

T=r+
l—ﬁTa

where A7 = bTZ and Z is the fundamental matrix of the
underlying Markov chain for the original network. Hence,
the steady-state distribution of the rank-one perturbation
is expressed in terms of 7 and Z, the steady-state distribu-
tion and fundamental matrix of the original network.
Thus, for rank-one perturbations to regulatory functions,
we have an explicit way to compute the exact shifted sta-
tionary mass.

B, (10)

Since the control by flipping one control gene g at any
given state x simply changes the original transition matrix

P to the controlled transition matrix P"s™" by replacing
the row in P corresponding to the state x by the row that
corresponds to the state x, with g flipped from x, the per-
turbation matrix can be written as a rank-one matrix and
the perturbed steady-state distribution can be computed
efficiently by:

nx(Px,—Px)Z

a(x)=m - <
1-(px—Px )z

(11)

where p,and p, are the two rows corresponding to the

states x and x_ in P, zXis a column corresponding to the
state x in Z, xis the stationary mass for x, and 7 (x)
denotes the steady-state distribution after we apply gene
flipping at the state x. Following this analytic solution, we
can quickly compute the total stationary mass for undesir-
able states 7;;and 7; (x), and therefore the shifted mass

after the possible controls to each state. Once we have
that, we can derive a steady-state distribution (SSD) control
policy based on a procedure similar to deriving the MFPT
control policy. We compare the total stationary mass of
undesirable states after applying control to x and x:

7y (x) and 7y (x.). If both of them are larger than the

original stationary mass, 7;;, of undesirable states, then we
do not apply any control. Otherwise, we adopt the control
on the state which leads to less stationary mass of the
undesirable states. The computational complexity for
finding this new control policy is again O(2"), while the
complexity for each iteration in the algorithm increases
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from both the MFPT and BOA control policies a little bit
by vector-matrix multiplications involved in (11). The
pseudocode for the SSD algorithm in Appendix 3 summa-
rizes the procedure for finding the best control gene and
the corresponding stationary control policy based on
shifted stationary mass.

As in the previous algorithms, deriving the SSD control
policy only looks into the effects caused by perturbations
to the pairs of states x and x,. Considering the perturba-
tion to the original transition matrix P, for each network
state x, we compare the steady-state distributions 7z and
7 (x) that correspond to P and the controlled transition

matrix P“¢™™ by replacing the row in P corresponding
to the state x by the row that corresponds to the flipped
state x.. If the undesirable stationary mass based on this
one-row perturbation caused by flipping the control gene
g at x reduces the undesirable stationary mass, then we
decide the control policy for the state x: u,(x) = 1. For the
derivation of the final stationary control policy for all the
network states, we investigate the perturbation effects
independently by studying the change from P to the cor-
responding controlled transition matrices by one-row per-

turbations at all the states: P — Pug(x)zl, Vx e {0,1}" . The

final control policy u, for the network actually leads to a

multi-row perturbation to P by combining all the benefi-
cial one row perturbations determined in the algo-

rithm: P"¢ . Generally, P"¢ is different from all the
controlled transition matrices by one-row perturbations
considered during the derivation of u,. Although, intui-

tively, this combination of beneficial one-row perturba-
tions should reduce the total undesirable stationary mass,
it is difficult to find the analytic characterization of the
effect to the undesirable mass caused by the combination.
We note here that in our simulations (Results and Dis-
cussion), the derived SSD control policy always reduces
the stationary mass for undesirable states and performs
better than the MFPT and BOA algorithms.

Conservative steady-state distribution (CSSD) control policy

All of the above control policies are relatively aggressive.
Whenever we see a desirable difference by intervention
through perturbing the original transition matrix of the
network, we will apply control in a greedy manner. For
single-gene control, the previous algorithms check
whether applying gene flipping leads to immediate bene-
fits. The decisions for different pairs of original and
flipped states are independent. Therefore, we can derive
the previous control policies for all the network states in a
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parallel fashion. However, there is no theoretical guaran-
tee that applying these control policies will lead to the
reduction of the stationary mass for undesirable states or,
analogously, the increase of the stationary mass for desir-
able states. We now present a control policy, the conserva-
tive steady-state distribution (CSSD) control policy, for which
we have a theoretical guarantee that the steady-state distri-
bution after intervention will have less than or equal to
the stationary mass of the undesirable states in the origi-
nal network.

While we can compute the shifted steady-state distribu-
tion accurately using Theorem 2, we now introduce
another theorem, proven in [17,25], which gives the new

fundamental matrix Z after applying a rank-one pertur-
bation to the network.

Theorem 3: The fundamental matrix for the rank-one per-

turbed network P = P + E = P + ab” is given by

(zTa)yevTz ZabTz
11Z + ]
T T
1-b" Za 1-b" Za
Flipping one control gene at any given state x, similar to
the derivation of (11), simply replaces the row in the orig-

inal transition matrix corresponding to the state x by the

(12)

Z=I-

row that corresponds to the flipped state x.. Hence, we
have a = e,, which has 1 for the element corresponding to
the state x and all 0's for the remaining elements in the
vector; and b=p, —p,. We can substitute these into

(12) to compute the updated fundamental matrix.

Using this result, we now design a sequential algorithm
that iteratively chooses states to control, so that we can
theoretically guarantee that the control policy reduces the
stationary mass of undesirable states. At each iteration, we
check all the states, for which the control policies have not
been decided, to see which state to control in order to
achieve the largest reduction of the undesirable stationary
mass. As in the previous subsection, for each state x, we
compare the steady-state distributions 7 and 7 (x) that
correspond to P and the controlled transition matrix
phs)= by replacing the row in P corresponding to state
x by the row that corresponds to the flipped state x..
Unlike deriving the SSD control policy u,(x) independ-
ently for all the states, for the CSSD control policy, we do

not directly combine all the beneficial one-row perturba-

tions into the new transition matrix P"¢ decided by the
derived SSD control policy, In this new sequential CSSD
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algorithm, we check all possible one-row perturbations
and find the best one row perturbation which results in
the largest reduction of undesirable mass. Hence, we only
select one state x¥ to control at each iteration if there is a
reduction of undesirable mass. If we denote the controlled
transition matrix by flipping the control gene g at that

best -1 . . .
state as P}?g (31 At the kth iteration, the sequential algo-

rithm in fact will generate a sequence of controlled transi-
tion matrices:

best best

P— Plu“*(xﬁw):1 N qug(xz NN PI?K(XK ¥
(13)
where K is the total number of iterations, and each pair of

neighboring transition matrices differ by only one row.

()=t

Here, P,?X = P"¢ is the final controlled transition

matrix with the derived control policy u,. As we obtain the

controlled transition matrix at each iteration by a one-row
perturbation to the previously computed controlled tran-
sition matrix, we can keep updating the exact steady-state

best

besty and the fundamental matrix Z?

distribution 7(x},
using (11) and (12), respectively. Thus, at each iteration,
we can directly compute the true stationary mass for unde-
sirable states after intervention and make the decision
about the control policy for the selected state as well. We
let the algorithm run iteratively until we find that inter-
vention to any state will actually increase the stationary
mass of undesirable states from the previous iteration. In
this way, we are guaranteed that the derived control policy
will always have undesirable stationary mass less than or
equal to that of the undesirable states in the original net-
work. This algorithm is computationally more expensive
compared with the previous algorithms as the search
space is O(2") at each iteration and the number of itera-
tions K depends on the controllability of the networks.
The advantage here is that the CSSD control policy is guar-
anteed to decrease undesirable stationary mass after inter-
vention and, as well see in simulations,
outperform the SSD policy. The pseudocode in Appendix
4 summarizes the CSSD procedure for finding the best
control gene and the corresponding stationary control

policy.

tends to

The following theorem provides the guarantee that apply-
ing the conservative SSD algorithm [Appendix 4] will
reduce the total undesirable stationary mass.

http://www.biomedcentral.com/1752-0509/3/61

Theorem 4: The derived CSSD stationary control policy
[Appendix 4] cannot increase the total undesirable sta-
tionary mass:

(14)

where K is the number of total iterations of the sequential
algorithm.

Ay <7y,

Proof: We prove the theorem by induction. Starting with
the first iteration k = 1, we always have 7, (x"') <,

since. we only apply the control when

best
1

Abest — wy — Zu(x1™) >0 as shown in Appendix 4. Now

at the kth iteration, assuming ﬁu(xzefi) < 7y, we want to

show that 7,;(x%") < 7, . Indeed, in the CSSD algorithm
[Appendix 4], at each iteration we apply the control only

best

when A" =7, (x5 - 7,(x}*") > 0. Hence, we have

Ay (xP) < 7y (xP) < 7y . QED

Extension to context-sensitive PBNs

We have restricted ourselves to BNps and instantaneously
random PBN:ss till now. All the algorithms, including the
MFPT algorithm, focus on the GAP space and this only
corresponds to the Markov chain space for BNps and
instantaneously random PBNs. However, these algo-
rithms, including the MFPT algorithm, can be extended to
intervene in context-sensitive PBNs with no theoretical
obstacles. But as the state space changes from the space of
GAP:s to the space of (context, GAP) pairs in context-sen-
sitive PBNs, the computational complexity of these algo-
rithms will increase. Moreover, for the algorithms directly
based on steady-state distributions, we have to apply iter-
ative update schemes to compute the shifted steady-state
distributions since the perturbations to the transition
matrix become multiple-row perturbations [17].

Results and discussion

Comparison of four greedy control policies

In this section, as with the ensemble analysis in [7,26-28],
we study the performance of the four greedy control poli-
cies, MFPT, BOA, SSD, and CSSD, based on a large
number of randomly generated networks with similar net-
work properties. The two most important parameters for
generating random Boolean networks are the bias (p;,) and
connectivity (K). Here, p, is the mean of the Bernoulli dis-
tribution to generate the truth table of one Boolean func-
tion in a Boolean network, the bias p, being the
probability that a randomly generated Boolean function
takes on the value 1. K is the maximum input degree of the
Boolean functions in the network. All simulation results
in this section are based on 1, 000 randomly generated
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PBNs of 10 genes, including BNps and instantaneously
random PBNs, with fixed K = 3 and different p,,'s.

Performance comparison for BNps

We first consider performance comparison using ran-
domly generated BNps with 10 genes and p = 0.01 in all
experiments. Each BN is randomly generated with a spe-
cific bias p,,. Since the bias affects the dynamical properties
of randomly generated BNs [27], it is taken as a parameter
in our simulations. The bias p;, of each BNp is randomly
selected from a beta distribution. The mean of the beta dis-
tribution varies 0.1 to 0.9 with step-size 0.2. The variance
of the beta distribution is 0.000064. We generate 1000
random BNps for each bias mean. For each network, with-
out loss of generality, undesirable and desirable states are
defined by x; = 0 and x, = 1, respectively, and the control
gene is x;,. All four control policies are applied: MFPT

with A = 0; BOA; SSD; and CSSD. Table 1 summarizes the

average stationary mass for the undesirable states before
control (ORG) and after applying these four different pol-
icies. Note that the undesirable stationary mass before
control is dependent on p,,. Figure 1 shows both the means
and standard deviations of the stationary mass for unde-

sirable states, Z 7y, with p, = 0.5 before and after

x;=0
control. From both the table and the figure, we see that the
CSSD control policy has the best performance and the
SSD policy also achieves better performance compared

Table I: Performance comparison for randomly generated
BNps.

Control policies Pp
0.1 0.3 0.5 0.7 0.9
ORG 0.8923 0.7000 0.5034 0.2781 0.1110
MFPT 0.8641 0.5572 0.3222 0.1574 0.0763
BOA 0.8644 0.5717 0.3352 0.1657 0.0777
SSD 0.8609 0.5415 0.3093 0.1491 0.0748
CSSD 0.8594 0.5102 0.2472 0.1308 0.0743

Average Zx _oTFx over 1000 randomly generated BNps before
=

and after applying all of four control policies: ORG — original
stationary mass for undesirable states before control; MFPT — mean-
first-passage-time control policy; BOA — BOA control policy; SSD —
steady-state distribution control policy; CSSD — conservative SSD
control policy with x,, as the control gene.
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with the MFPT and BOA policies. They also show that in
average, the BOA policy performs similarly to the MFPT

policy.

Recall that it is guaranteed that the CSSD control policy
always leads to a reduction of the stationary mass for
undesirable states. Table 2 gives the percentages of ran-
dom BNps with stationary mass shift A = 7, - 7; >0 for
different control policies and different values of p,. The
MFPT control policy is probably the most aggressive pol-
icy with 4 = 0 because the algorithm will force gene flip-
ping whenever a difference between the mean first passage
times is observed, and this aggressiveness is reflected by
the lowest percentage in Table 2. As must be the case, the
CSSD policy always leads to a reduction of the undesira-
ble stationary mass. In this simulation, the SSD policy
also always reduces the undesirable mass, although we do

not have a proof that this is always the case. In fact, we
have tried different settings with K and p;, and for all tested
settings, the SSD control policy never increases the unde-
sirable mass. It would be nice to find a mathematical way
to prove that the SSD control policy has the guarantee that
it will always shift the stationary mass beneficially. In gen-
eral, the BOA, SSD, and CSSD control policies are all rela-
tively conservative compared to the MFPT policy since the
criteria they use are directly related to the network's long-
run behavior. It is also interesting to see that there is some
correlation of the percentages with p,,.

Performance comparison for instantaneously random PBNs

We have also compared the performances using 1000 ran-
domly generated instantaneously random 10-gene PBNs
with 2 context BNps, generated similarly as the BNps in
the previous subsection. We fix the perturbation probabil-
ity at p = 0.01. The selection probabilities are ¢, = ¢, = 0.5.
We again define states with x, = 0 as undesirable and states
with x; = 1 as desirable, and again apply all four control
policies with x,, as the control gene. Table 3 summarizes
the average stationary mass for the undesirable states
before control (ORG) and after applying these four differ-
ent control policies. The means and standard deviations

of the stationary mass for undesirable states zx 07x
=

with p, = 0.5 before and after control are shown in Fig. 2.
The CSSD policy has the best performance and the SSD
policy also achieves better performance compared with
the MFPT and BOA policies, as in the simulations for
BNps.
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We show the percentages of random PBNs with stationary
mass shift A = z;- 7; 2 0 in Table 4 for different control
policies and different p,'s. We see a similar trend as with
the simulations for BNps.

We observe similar trends for randomly generated net-
works with different numbers of genes [see Additional file

1]. Finally, while the MFPT and BOA control policies are
close in terms of the shift of undesirable stationary mass,
the MFPT control policy being slightly better in many
cases, the BOA control policy is always significantly better
than the MFPT control policy in terms of producing a ben-
eficial shift.

A mammalian cell cycle network

We now apply these different control policies on a proba-
bilistic Boolean network (PBN) model of the mammalian
cell cycle recently proposed in [29]. For a normal mam-
malian organism, cell division coordinates with overall
growth controlled via extra-cellular signals. These signals
indicate whether a cell should divide or remain in a rest-
ing state. The positive signals, or growth factors, instigate
the activation of Cyclin D (CycD), which is one of the key
genes in the mammalian cell cycle. The other two impor-
tant genes are retinoblastoma (Rb) and p27. Rb is a
tumor-suppressor gene. This gene is expressed in the
absence of the cyclins, which inhibit Rb by phosphoryla-
tion. Gene p27 is also active in the absence of the cyclins.
Whenever p27 is present, it blocks the action of CycE or
CycA and Rb can also be expressed, even in the presence
of CycE or CycA. Hence, it stops the cell cycle.

The preceding explanation represents the wild-type cell
cycle model. In this model, when p27 is active, the cell
cycle can be stopped in cancerous situations. When we
follow one of the proposed mutations in [29], in which
p27 is mutated and it is always off, the mutation intro-
duces a situation where both CycD and Rb might be inac-
tive. As a result, in this mutated phenotype, the cell cycles
in the absence of any growth factor. In other words, we
consider the logical states in which both Rb and CycD are
down-regulated as undesirable states.

We use the PBN that postulates the cell cycles with
mutated phenotype in our experiments. We construct the
instantaneously random PBN of the cell cycle based on
the Boolean functions in Table 5 with mutated p27. This
PBN consists of 9 genes: CycD, Rb, E2F, CycE, CycA,
Cdc20, Cdh1, UbcH10, and CycB. The illustration of the
relationship between these genes in the PBN is shown in
Fig. 3. The above order of genes is used in the binary rep-
resentation of the logical states, with CycD as the most sig-
nificant bit and CycB as the least significant bit. The order
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Performance comparison for randomly generated
BNps. Performance comparison for 1000 randomly gener-
ated BNps with p, = 0.5 with respect to the means and stand-
ard deviations of the stationary masses for undesirable states
for different control policies: ORG — original undesirable sta-
tionary mass; MFPT — undesirable stationary mass after apply-
ing the MFPT control policy; BOA — undesirable stationary
mass after applying the BOA control policy; SSD — undesira-
ble stationary mass after applying the steady-state distribu-
tion control policy; CSSD — undesirable stationary mass after
applying the conservative SSD control policy.

of genes in the logical states does not affect our analysis or
intervention. We assume that the extra-cellular signal to
the cell cycle model is a latent variable. The growth factor
is not part of the cell and its value is determined by the
surrounding cells. The expression of CycD changes inde-
pendently of the cell's content and reflects the state of the
growth factor. Depending on the expression status of
CycD, we obtain two constituent Boolean networks. The
first constituent Boolean network is determined based on

Table 2: Percentages of random BNps with improved
performance after applying control.

Control policies by
0.1 0.3 0.5 0.7 0.9
MFPT 96.4%  91.1%  90.6%  91.1%  97.6%
BOA 100.0% 99.4%  98.4%  99.5%  100.0%
SSD 100.0% 100.0% 100.0% 100.0% 100.0%
CSsD 100.0% 100.0% 100.0% 100.0% 100.0%

Percentages of random BNps with A = ;- 7T;; = 0 within 1000

random BNps after applying four control policies with x4 as the
control gene.
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Table 3: Performance comparison for randomly generated
instantaneously random PBNs.

Control policies Py
0.1 0.3 0.5 0.7 0.9
ORG 0.8939 0.6934 0.4997 02967 0.1063
MFPT 0.8567 0.5807 0.3484 0.1912 0.0747
BOA 0.8595 0.5966 0.3662 02026 0.0784
Ssb 0.8547 0.5637 0.3349 0.1822 0.0728
CSsD 0.8525 0.5439 0.2971 0.1670 0.0723

Average Zx _oFx over 1000 randomly generated PBNs before
=

and after applying all of four control policies: ORG — original
stationary mass for undesirable states before control; MFPT — mean-
first-passage-time control policy; BOA — BOA control policy; SSD —
steady-state distribution control policy; CSSD — conservative SSD
control policy with x4 as the control gene.
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Figure 2

Performance comparison for randomly generated
instantaneously random PBNs. Performance comparison
for 1000 randomly generated instantaneously random PBNs
with p, = 0.5 with respect to the means and standard devia-
tions of the stationary masses for undesirable states for dif-
ferent control policies: ORG — original undesirable stationary
mass; MFPT — undesirable stationary mass after applying the
MFPT control policy; BOA — undesirable stationary mass
after applying the BOA control policy; SSD — undesirable sta-
tionary mass after applying the steady-state distribution con-
trol policy; CSSD — undesirable stationary mass after applying
the conservative SSD control policy.
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Table 4: Percentages of random PBNs with improved
performance after applying control.

Control policies by
0.1 0.3 0.5 0.7 0.9
MFPT 94.4%  91.3%  944%  92.5%  95.6%
BOA 99.5%  96.1%  97.0%  949%  99.6%
SSD 100.0% 100.0% 100.0% 100.0% 100.0%
CSsD 100.0% 100.0% 100.0% 100.0% 100.0%

Percentages of random PBNs with A = ;- 7T;; = 0 within 1000

random PBN:s after applying four control policies with x4 as the
control gene.

the Boolean functions in Table 5 when the value of CycD
is equal to 0. Similarly, the second constituent Boolean
network is determined by setting the value of CycD to 1.
To completely define the PBN, we set the perturbation
probability p = 0.01, and the probability of selecting each
constituent Boolean network ¢= 0.5,j=1,2.

We first compute the steady-state distribution for this
mutated PBN as shown in Fig. 4(a). Since the logical states
in which both Rb and CycD are down-regulated are unde-
sirable states, we compute the total stationary mass for the

undesirable states: Zx cox—oTx =0.2164. We then
1= V2™

apply the MFPT control policy with 4 = 0.1, the BOA con-
trol policy, the SSD control policy, and CSSD control pol-
icy to find the single control gene to reduce the stationary
mass for the undesirable states. As CycD and Rb are two
genes deciding network states to be either desirable or
undesirable, it is problematic to apply the MFPT control
policy if these genes are considered. Hence, in the experi-
ments, we only check the last 7 genes for all four control
policies. Table 6 gives the total stationary masses for dif-
ferent control genes using these control policies. From the
table, all the control policies find the same best control
gene, E2F, and their performances are similar. However,
when we compare the total stationary masses of the unde-
sirable states for all possible control genes, we see that the
performance of the CSSD control policy is the best among
all the control policies. The SSD control policy also gives
superior performance. Figure 4(b) shows the steady-state
distribution after applying the derived CSSD control pol-
icy for the best control gene E2F.

A recent paper suggests that the Myc-Rb-E2F pathway
functions as a bistable switch that separates quiescence
and proliferation for the mammalian cell cycle [19]. The
paper shows that E2F activation correlates directly with
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Table 5: Definitions of Boolean functions for the mutated mammalian cell cycle PBN.

Order Gene Regulating function
b CycD extra-cellular signals
Xy Rb
(CycD A CycE A CycA A CycB)
X3 E2F
(Rb A CycA A CycB)
X4 CycE
(E2F A RD)
Xg CycA
(E2F A Rb A Cdc20 A (Cdhl A UbcH10)) v (CycA A Rb A Cdc20 A (Cdhl A UbcH10))
X Cdc20 CycB
X7 Cdhl
(CycA A CycB) v Cdc20
Xg UbcH10
Cdhl v (Cdhl A UbcH10 A (Cdc20 v CycA v CycB))
X9 CycB

(Cdc20 A Cdh1)

Definitions of Boolean functions for the mutated 9-gene mammalian cell cycle PBN.

the ability of a cell to reverse the R(estriction)-point,
which marks the critical event when a mammalian cell
commits to proliferation independent of growth stimula-
tion. The R-point is fundamental for normal differentia-
tion and appears to be dysregulated in virtually all
cancers. It is interesting to see that through different math-

UbcH10

Figure 3

Mutated mammalian cell cycle network. Logical regula-
tory graph for the mutated mammalian cell cycle network
(modified from Fig. | in [29]). Blunt arrows stand for inhibi-
tory effects; normal arrows for activations.

ematical modeling we reach the same conclusion that E2F
is the best potential target for future gene therapy design.

We have also computed the time to find the best control
gene for all of four control policies. The values in Table 7
follow roughly the time complexity predicted in Methods
section. Note that we collected the running time with the
unoptimized code running in MATLAB on a standard PC
with a 1.8GHz CPU and 1Gb memory. These values only
serve as rough indices to show that the first three greedy
control policies have roughly the same time complexity.

Conclusion

In this paper, we propose three new greedy stationary con-
trol policies directly using long-run behavior change by
intervention to define the control criteria. Through simu-
lations, we have shown that the MFPT, BOA, and SSD pol-
icies perform similarly with respect to computational
complexity and all reduce the risk of entering undesirable
states that correspond to aberrant phenotypes of the mod-
eled cells, with the SSD policy having better average per-
formance in this regard than the other two. For the
conservative CSSD policy, we are guaranteed that inter-
vention will lead to beneficial shift of steady-state distri-
butions. We have also illustrated how these control
policies can serve as the potential gene therapeutic inter-
vention strategies in the future with a mammalian cell
cycle network. As with the MFPT control policy, not only
can they be used to directly shift the steady-state distribu-
tion without the need for a cost function, they can also be
used to predict the potential control gene of the network,
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Table 6: Total stationary mass of undesirable states after applying control policies for all the potential target genes in the mutated

mammalian cell cycle PBN.

Control policies

Potential control genes

E2F CycE CycA Cdc20 Cdhl UbcHI10 CycB

MFPT 0.0445 0.1534 0.1799 0.2003 0.1399 0.2037 0.1320
BOA 0.0505 0.1534 0.2092 0.1832 0.1912 0.2161 0.1712
SSD 0.0386 0.1534 0.1784 0.1614 0.1369 0.2025 0.1531

CSSD 0.0386 0.1534 0.1770 0.1371 0.1369 0.2025 0.1303

zx 20 x.20 7 (X) after applying all of four control policies for all the potential control genes in the mutated 9-gene PBN.
1Y 2=

serve as reduced-complexity approximations to cost-based
control policies, and provide measures of network con-
trollability. Our future direction will be focused on under-
standing the performance of these greedy control policies

relative to their robustness in the presence of inaccurate
inference [30] and network reduction [31,32].
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Appendix

Appendix | — MFPT algorithm [7]

Partition the state-space into undesirable U and desirable
D subsets.

Compute K;; and K.

g« 1

repeat

for All states x in U do

x, < flip control gene g in x.

if Kp(x) - Kp(x,) > 4 then

u(x)=1;
else
u (x) = 0;

end if
end for
for All states x in D do
x, < flip control gene g in x.
if K, (x.) - K, (x) > 4 then
u(x) =1;
else
u (x) = 0;
end if
end for
g« g+ 1
until ¢ > number of genes
Appendix 2 — BOA algorithm
Partition the state-space into undesirable U and desirable

D subsets.

Determine the BOA structure of the network, including
B(x), dp(x) or d(x) for each state x. g « 1.

repeat
for All states x in U do
x, < flip control gene g in x.

if B(x) contains no desirable attractors &&B(x,) con-
tains desirable attractors then

u(x) = 1;

Page 13 of 16

(page number not for citation purposes)



BMC Systems Biology 2009, 3:61

else

if dp(x) > dp(x,.) then
u(x) = 1;
else
u (x) = 0;
end if
end if
end for
for All states x in D do

x, < flip control gene g in x.

http://www.biomedcentral.com/1752-0509/3/61

u(x) =1;
else
U (x) = 0;
end if
end if
end for
g« g+ 1
until g > number of genes
Appendix 3 — SSD algorithm
Partition the state-space into undesirable U and desirable

D subsets.

Compute the original steady-state distribution 7 and the
fundamental matrix Z.

if B(x) contains undesirable attractors &&B(x,.) con-

tains no undesirable attractors then

ug(x) =1;

else

g« 1.
repeat

for All pairs of states x and x_ < flip control gene g in x

do
if d; (x.) > d;; (x) then
a
(a) Il Undesriable mass

02b Il Desirable mass ]
c
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=}
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Figure 4

Steady-state distribution shifts for the mutated mammalian cell cycle PBN. Steady-state distribution shifts for the
mutated 9-gene mammalian cell cycle PBN with p = 0.01: (a) Original steady-state distribution; (b) Steady-state distribution
after applying the conservative SSD control policy with E2F as the control gene.
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Table 7: Running time for deriving four control policies in the
mutated mammalian cell cycle PBN.

Control policies MFPT BOA SSD CSSD

Running time (sec.) ~ 27.9033  27.8034 28.0793  599.7273

Running time (measured in seconds) for deriving four control policies
for all the potential control genes in the mutated 9-gene PBN.

Compute 7(x) and 7;(x,) using (11).

if 7y <min(7;(x), 74(x,)) then

uy(x) = 0;
uy(x.) = 0;
else

if 7;(x) < 7y(x,)then
u(x) = 1;
uy(x;) = 0;

else
u (x) = 0;
ul(x) =1

end if

end if

end for

Compute the shifted stationary mass of undesirable
states A(g) = — ], where x|; is the stationary mass
of the undesirable states after we apply the derived control
policy;

g« g+ 1

until ¢ > number of genes

Appendix 4 — Conservative SSD algorithm
Partition the state-space into undesirable U and desirable
D subsets.

Compute the original steady-state distribution 7 and the
fundamental matrix Z.
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g« 1.

repeat
7best = p;
Zbest = 7,

Assign the set of states with no control assigned as L;
repeat
Abest — 0;

for All states x € L do

Compute Ay =™ — 7% (x) with et and Zbest

based on (11);
if Az > Abest then
Abest = Az ;
Assign the best state to control: xbest = x;
abest = 7(x);
end if
end for
if Abest> (O then

ug(xbest) =1;
ug(x?e“) =0;

L = L\{xbes, X?e“ };
Compute Zbtest based on (12) accordingly;
end if
until Abest = Q

best .

AQ) =my 7y s
g« g+ 1

until g > number of genes
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Additional material

Additional file 1

"supplement.pdf" — Supplementary file for "Intervention in gene reg-
ulatory networks via greedy control policies based on long-run behav-
ior". The file "supplement.pdf" contains the proof for Theorem 1 and the
additional simulation results for 1000 randomly generated BNps and
instantaneously random PBNs with different number of genes and differ-
ent perturbation probability p. The performance comparison for four sta-
tionary control policies — mean-first-passage-time (MFPT) control policy;
BOA control policy; steady-state distribution (SSD) control policy; and
conservative steady-state distribution (CSSD) control policy — leads to the
same conclusions that we have discussed in the manuscript.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1752-
0509-3-61-S1.pdf]
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