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Abstract

Background: Rhizobium-Legume symbiosis is an attractive biological process that has been studied
for decades because of its importance in agriculture. However, this system has undergone
extensive study and although many of the major factors underpinning the process have been
discovered using traditional methods, much remains to be discovered.

Results: Here we present an analysis of the 'Symbiosis Interactome' using novel computational
methods in order to address the complex dynamic interactions between proteins involved in the
symbiosis of the model bacteria Sinorhizobium meliloti with its plant hosts. Our study constitutes the
first large-scale analysis attempting to reconstruct this complex biological process, and to identify
novel proteins involved in establishing symbiosis. We identified 263 novel proteins potentially
associated with the Symbiosis Interactome. The topology of the Symbiosis Interactome was used
to guide experimental techniques attempting to validate novel proteins involved in different stages
of symbiosis. The contribution of a set of novel proteins was tested analyzing the symbiotic
properties of several S. meliloti mutants. We found mutants with altered symbiotic phenotypes
suggesting novel proteins that provide key complementary roles for symbiosis.

Conclusion: Our 'systems-based model' represents a novel framework for studying host-microbe
interactions, provides a theoretical basis for further experimental validations, and can also be
applied to the study of other complex processes such as diseases.

Background

Plant-microbe interactions play an important role in agri-
culture and a lot of effort has been dedicated to analyse
these interactions in detail. One of these interactions is
the Rhizobium-Legume symbiosis, a process that allows
the growth of the plant in the absence of externally sup-

plied nitrogen. This is a well studied agronomically
important process that is also used as a model to study
general genetic aspects of plant-microbe interactions
[1,2]. Rhizobial bacteria and legumes have evolved com-
plex signal exchange mechanisms in which a lot of genes
are involved [3]. To probe this complexity further we
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chose to study the model rhizobial symbiont genome
Sinorhizobium meliloti [4]. S. meliloti is a model bacterium
that can engage in a symbiotic interaction by infecting the
roots of members of the genera Medicago and Melilotus,
being the S. meliloti-Medicago truncatula interaction the
model system for indeterminate type nodules [5].

The sequencing of hundreds of complete genomes from
diverse species is having a tremendous impact on our
understanding of biology by enabling the identification of
all proteins and the analysis of their function. Despite the
vast body of literature about the Rhizobium-legume inter-
action there have been no systematic large-scale attempts
to identify its components and function using a systems
biology perspective, and most studies have been restricted
to the analysis of individual proteins. However, biological
functions results from the interactions of proteins so that
understanding the network of biological linkages utilizing
functional genomics information is becoming a hot topic
in current research projects [6-11]. The main advantage of
creating these networks lies in the ability to understand
biological processes from a system level perspective. This
would ideally require the application of computational
and experimental techniques to combine experimental
observations of protein-protein interactions (PPIs) and
computational predictions derived from different data
sources. To date a variety of methods have been developed
to derive large scale networks of PPIs for a variety of
organisms. These range from experimental methods such
as yeast two-hybrid screens, or tandem affinity purifica-
tion coupled with mass spectrometry [6,8,9,12], to com-
putational methods such as genome context methods
[13,14]. The integration of these types of data helps to
provide a complete overview of gene networks of high
value for characterizing many biological processes, and
ultimately, for understanding the basis of host-microbe
interactions including diseases [15-17]. However, experi-
mental information is sometimes missing and deriving
gene networks from different computational approaches
is not an easy task. Computational predictions such as
those obtained by applying genome context methods usu-
ally measure functional interactions between proteins.
The assumption is that proteins are most likely to interact
if: a) their proteins are either present or absent together
across multiple genomes (the Phylogenetic Profile
method) [18]; b) a gene fusion event occurred in other
species (the Gene Fusion or Rosetta Stone method)
[19,20]; ) the genes are in physical proximity (the Gene
Cluster method) [17]; or d) the genes are conserved in
physical proximity and in phylogenetically distant
genomes (the Gene Neighbor method) [21]. These meth-
ods have the advantage over experimental methods and
other computational methods based on protein conserva-
tion such as Interologs [22] or literature mining [23], that
they are not biased towards well studied or conserved pro-
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teins or interactions [24]. Therefore, genome context
methods are able to highlight organism-specific features
since they just rely on genome structure. The outputs
derived by these methods can be computationally inte-
grated in order to reconstruct network models of the rela-
tions between genes [13,14]. Data integration for
inferring protein associations is advantageous for two
main reasons. First, combining data from diverse studies
and methods generates data sets of higher quality, and
second, integration effectively captures different aspects of
organism's biology [25-27]. Further exploiting the topo-
logical properties of these networks, clustering algorithms
have subsequently allowed proteins to be organized into
discrete interconnected units known as functional mod-
ules representing either protein complexes or biochemical
pathways [28,29]. In addition, integration of additional
functional and comparative genomics data sets are further
providing insights into how these modules and their com-
ponents are co-ordinated and how they may have evolved
[9,30].

Due to the scarcity of large-scale experimental assays aim-
ing to study this important microorganism-host interac-
tion, we chose to apply a systems-based computational
approach to evaluate and organize our current knowledge
about this complex biological process further. Here, we
first reconstruct an extensive and accurate functional net-
work in S. meliloti by integrating the functional associa-
tions present in the two well known databases PROLINKS
[13] and STRING [14] (see methods). These databases
host functional linkage predictions obtained mainly by
the four different computational genome context
approaches described above. Second, we present an anal-
ysis of the 'Symbiosis Interactome' (a detailed functional
interaction network of the proteins involved in the S.
meliloti-Legume symbiosis) by first mapping proteins
known to be involved in symbiosis on top of the S. meliloti
network, and secondly, by extending this resulting net-
work by means of a novel method, referred here as 'phe-
notypic profiling', which is further extended by
incorporating data from the computational prediction of
functional modules. This computational approach poten-
tially revealed the complex interplay of functional interac-
tions between proteins involved in S. meliloti-Medicago
symbiosis providing a way to expand the current under-
standing of symbiosis by enabling hypothesis generation
based on our predicted network. Finally, since one of the
major advantages of constructing PPI networks is the abil-
ity to predict functions for proteins based on their associ-
ation with well known proteins, we identified and tested
the functions of candidate proteins and demonstrate that
novel Symbiosis Interactome proteins can still be discov-
ered despite the many decades of effort dedicated to study
this important and complex biological process.
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Results

The S. meliloti network

An initial template functional network was generated
from the confident interactions obtained by merging S.
meliloti functional genomics data hosted by the PRO-
LINKS [13] and STRING [14] databases (see methods)
(see Fig. 1 for a schematic and full description of the
approach). These data were derived by using the following
genome context methods: the Phylogenetic Profile
method [18], which uses the presence and absence of pro-
teins across multiple genomes; the Gene Cluster method
[17], which uses genome proximity; Rosetta Stone
[19,20], which uses a gene fusion event in a second organ-
ism; and the Gene Neighbor method [21], which uses
both gene proximity and phylogenetic distribution. In
this model, some linkages may represent direct physical
protein-protein interactions (PPIs) and other are func-
tional associations (not mediated by physical contact)
such as regulatory, genetic or metabolic associations. For
the purpose of this study, we call these linkages functional
interactions. Therefore, our integrated network represents
a description of functional coupling between genes in S.
meliloti. We combined and integrated these data into two
non-redundant datasets formed by the interactions
present in both databases (the intersection network), con-
sisting of 3,010 proteins (48% of the S. meliloti proteome)
involved in 7,716 functional interactions, and the union
of both data sets (the union network), consisting of 5,422
proteins (87% of the S. meliloti proteome) involved in
38,185 functional interactions. The original confidence
scores of the interactions present in the two databases
were integrated and re-scored, and the resulting networks
were validated by calculating the Area Under ROC Curves
(AUCQ) [see Additional file 1]. The analysis showed that
the intersection dataset has a higher accuracy (AUC =
0.75) than the union dataset (AUC = 0.69), and these two
networks have bigger accuracies than any of the two inde-
pendent databases. Based on the results, unless otherwise
noted, the intersection S. meliloti network was chosen for
further analyses.

Unfortunately, the lack of large-scale protein interaction
data on S. meliloti make it impossible to validate experi-
mentally this initial functional network. However, besides
calculating AUCs, we can also assess the quality of our
preliminary intersection network by comparison with
other available bacterial interaction datasets. We thus
compared our predicted network with three other
Escherichia coli experimental interaction data sets: one
small- and one large-scale datasets obtained from the
Database of Interacting Proteins (DIP) [31], and a third
large-scale dataset recently published [7]. Reciprocal best-
hits S. meliloti orthologs of E. coli were used to predict S.
meliloti interologs (see methods). The network similarity
(NS) between our network and the small-scale E. coli data
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was 6.6%, significantly more than random networks
(0.03%(aver) (p < 0.001) (Fig. 2a). The overlap between
our network and the large-scale E. coli data was also signif-
icantly greater than expected by chance. Furthermore, the
NS of S. meliloti interactions versus small-scale is higher
than versus large-scale assays, and the overlap with the
small-scale data is similar to that for the E. coli large-scale
data sets. The number of proteins shared between each
other data sets was also comparable (data not shown).
The results show that the predicted network also has sim-
ilar rates of true positives, false positive and negatives
compared to other high-quality experimental networks
further demonstrating its accuracy, and potential for
hypothesis-generation and further experimental valida-
tion. Nonetheless, for other type of analyses, such as accu-
racy prediction using only computational methods as
reference datasets or network evolution studies, it might
be more relevant to compare functional linkage data from
two sources (for example, S. meliloti versus E. coli), rather
than functional linkages of one organism and physical
interaction of another.

The S. meliloti network demonstrated to have properties of
scale-free network [see Additional file 1] like other biolog-
ical networks, the Internet and social networks [32]. Most
of the proteins had few interacting partners, where a sub-
set of 'hubs' form a far greater number of connections.
Scale-free networks are predicted to be robust against ran-
dom node removal but vulnerable to hub removal, a
property that might be preserved across evolution [32].
Furthermore, the average clustering coefficient (ACC) of
the intersection network and its diameter or average short-
est path length (L) (see methods) suggests properties of a
small-word network (L ~ Lrandom, ACC >> ACCrandom)
typical of intracellular network in which the nodes are
connected when they are involved in the same biological
processes [32].

Prediction of functional modules

While defining accurate PPI networks is important, the
ultimate goal of interactome analyses is to identify the
functional modules in these networks, that is, proteins
with related functions that tend to be clustered into highly
interconnected subnetworks [10,33,34], and to validate
them. To assess if our network could also be clustered into
such subnetworks, we first tested the capacity of the S.
meliloti network to form groups of highly interconnected
proteins, as indicated by its Average Clustering Coefficient
(ACC) (see methods). Indeed, the ACC of the S. meliloti
network is much higher (ACC = 0.41) than other large-
scale E. coli (ACC =0.15 [31] and ACC = 0.08 [7]) and H.
pylori [6] (ACC = 0.02) experimental, and random net-
works (ACC = 0.0002) suggesting the organization of the
S. meliloti network in functional modules.
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tively, present in DIP [31]. PD refers to a recently published pull down study [7]. Random refers to the average values of 100
random networks created with the same number of nodes and interactions as the Sm dataset. Error bars are negligible and not
shown for clarity. (B) COGs [37] annotation from functional interactions and its correlation with network distance. 'X' axis
stands for different network distances (shortest path lengths) in the S. meliloti network. Values at the 'Y' axis stand for the
number of interactions having the same COGs categories in both interacting partners.

We further predicted the structure of these subnetworks by
using the Markov Cluster (MCL) algorithm [35] (see
methods). MCL simulates random walks within graphs
using the language of Markov (stochastic) matrices in
order to partition a graph into highly connected clusters.
This procedure works efficiently on large dense graphs [9],
and have the advantage over other methods such as Path-
Blast [36] that does not rely on conservation, therefore,
being able to detect species-specific clusters. Nonetheless,
the performance of different clustering methods varies
widely and usually drops for networks including noisy
data. Reliable criteria for evaluating the quality of the pre-
dicted modules are also lacking, making difficult to com-

pare the results obtained by different clustering
procedures, or to assess the biological relevance of the pre-
dicted modules. In our study we chose MCL because of
our own experience and expertise and the fact that it has
been applied to numerous key studies, showing MCL clus-
tering as one of the state of the art methods for network
clustering [[9,29], Peregrin-Alvarez JM, Xiong X, Su C, Par-
kinson J: The modular organization of protein interac-
tions in Escherichia coli, submitted]. The network was thus
organized into 345 highly interconnected clusters con-
taining three or more proteins [see Additional file 2].
Modules derived from our S. meliloti network appear to be
much more functionally homogeneous (Fig. 3a) and pro-
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and low stringency (LS). RA and RS refers to random networks of equal size to the S. meliloti network generated for COGs and
symbiosis-stage correct annotation comparisons, respectively. Error bars indicate standard deviation for 100 replicate random

controls.

duced similar distributions of module sizes (data not
shown) compared with the modules derived from ran-
dom networks highlighting the non-random organization
of proteins into modules. 185 (54%) of these predicted
clusters possessed a high proportion (>= 50%) of com-
mon Clusters of Orthologous Groups (COGs) functional
annotations [37] (Fig. 3b). These results a priori suggest
that most of these predicted clusters correspond to known
functional modules in the form of protein complexes,

metabolic or regulatory pathways. Less functionally well
defined modules (14%) may correspond to multi-func-
tional modules involved in pathway cross-talk (compo-
nent annotations are heterogeneous). The remaining may
represent novel functional modules (component annota-
tions are absent) (see below). To compute the significant
of finding specific COGs functional modules, we gener-
ated 10,000 random module sets of the same size, and
counted the number of times we found each COGs mod-
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ule in each randomized network. For each module, a p-
value was computed based on the distribution of the ran-
dom sets (assuming a normal distribution) and our mod-
ule predictions, therefore, representing the probability of
seeing such modules at chance. This yielded 121 clusters
(58%, out of 209 that we were able to compute statistics)
that were significantly enriched in COGs functional cate-
gories (p < 0.01) [see Additional file 2], thus likely repre-
senting true functional modules. An additional 136
clusters had no COGs assignments (i.e component anno-
tations are absent) thus potentially representing novel
functional modules (Fig. 3b and Additional file 2) (see
methods). Finally, a total of 257 modules (121 statisti-
cally significant and 136 novel) were considered for fur-
ther network analyses (see below).

The Symbiosis Interactome network

We first undertook an exhaustive literature-search analysis
to identify and compile a list of bacterial proteins whose
role in the symbiosis Rhizobium-Legume has been widely
studied (Additional file 2 and methods). These proteins
were classified as "classical-known" proteins in different
categories according to the stage of symbiosis they are
involved in.

To place the bacterial proteins involved in symbiosis (here
referred as Symbiosis Interactome) in biological context,
the 'classical-known' proteins were used to generate a sub-
network of this complex biological process (Fig. 1). A total
of 92 S. meliloti 'classical-known' components were then
used to anchor a subnetwork of functional interactions
within the S. meliloti network (see methods). This yielded
our 'initial Symbiosis Interactome network' formed by
137 proteins involved in 128 interactions. From the clas-
sical-known list the only gene names that did not map any
of the two functional networks (intersection and union)
were the genes nov, cps, vis and mos. These mostly represent
either genes not known in S. meliloti or absent in the net-
works we generated. The resulting subnetwork was further
extended based on the expectation that: first, the 'classical-
known' components identified by our preliminary litera-
ture curation should remain central to the network, and
secondly, neighbor proteins of those classical-known
components in the S. meliloti network are more likely to
participate in similar biological processes (Fig. 2b). This is
consistent with the idea that interacting proteins in the
network often function in the same pathway or protein
complex and, therefore, close network neighbors of the
classical-known proteins may be potentially involved in
symbiosis. The preliminary Symbiosis Interactome set was
then extended by allowing the addition of other proteins
absent from the literature-search but predicted from our S.
meliloti map. This was done through three extra rounds of
node and edge additions: first, adding first-level indirect
interactions (i.e. direct interactors of our initial network),
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and mapping phenotype-specific information by mean of
a novel method referred here as 'phenotypic profiling'
(see methods). This was done by adding nodes with the
following phenotypic profiles: "Fn", proteins with
homologs in other plant-nitrogen fixing organisms or S.
meliloti-specific genes to account for genes potentially
involved in symbiosis; "FnFl", proteins with homologs in
other nitrogen fixation free-living organisms; and "CFIF-
nPpPSSyO" and CfnPpPSSyO", the two most common
phenotypic profiles obtained from the list of 'classical-
known' proteins [see Additional file 2]. Table 3). This
resulted in an extension of our initial Symbiosis Interac-
tome map by adding both the proteins with these profiles
and their linkages mapping the intersection S. meliloti net-
work. We also allowed additional functional linkages
formed by one component with a "Fn" or "FnFl" profile,
and the other component having any of the profiles men-
tioned above, since we hypothesized that these new link-
ages may represent novel interactions involved in
symbiosis. We called this network 'the phenotypic net-
work' formed by 230 proteins involved in 178 interac-
tions. Secondly, we mapped functional modules [9,33,34]
(see methods, Fig. 3 and Additional file 2) on top of the
initial Symbiosis Interactome network to account for the
completion of the functional modules the classical-
known and other direct-neighbors proteins may partici-
pate in. We called this 'the module network' formed by
352 proteins involved in 678 interactions. Finally, we
added those 'classical-known' proteins that did not map
the intersection S. meliloti network but did map 'the union
S. meliloti network' (see methods) to extend the module
network with the only condition that these proteins have
to interact with themselves or with any of the proteins
present in 'the module network'. The final 'Symbiosis
Interactome network' contained a total of 440 nodes
(classical-known and novel proteins) and 1,041 edges
(functional interactions) (Fig. 4a and Additional file 3).
Using the SIGCLEAVAGE software [38] we predicted the
periplasmic location of all S. meliloti proteins (see meth-
ods). The accuracy of SIGCLEAVAGE has been reported to
be high and similar to other computational approaches,
therefore the proteins predicted as periplasmic or cyto-
plasmic are likely to be of correct subcellular localization.
Interestingly, we found that 282 (64%) of the 440 Symbi-
osis Interactome components have a predicted signal pep-
tide [see Additional file 2]. This is consistent with recent
studies showing that a large number of periplasmic pro-
teins are upregulated during symbiosis [39-43]. Our
results suggest a membrane location in a high proportion
of network proteins and potential involvement in plant-
microorganism interactions [44]. Furthermore, our results
show that the Symbiosis Interactome does not act in iso-
lation, rather it involves many interactions formed by
highly conserved proteins participating in many other
well known cellular functions (Fig. 4b). In addition, like
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The Symbiosis Interactome network and its organization into functional modules. (A) Network visualization of the
440 proteins (nodes) and 1,041 interactions (edges) potentially involved in the S. meliloti-Legume symbiosis. The colours of
each protein indicate the stage of symbiosis [see Additional file 2] or the phenotypic profile categories the proteins belong to
(see panel). Edges are coloured according to the probability of interaction, from blue (less probability) to red (more probabil-
ity). We used Biolayout [66] for network visualization. (B) Graphical overview of the interconnected functional modules pre-
dicted over the Symbiosis Interactome network presented in (A). Larger pie charts (blue sky colour) represents individual
functional modules (only modules with 3 or more proteins are shown) and smaller pie charts represents proteins not pre-
dicted to be part of functional modules and directly interacting with modules, and coloured as in (A). Module borders are col-
oured if >60% of their members are associated with a single COGs category (black otherwise)(see panel). We used Cytoscape
[67] for network visualization. COGs codes are as follow: [J] Translation, ribosomal structure and biogenesis; [A] RNA
processing and modification; [K] Transcription; [L] Replication, recombination and repair; [B] Chromatin structure and dynam-
ics; [D] Cell cycle control, cell division, chromosome partitioning; [Y] Nuclear structure; [V] Defense mechanisms; [T] Signal
transduction mechanisms; [M] Cell wall/membrane/envelope biogenesis; [N] Cell motility; [Z] Cytoskeleton; [W] Extracellular
structures; [U] Intracellular trafficking, secretion, and vesicular transport; [O] Posttranslational modification, protein turnover,
chaperones; [C] Energy production and conversion; [G] Carbohydrate transport and metabolism; [E] Amino acid transport
and metabolism; [F] Nucleotide transport and metabolism; [H] Coenzyme transport and metabolism; [I] Lipid transport and
metabolism; [P] Inorganic ion transport and metabolism; [Q] Secondary metabolites biosynthesis, transport and catabolism; [R]
General function prediction only; [S] Function unknown; [-] Non-annotated genes.
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the intersection S. meliloti network, the ACC of the the
Symbiosis Interactome and its diameter suggests proper-
ties of a small-world and scale-free topology [see Addi-
tional file 1], highlighting both the complexity of this
subnetwork, and its robustness to node attacking [32].

Prediction of functional annotation and stage of symbiosis
A major goal for many functional genomics and proteom-
ics projects is the generation of accurate functional infor-
mation for every gene and its product. Although
tremendous progress has been made through the applica-
tion of such systematic studies, we found that within the
S. meliloti proteome 3,376 (54%) proteins were not
assigned to a functional category according to COGs, 290
(5%) have been assigned category S (function unknown),
and a further 307 (5%) proteins have only been assigned
into category 'R' (‘general function prediction'). There has
been recent progress in the development of novel meth-
ods of functional inference based on network connectivity
[45]. The availability of our S. meliloti functional network
thus provides a valuable resource for future studies aimed
at predicting the functions of these high number of func-
tionally 'orphan' proteins. In order to test the ability of
our functional network to accurately infer reliable func-
tional annotations and the stage of symbiosis where com-
ponents of the Symbiosis Interactome may participate, we
investigated a basic network-based approach based on
functional category membership within predicted func-
tional modules. To provide estimates of the accuracy of
functional modules on inferring reliable functional anno-
tations, we applied a cross-validation procedure to predict
functional annotations (see methods). We were able to
identify correct annotations for 87%-100% of the pro-
teins contained in modules depending on the stringency
of COGs category assignments (see methods and Fig. 3¢).
The accuracy of this type of functional module predictions
has been found to be superior to other methods based
merely on direct interacting partners [Peregrin-Alvarez JM,
Xiong X, Su C, Parkinson J: The modular organization of
protein interactions in Escherichia coli, submitted]. These
findings highlight both the quality of the network and the
predicted functional modules for hypothesis generation
and future experimental validation.

Based on these results, module 266, for example, includes
three proteins Q92QS6  (Smc01792), Q92QS4
(SMc01794) and Q92VP9 (Smb21071) [see Additional
file 2]. The first two proteins are involved in M (cell wall/
membrane/envelope biogenesis) while the third one has
no COGs category assignment. We therefore predict the
latter is potentially involved in this biological process.
Furthermore, interestingly, we correctly identify the stage
of symbiosis for 92%-100% of the proteins contained in
modules depending on stringency (see methods and Fig.
3c). Again based on these promising results, module 208,
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for example, includes two nodulation proteins: nodP2
(Smb21223) and nodQ2 (Smb21224); and the novel pro-
tein Q92VH5 (SMb21225) [see Additional file 2], there-
fore, being tempting to speculate the participation of the
latter in nodulation.

The conservation and evolution of the Symbiosis
Interactome network

To investigate the conserved nature and evolution of our
predicted Symbiosis Interactome network, the classical-
known and novel Symbiosis Interactome components
were classified into different node ages according to their
phylogenetic distribution (see methods). A total of 313 (~
68%) proteins were classified as old nodes (with broad
phenotypic profiles (i.e with homologs in 7 or 8 pheno-
typic categories) suggesting an old evolutionary origin for
symbiosis [8,46]. Furthermore, of the 92 classical-known
proteins previously identified as components of the Sym-
biosis Interactome 62 (~ 67%) had homologs with dis-
tantly related genomes, indicating that these highly
conserved proteins were a valid system from which to
derive a model of symbiosis. In addition, highly con-
served genes tend to involve essential genes [8,9]. Since
most of the genes known to be involved in symbiosis are
highly conserved [see Additional file 2] this suggests that
these genes could be essential for organism's survival or at
least determinant for symbiosis. Indeed, many of the
novel genes predicted by our approach are missing from a
S. meliloti mutant collection recently published [47] (data
not shown) suggesting an essential role for many of these
novel genes. It has also been shown that nodes with high
network connectivity tend to be essential nodes [8,9,15].
Since most of the 'classical-known' and other novel Sym-
biosis Interactome proteins have multiple interacting
partners (315 (~ 68%) and 341 (~ 74%) proteins using
the Symbiosis Interactome and the complete intersection
S. meliloti network, respectively, interact with more than
one protein in the network) (see methods), this suggests
that these proteins may indeed have a key role in this
important biological process. It follows from these find-
ings that the number of interactions of the Symbiosis
Interactome proteins are positively correlated with its con-
servation [see Additional file 1] supporting a model of
evolution of the Symbiosis Interactome from core compo-
nents by adding additional ones over time [46].

Experimental validation

Examination of proteins in the S. meliloti network
revealed that proteins involved in the same biological
process tend to interact directly or being in close proxim-
ity to each other (Fig. 2b). For example, 1,666 interactions
(77%), out of 2,159 for which we could obtain COGs
annotations for both interaction partners, have the same
COGs annotation assigned to both protein partners at dis-
tance 1 (i.e. those interactions present in our S. meliloti
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network), compared to 9% (average value) of interactions
with the same COGs annotation using 100 random net-
works, thus, providing an indirect measure of network
accuracy (data not shown). The Symbiosis Interactome
network presented here, therefore, can be used to predict
the biological role of unknown proteins based on the
functions of their interacting partners, as demonstrated
for other PPI networks [8,9,34]. Therefore, a major goal of
this study was to find novel components among many
proteins of still unknown function in symbiosis. How-
ever, the validation of computational methods is a major
issue in systems biology because only a small fraction of
predictions can be tested experimentally with reasonable
time and costs. Many predictions can be then summarized
as 'priority lists' of potential proteins involved in a biolog-
ical process or with a particular function. To demonstrate
the implication of these novel symbiosis components,
and, at the same time, beginning to validate our Symbio-
sis Interactome map and our approach, we have studied
the symbiotic properties of several S. meliloti strains
mutated in novel genes, and provide the rest of predic-
tions as "priority list" for future experimental validation.
The selection of novel genes to be experimentally tested
was guided by using four different network scenarios (one
targeted gene per scenario) (see Fig. 5a): direct-high sce-
nario, novel proteins supported by direct network evi-
dence at high probability (that is, novel genes directly
interacting with classical-known symbiosis genes at high
probability) by targeting protein etfB1 (interacts with fixA
and fixB); direct-low scenario, novel genes supported by
direct network evidence at low probability by choosing
protein Q92TC2 (interacts with dctD, fix] and ntr genes);
direct-low module scenario, novel genes supported by
direct evidence in functional modules at low probability
(that is, novel genes directly interacting with classical-
known genes in the same functional module) by targeting
protein msbA1 (interacts with bacA and ndvA, and is in the
same module as ndvA and exsA) [see Additional file 2];
and indirect-high module scenario, novel genes sup-
ported by indirect evidence in functional modules at high
probability (that is, novel genes indirectly interacting with
classical-known genes in the same functional module) by
choosing protein Q92P53 (interacts with Q92P52 and
Q92P54 which in turn interacts with acpP, nodE, nodG and
kp genes at high probability) [see Additional file 2].

M. sativa plants were inoculated with S. meliloti strains
mutated at these genes, using S. meliloti 1021 as control
wild-type strain (see methods). We could not observe any
difference in nodulation phenotypes between plants inoc-
ulated with the strain mutated in Q92TC2 and the 1021
control strain (Fig. 5b). On the other hand, differences in
nodulation were observed when plants were inoculated
with the other mutants. A 20-30% decrease in nodule
number (depending on the experiment these are maxi-
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mum and minimum values) was observed in plants inoc-
ulated with the strain mutated in etfB1, and a 20-25%
decrease in nodule number in plants inoculated with the
mutant in Q92P53. These differences have been shown as
biologically significant in other symbiosis studies [48-50].
In addition, it is important to notice that a high percent-
age of small nodules (white and probably non-fixing nod-
ules) was also observed in plants inoculated with etfB1
mutant. Surprisingly, plants inoculated with the strain
mutated in msbAl showed a 20-25% increase in nodule
number when compared with control strain (Fig. 5b). In
summary, these results clearly suggest that still there could
be a number of non-described proteins involved in the
Rhizobium-Legume interaction.

Further functional predictions

Based on our experimental results and the interactions of
the novel targeted proteins, etfBI acts in a module
involved in energy production and conversion, and we
predict it to be potentially involved in nitrogen fixation
[see Additional file 2]; in fact, the high percentage of small
non-fixing nodules induced by the strain mutated in this
gene is consistent with this role. msbA1 functions in a
module together with ndvA and exsA genes and is poten-
tially involved in glucan synthesis; and Q92P53 is func-
tioning within a module involved in lipid transport and
metabolism in coordination with nod genes, and may be
potentially involved in the regulation of the first stages of
nodule formation. These novel findings only represents
hypothesis and still have to be analysed in more detail to
shed more light on their precise biological role and mech-
anistic details but, nonetheless, the predictions high-
lighted here represent a tempting guide for further
experimental validation.

Discussion

The building of our final 'Symbiosis Interactome network'
complemented our initial classical-known list in many
different ways. First, we extended the initial set from 92 to
163 known components (92 from the intersection and 71
from the union network). Second, we identified 263
potential novel Symbiosis Interactome components, rep-
resenting ideal targets for further experimental validation
[see Additional file 2]. Third, the incorporation of func-
tional modules in the network provides additional infor-
mation concerning the structure and functional
organization of the Symbiosis Interactome. Interestingly,
functional modules tend to be formed by proteins
involved in the same stage of symbiosis [see Additional
file 2] suggesting that distinct symbiosis-stages are organ-
ized and coordinated as distinct functional modules.
Therefore, the incorporation of modules apart from pro-
viding another structural dimension to the Symbiosis
Interactome also allows the prediction of both protein
function and the symbiosis-stage a novel component may
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Figure 5

Targeted novel proteins and experimental validation. (A) Visualization of the four novel predicted proteins selected
for experimental validation based on four different network scenarios: direct-high, direct-low, direct-low module, and indirect-
high module scenarios. Only direct interactors of the targeted proteins are represented but for the last scenario that involves
indirect interactions. The colours of each protein indicate the stage of symbiosis or phenotypic profile categories the proteins
belong to (see panel). Large coloured ovals indicate functional modules with different colours indicating their involvement in
different clusters. The colours of each protein as in Fig. 4. Edges are colored according to the probability of interaction, from
blue (less probability) to red (more probability). We used Biolayout for network visualization. (B) Nodulation assays of differ-
ent mutants compared to S. meliloti 1021 wild type strain. Results are expressed as number of nodules per plant. Bars repre-
sent the average of three independent experiments (see methods). Red bar stands for control experiments, and blue bars for

the four genes tested in this study.

participate (Fig. 3c). This highlight both the quality of the
network and the functional modules we predicted as
guide for direct experimental validation. The final 'Symbi-
osis Interactome network', therefore, hosts the organiza-
tion of the Symbiosis Interactome into functional
interactions and modules, and constitutes the first
attempt toward the representation of this complex biolog-
ical process (Fig. 4).

Novel predicted components include many conserved
proteins of unknown functions and others participating
in a variety of cellular processes (Fig. 4). Novel proteins
may represent false negatives components not identified
by current experimental techniques perhaps because they
are highly specialized components or maybe recruited to
the Symbiosis Interactome under specific conditions that
have escaped from detection and are therefore absent
from our 'classical-known' preliminary data. Our experi-
mental results yielded a preliminary notable success (3
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positive cases out of 4 proteins tested experimentally) for
predicting novel S. meliloti-M. sativa symbiotic compo-
nents by using our computational approach. The results
also provide tempting clues in regard to the predictive
potential of our approach for hypothesis generation and
guiding future experimental validation. For example, the
two module-network scenarios presented here suggest
high accuracy at predicting novel components and func-
tional modules. Furthermore, high scored interactions
based on our probability scores are experimentally vali-
dated as opposed to low quality interactions for which we
could not find any direct experimental evidence, at least
not for the gene Q92TC2 tested here. For this particular
protein and the remaining 259 non-tested novel proteins,
it is difficult to determine how many of them could be
really involved in this complex biological process. It has
been described that mutations in some bacterial nodula-
tion genes do not have any influence in the symbiotic
properties of the bacteria. For example, S. meliloti cells
mutated in fixT gene are not affected in nodulation with
M. sativa host plants [51]. The expression of this fixation
gene is regulated by FixH protein, which is essential for
nodulation (mutations in fixH gives a Fix phenotype, that
is, non-fixing nodules). It has been suggested that some
nodulation proteins could have a role in symbiosis when
the expression of essential proteins is blocked. In the same
manner, there are proteins that could be essential for nod-
ulation in special situations, such as biotic and abiotic
stress. In addition, there are proteins that could be
involved in the symbiotic competitiveness of the rhizobial
strain. Finally, another alternative explanation is that the
potential involvement of the gene Q92TC2 in symbiosis
might be compensated by other genes performing similar
functions. Indeed, a gene family analysis by using
sequence similarity clustering through the MCL algorithm
[35] (see methods) revealed an intriguing gene family
expansion in this particular case (31 genes in this family),
whereas in the other 3 mutated genes we do not observe
such drastic family expansions (with 1 (singleton family),
3, and 14 gene family members, for the genes Q92P53,
etfB1, and msbA1, respectively). This interesting result sug-
gests that other members of this large gene family might
rescue its potential role in symbiosis through the estab-
lishment of backup circuits, such as occurs in other well
studied model organisms [52]. There is evidence of direct
backup compensation between gene duplicates with over-
lapping functions where one gene can cover for the loss of
its paralogue, and sometimes these compensations occur
only for certain functions under given conditions [52]. In
all these situations, the single mutation of these genes in
conventional laboratory conditions would not be the best
experiment to assess their role in symbiosis. We believe
this novel finding supports the model of network robust-
ness through gene duplication [53], and it also has very
interesting implications regarding the selection of the
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right candidate genes and experimental method in future
validation studies.

While the functional network presented here provides val-
uable clues about the components of the bacterial Symbi-
osis Interactome, the main limitation of our study is the
lack of experimental information on PPIs which made us
to consider as input only computationally derived func-
tional genomics data. Integration of computational
approaches with recently published [54] and future exper-
imental interaction data would likely improve the quality
of our network and the prediction of novel components.
This can be done by using Bayesian or probabilistic mod-
els shown to result in accurate confidence scoring systems
[[26,27,55], Peregrin-Alvarez JM, Xiong X, Su C, Parkin-
son J: The modular organization of protein interactions in
Escherichia coli, submitted]. Furthermore, although we
believe we have been very flexible by allowing interac-
tions between proteins with potential phenotypic profiles
and not directly interacting with the giant-central network
component, our Symbiosis Interactome network can still
serve as a platform to add other interactions and compo-
nents potentially involved in symbiosis. For example, we
can choose other proteins with other interesting pheno-
typic profiles to extend our network such as those profiles
showing homologs in other symbionts and/or pathogenic
species since these bacteria often use the same core molec-
ular mechanism to maintain their associations with hosts
[56]. Future analyses will also include further network
extensions based on recently characterized symbiosis
components [57-59], inclusion of other interesting phe-
notypic profiles (see above), a larger-scale experimental
validation of the novel components predicted to be
involved in symbiosis, and further analyses of the compo-
nents and pathways involved in host-microbe, and host
(i.e. plant) interactions. Finally, through an iterative proc-
ess, novel Symbiosis Interactome components once exper-
imentally confirmed, can be then added to the known set,
potentially increasing the list of novel components and
finally revealing the complete picture of the Symbiosis
Interactome network.

Conclusion

The essential contribution of symbiosis to understand
host-microbe interactions underscores the importance of
further studying the structure and organization of the
Symbiosis Interactome. Here we presented a novel 'sys-
tems-based model' that provided for the very first time
new insights into the functional organization of the S.
meliloti Symbiosis Interactome and the necessary frame-
work on which to build, in an iterative manner, to further
our understanding of symbiosis. We have identified 263
potential novel symbiosis components, and have demon-
strated experimentally the participation of novel proteins
involved in this important process. These novel proteins
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might not be essential for symbiosis but still determinant
for the microbe-plant interaction since most of the essen-
tial components for this process have been described
through decades of effort. Understanding the biology of
this important model organism is essential not only for
having a network view of how this biological process
functions at a molecular level but also for the develop-
ment of anti-microbial drugs since many of the proteins
and modules involved in bacterial-symbiosis may be con-
served, and thus, performing similar functions, in other
microbial pathogens [56]. Furthermore, we can use our
network as a template to derive other Symbiosis Interac-
tome networks for other bacteria-related species which is
particularly important given the difficulty and cost of
obtaining high throughput screens. Those maps should
provide an useful starting point for predicting functional
interactions and modules, and the function of unknown
proteins. It remain to be seen which of these interactions
and components do indeed occur and what is the specific
role they play in each of these organisms. We believe that
this model adds a new view and dimension to our under-
standing of host-microbe interactions, and can be
extended to study other complex biological processes
such as those involved in diseases.

Methods

Literature curation

An initial list of proteins known to be involved in the
Rhizobium-Legume symbiosis was obtained and manually
curated using PubMed, Google, journal-specific searches,
and literature reviews and citations. We have called this
list the 'classical-known' set.

Network generation

We used S. meliloti genome context data from the PRO-
LINKS [13] and STRING [14] databases. While both data-
bases use the same genome context methods to derive
functional linkages they both differ in the statistical pro-
cedures and scoring systems they use to provide high qual-
ity interactions. We reasoned that the overlap between
both databases (intersection) represents interactions
more likely to be true positives, and that the union of both
databases represents a dataset with higher coverage (see
below). We used all medium-to-high confidence func-
tional linkages provided by the STRING database. From
PROLINKS database we used those functional linkages in
S. meliloti over 0.6 confidence. This cut-off provided a true
positive rate similar to the one obtained by using the
medium-to-high confidence data from the STRING data-
base. The genome context data obtained from these two
databases were combined into two single non-redundant
datasets: one based on the overlapping between these two
databases (the intersection dataset), and another one
based on the union of the databases (the union dataset).
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The confidence scores associated to each functional link-
age provided by the original STRING and PROLINKS data-
bases were re-scored according to the following criteria:
STRING provides unified scores representing the confi-
dence of a given functional linkage. The bigger the score,
the more reliable the interaction. We reasoned that those
interactions present in both databases are the most relia-
ble ones, and we tested it by calculating ROC curves (see
below). STRING scores were transformed into a scoring
scale 0 - 0.5, the closer to 0.5, the bigger the confidence of
the interaction. PROLINKS provides independent confi-
dence scores for each applied independent genome con-
text method. The scores were combined into an unified
score by summing all confidence scores for a particular
functional linkage and transforming the resulting number
to a 0 - 0.5 scale. This procedure resulted in a 0 - 1 confi-
dence score for those functional linkages present in both
databases (the intersection data set) and a 0 - 0.5 confi-
dence score for those interactions present in only one of
the databases.

ROC analyses

The validity of our re-scoring approach and the integrated
networks was tested by calculating Receiving Operating
Curves (ROC) and the Area Under the Curve (AUC) of the
intersection, union, PROLINKS and STRING data sets as a
measure of accuracy.

To be able to calculate accurate ROC curves and AUCs it is
crucial to complement a positive gold standard set with a
negative one. Because a reference set of known interac-
tions is not available for S. meliloti, here we consider as
positive set those functional linkages belonging to the
same COGs functional category [37,60]. The construction
of a negative set is rather problematic because it is impos-
sible to be sure that two proteins do not interact. How-
ever, by using those pairs of proteins that are present in
different COGs functional categories and do not colocal-
ize in the same cell compartment it is possible to make a
list of protein pairs that are unlikely to interact, thus rep-
resenting a good approximation to a negative set. COGs
annotations were mapped to functional linkages and the
periplasmic location of all the proteins was predicted (see
below).

Subcellular localization

The periplasmic location of all S. meliloti proteins was pre-
dicted using the SIGCLEAVAGE software [38]. The pro-
teins were considered as periplasmic if they contained at
least one predicted signal sequence within 50 residues
from the N terminus. The proteins that did not contain
any signal sequence throughout the entire sequence were
considered cytoplasmic, and the remaining proteins were
not classified.
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Gene mapping

The protein IDs of the functional linkage data from the
intersection and union networks were converted to gene
names using UNIPROT database [61] and these were used
to map the list of classical-known proteins in S. meliloti.

Phenotypic profiling

For each S. meliloti sequence, a BLASTP [62] search was
performed against 200 complete genome datasets. Both S.
meliloti and other complete genomes were downloaded
from the COGENT database [63] [see Additional file 2].
Homologs for each S. meliloti protein were determined
based on a raw bit score threshold of 50, and were used to
generate phenotypic profiles as follow: the complete
genomes were manually curated and assigned to the fol-
lowing 8 phenotype categories [see Additional file 2]
using PubMed, Google, and other web-specific searches:
C, root colonizing bacteria; Fn, nitrogen-fixing bacteria in
symbiosis with plants; Fl, free living nitrogen-fixing bacte-
ria; P, pathogen; Pp, plant pathogen; S, soil cohabitant;
Sy, symbiont/commensal; and O, other organisms. The
only restriction for categorizing was that the genome in
question have to be classified into one category only, the
one with the most relevant phenotype for the study of
symbiosis [see Additional file 2]. For example, if a genome
could be classified as C and S, we considered only the cat-
egory C because all C are also category S; or if a genome
could be classified as P and S, P was considered more
important for our analysis and thus classified as P only.

We then built phylogenetic profiles [18] for each S.
meliloti protein and mapped the phenotypic data on top
of the phylogenetic profiles yielding what we term 'phe-
notypic profiles'. For example, a protein with a pheno-
typic profile "FnFl" stands for a protein with homologs in
plant nitrogen fixing bacteria and free-living nitrogen fix-
ing bacteria only, thus representing a protein that may be
potentially involved in symbiosis.

Network analyses

Unless otherwise noted network analyses were performed
using Perl scripts developed in house. The degree (k) of a
node (protein) in an interaction network is defined by the
number of interactions of the node with other nodes in
the network. For a node of degree k, its clustering coeffi-
cient (CC) is defined as 2N/k(k-1), where N is the number
of interactions between the node's k neighbors and k(k-
1)/2 is the number of possible interactions between its
neighbors. A CC of 1 means that all the neighbors of a
node are fully interconnected. The shortest path length
between two nodes in the network is the number of edges
in a shortest path connecting them. The shortest path
length is infinity if there are no paths between two nodes.
Network diameters were obtained using Pajek [64], and
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cluster coefficients and shortest path lengths were
obtained using tYNA [65].

To act as controls, random networks were created by ran-
domly selecting equal numbers of proteins (compared
with the comparator network) from the S. meliloti network
and randomly connecting them with equal numbers of
interactions.

For network comparisons with E. coli interaction data sets,
experimental PPIs from various large- and small-scale
experiments in E. coli were collected from the Database of
Interacting Proteins (DIP) [31]. PPIs from DIP were
divided into two main categories small-scale experiments
and large-scale TAP assays. A third large-scale PPI data set
was obtained from a recent large-scale pull down study
[7]. The Interologs approach [22] was then performed by
applying BLAST [62] to the S. meliloti proteome as query
versus the E. coli proteome as database. Then we calcu-
lated S. meliloti orthologs (defined by BLAST best recipro-
cal hits with a cut-off e-value of 10-1°) and mapped the E.
coli interactomes mentioned above to derive S. meliloti
interologs. We considered a functional interaction to be
preserved in a genome if both interacting proteins have
detectable orthologs. When comparing different networks
a network similarity (NS) measure was devised:

SAR+S
NS 5 = AB2 BA

where A and B represents different networks, S, the simi-
larity (i.e. the frequency of common interactions) of A ver-
sus B, and Sg, the similarity of B versus A.

Networks were visualized using Biolayout [66] and Cyto-
scape [67].

Detection of functional modules

We identified highly connected functional modules oper-
ating within the intersection S. meliloti network by using
the Markov Cluster (MCL) algorithm [35]. MCL was
applied to our S. meliloti network by testing several infla-
tion operators, and settling on values that provided the
highest clusters size, and the best overlap (semantic simi-
larity) [68] of the computed clusters with the functional
categories of the highly curated database COGs [37].

To compute the significant of finding specific COGs mod-
ules, a p-value for each module was calculated based on
the distribution of 10,000 random module sets of the
same size (assuming a normal distribution) and our mod-
ule predictions, therefore, representing the probability of
seeing such modules at chance. COGs categories with gen-
eral function prediction, unknown or unassigned were
not considered in this analysis. Only modules with at least
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three components with COGs assignments were statisti-
cally computed.

Prediction of functional annotation and stage of symbiosis
Predictions of functional annotation and the stage of sym-
biosis were performed using enrichment of COGs terms
in functional modules (see above). Module prediction for
a protein employed the predicted functional modules and
derived COGs/symbiosis-stage annotations for the target
proteins based on the highest percentage of common
COGs/symbiosis-stage terms among the different compo-
nents of the functional module. Correct COGs/symbiosis-
stage assignments additionally required at least 20% of
the interaction module components to have the same
COGs/symbiosis-stage category. Two measures of strin-
gency were employed: high stringency predictions
required the majority of interaction module components
to be assigned to the same COGs/symbiosis-stage cate-
gory; low stringency predictions only required any of the
interaction module components to possess the same
COGs/symbiosis-stage category (albeit with the addi-
tional proviso that at least 20% of the module partners
were so annotated). To measure the accuracy of module
predictions we used a leave-one-out (LOO) cross-valida-
tion procedure, i.e. only proteins which itself and one of
its module components possessed an annotation were
used in cross-validation. The LOO method randomly
selects a protein and compares its known annotation with
that predicted by the functional module method.

Gene family analyses

Gene family predictions for the S. meliloti dataset were
obtained from COGENT database [63] through the use of
the MCL algorithm [35].

S. meliloti mutants

S. meliloti mutants were obtained from a Mini-Tn5 trans-
poson library constructed in the Lehrstuhl fiir Genetik
(Bielefeld University, Germany) [47]. Based on four net-
work scenarios (see results) we selected the following S.
meliloti mutants for experimental validation of our
approach: 2011mTn5STM.3.02.D12_transposon(etfB1),
2011mTn5STM.4.10.F09_transposon(Q92P53),
2011mTn5STM.3.08.C10_transposon(Q92TC2), and
2011mTn5STM.1.06.E11_transposon (msbA1).

Nodulation assays

Seeds of alfalfa (Medicago sativa L. ecotype. Aragon) were
surface sterilised on 70% ethanol for 10 minutes, exhaus-
tively washed on distilled water and placed in water-agar
plates for 36 hours at 22°C in the dark. 0.5-1 ¢cm root pre-
germinated seedlings were carefully transferred to squared
plates containing a slope of BNM-agar medium [69].
Seedlings were inoculated with 100 pl of an overnight cul-
ture of S. meliloti mutants or the strain 1021 as control.
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The lower part of the plate was covered with black paper
in order to avoid the roots getting exposed to light. Plates
were placed on an Ibercex G-28 plant growth cabinet at
22°C with 16 hours photoperiod. Plants were taken out
of the plates at 28 days post-inoculation (dpi) for nodule
analyses (counting, size, color, etc). Three independent
experiments with 50 plants per experiment were done
(150 plants in total). General aspects of plants were also
analysed.
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Additional file 1

Network accuracy, scale-free topology, and conservation versus con-
nectivity analysis. (A) To assess the performance of our re-scoring method
we calculated ROC curves and AUCs for the S. meliloti intersection,
union, PROLINKS [13] and STRING [14] networks. (B) The scale-free
topology of the S. meliloti and Symbiosis Interactome networks. The con-
nectivity distribution (k) per protein is plotted as a function of frequency,
P(k). R, Pearson's correlation coefficient. (C) Relationship between pro-
tein conservation and connectivity within the S. meliloti and Symbiosis
Interactome network. High conservation is defined as those proteins with
homologs in more than 150 genomes (out of 200), and low conservation
for proteins with homologs in less than 25 genomes. High connectivity pro-
teins are defined as those with more than 10 connections and low connec-
tivity for those ones with less than 3 connections.
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|http://www.biomedcentral.com/content/supplementary/1752-
0509-3-63-S1.pdf]

Page 15 of 18

(page number not for citation purposes)



BMC Systems Biology 2009, 3:63

Additional file 2

Supplementary Tables. Table 1. List of genes known to be involved in the
Rhizobium-Legume interaction (the ‘classical-known' set); Table 2. List
of the 200 complete genomes used in this study and the phenotype catego-
ries assigned to them. Complete genomes where obtained from the
COGENT database [63]. Group and chosen group stands for the prelim-
inary and final phenotypic categories, respectively, that were further used
to build the phenotypic profiles; Table 3. The distribution of phenotypic
profiles for the list of classical-known S. meliloti proteins; Table 4. Pre-
diction of functional modules in the S. meliloti network. Functional mod-
ules were predicted using the MCL algorithm [35]. Size represents the
number of components within the module. Module annotation was
obtained by measuring the overlap of COGs categories [37] (in percent-
age) among the module components, otherwise module annotation was
assigned to blank. COG category codes are provided in Fig. 4. P-values
were calculated based on expectation using 10,000 random modules of
equal size. * = p-value < 0.01; ** = p-value < 0.001. Modules with no
(blank) p-value assignment (due to the lack or poor COGs annotation sta-
tistics were not computed) were considered as potential novel functional
modules for the purpose of this study;Table 5. List of classical-known and
novel proteins predicted to be involved in S. meliloti-Legume interaction
in this study. The proteins present in our Symbiosis Interactome Interac-
tome are represented. Gene and ORF names, and annotations were
obtained from UNIPROT [61]. Colour code for classical-known proteins
indicate the stage of symbiosis proteins are involved in, as in Fig. 4. Pro-
teins with regulatory functions are represented by gene names with bold
letters. Profile represents phenotypic profiles. Module stands for the func-
tional modules predicted by MCL clustering. FC represents COGs func-
tional categories as in Fig. 4. Location represents the predicted subcelullar
localization. SC and GC represent the connectivity (i.e. number of inter-
actors) of the protein in the Symbiosis Interactome and S. meliloti net-
work, respectively.

Click here for file
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Additional file 3

List of 440 classical-known and novel proteins, and 1,041 functional
interactions predicted to be part of the Symbiosis Interactome net-
work. Proteins are plotted as gene names according to UNIPROT. Scores
represent probability of interactions.

Click here for file
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