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Abstract
Background: Modellers using the MWC allosteric framework have often found it difficult to
validate their models. Indeed many experiments are not conducted with the notion of alternative
conformations in mind and therefore do not (or cannot) measure relevant microscopic constant
and parameters. Instead, experimentalists widely use the Adair-Klotz approach in order to describe
their experimental data.

Results: We propose a way of computing apparent Adair-Klotz constants from microscopic
association constants and allosteric parameters of a generalised concerted model with two
different states (R and T), with an arbitrary number of non-equivalent ligand binding sites. We apply
this framework to compute Adair-Klotz constants from existing models of calmodulin and
hemoglobin, two extreme cases of the general framework.

Conclusion: The validation of computational models requires methods to relate model
parameters to experimentally observable quantities. We provide such a method for comparing
generalised MWC allosteric models to experimentally determined Adair-Klotz constants.

Background
Quantitative descriptions of biological processes are one
of the main activities in Life Science research, whether in
physiology, biochemistry or molecular and cellular biol-
ogy. They offer a way of characterising biological systems,
measuring subtle effects of perturbations, discriminating
between alternative hypotheses, making and testing pre-
dictions, and following changes over time. There can be
many different ways to describe the same biological proc-
ess. Phenomenological descriptions provide a way of
relating input and outcome of a given process, without
requiring a detailed knowledge about the nature of the
process or possible intermediate steps. Since they provide
a direct link between input and output, they can be easily

applied to experimental results. On the other hand, Sys-
tems Biology favours more mechanistic representations,
that aim at exploring how exactly behaviours of systems
emerge from intrinsic properties and interactions of ele-
ments at a lower level. Using the former descriptions to
build and validate the latter representations may prove a
challenge in some cases.

Several types of descriptions may co-exist for a given bio-
logical problem. One of these problems is the binding of
ligand to a protein with several binding sites, and the
apparent cooperativity observed in this context, for which
various frameworks have been developed throughout the
XXth century [1].
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Drawing on observations of oxygen binding to hemo-
globin, Hill [2] suggested the following formula for the

fractional occupancy  of a protein with several ligand
binding sites:

where K denotes an apparent association constant, [X]
denotes ligand concentration, and nH the "Hill coeffi-
cient", intended to be a measure of cooperativity.

Adair [3] and Klotz [4] (reviewed in [5]) further explored
the notion of cooperative binding. According to their
framework, cooperativity was no longer fixed, but
dependent on saturation: There were different binding
constants describing binding of the first ligand, the sec-
ond, the third, etc. It is worth noting that these constants
do not relate to individual binding sites. They describe
how many binding sites are occupied, rather than which
ones. This framework is often used by experimentalists to
describe measurements of ligand binding in terms of
sequential apparent binding constants. According to this
framework, the fractional occupancy of a protein is given
by the following equation [4]:

Where n denotes the number of binding sites and Ki the ith

apparent association constant

The Monod-Wyman-Changeux (MWC) model for con-
certed allosteric transitions [6] went a step further by
exploring cooperativity based on three-dimensional con-
formations. It was originally formulated for oligomeric
proteins with symmetric, identical subunits, each of
which has one ligand binding site. According to this
framework, two (or more) interconvertible conforma-
tional states of an allosteric protein coexist in a thermal
equilibrium. The ratio between the two states (often
termed "T" for "tense", and "R" for "relaxed") is regulated
by the binding of ligands that have different affnities for
each of the states. For instance, in the absence of a ligand,
the T state prevails, but as more ligand molecules bind,
the R state (which has higher affnity for the ligand)
becomes the energetically favoured conformation. The
constant L describes the equilibrium between both states
when no ligand molecule is bound: L = [T0]/[R0]. If L is
very large, most of the protein exists in the tense state in
the absence of ligand. If L is small (close to one), the R
state is nearly as populated as the T state. The constant c

describes the ratio of association constants for the T and R
states for each site: c = KT/KR (note that MWC equations
are most often expressed with dissociation constants.
However, we will use association constant throughout
this paper for the sake of consistency with Hill and Adair-
Klotz schemes). If c = 1, both R and T states have the same
ligand affnity. The c value also indicates how much the
equilibrium between T and R states changes upon ligand
binding: the smaller c, the more the equilibrium shifts
towards the R state. According to the MWC model, frac-
tional occupancy is described by:

where [X] denotes ligand concentration, and with KR, L
and c as described in the paragraph above. In this paper,
we first propose a generalised MWC framework that can
be applied to proteins whose ligand binding sites have dif-
ferent affnities. We then develop a set of equations that
uses the parameters of such a generalised MWC model to
compute apparent association constants according to the
Adair-Klotz model. We show how these can be used in
order to compare model results with experimental data
using two examples which constitute extreme cases of the
general framework, calmodulin and hemoglobin.

Results
Generalisation of the MWC model

The MWC model can be adapted to describe a protein
(whether oligomeric or monomeric) with several ligand
binding sites possessing different affinities. In that case,

microscopic association constants are termed  and

, and their ratio is denoted by ci for the ith binding site.

In this case, the fractional occupancy is described as fol-
lows:

where 1 ≤ i, j ≤ n,  and L and [X] as described

above.

If not all binding sites are different, but mi binding sites

have the same affinity , identical binding sites can be

grouped and the above equation written as:
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where 1 ≤ i, j ≤ k, mi denotes the number of binding sites

with affnity  (note that Σimi = n), and L, ci and [X] as

described above.

Similarly, it is possible to develop generalisations of the

equation for fractional conformational change ( ). In
the case of a protein with n different ligand binding sites,
the corresponding expression is:

When all  and all ci are equal, this corresponds to the

original MWC equation [6].

Again, when binding sites are pooled into groups of mi

binding sites that have the same affnity  (where Σi mi

= n), then  can be written as follows:

In order to compare the numerical outcomes of their
models with experimental results, modellers using either
the original or the generalised MWC framework need a
way of converting microscopic MWC constants into
observed Adair-Klotz constants. Here, we derive equations
that can be used to compute Adair-Klotz constants and
apply them to two special cases of the generalised MWC
model presented here.

Obtaining Adair-Klotz constants from microscopic 
association constants for a protein with four non-
equivalent binding sites
Consider a protein P with four binding sites for ligand X.
The first apparent association constant, K1 is defined as
follows:

where [P0] denotes the concentration of unbound protein,
[P1] the concentration of protein with exactly one ligand
molecule bound and [X] the concentration of ligand.
Since P is an allosteric protein, it can exist in two different
conformations: The high-affinity R conformation and the
low-affinity T conformation. If we denote by [Ri] the con-
centration of protein in the R state bound to i ligand mol-
ecules (and analogous for [Ti]), we can re-write the above
expression to

Since we treat the four binding sites as non-equivalent, we
have to discriminate between them. The first ligand mol-
ecule bound to the protein in the R state can bind to either
site A, B, C, or D. If RA denotes the concentration of pro-
tein in the R state bound to exactly one ligand molecule at
site A (and analogous for sites B, C, and D, and for the T
state), the above equation becomes:

The balance between unbound protein in the T and R
states is given by the allosteric isomerisation constant, L

( ). We can now use this relationship and derive

an equation that links the apparent first association con-

stant K1 to the microscopic association constants (  for

site A in the R state, and analogous for the other binding
sites, and the T state):

Substituting for [T0] and simplifying, we obtain

In a similar manner we can consider the second associa-
tion constant, K2

Again, distinguishing between the R and T states and
between the four different binding sites, we obtain:

This reduces to:
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We can apply the same reasoning to the third ligand bind-
ing event:

which eventually gives:

And, similarly for K4:

Note that in the case of four identical binding sites,

 and

, and the above expressions

reduce to conversion equations for identical binding sites
reported by Edelstein [7].

Obtaining the ith Adair-Klotz constants from microscopic 
association constants for a protein with n non-equivalent 
binding sites
In general, for a protein with n ligand binding sites, we
can express the apparent association constant for the ith

binding event by computing the ratio between the con-
centrations of end products and initial reactants. The
equation for the ith apparent association constant thus
reads as follows:

As above, both [Pi-1] and [Pi] are sums of protein popula-
tions in two different states and with ligand molecules
bound to combinations of different binding sites. We can
again distinguish between R and T state, which yields:

If we now assume that the n ligand binding sites are, in
general, non-equivalent, we must account for the fact that
Ri is a collection of protein molecules in the R state with

all possible combinations of i out of n ligand binding sites
occupied. In other words:

Expressing every Rj1j2...ji in terms of [R0], [X] and the micro-
scopic association constants, we can write Ri in the follow-
ing way:

Introducing the following abbreviations

we can obtain the expression for 

Now, again, we can use the relationship [T0] = L [R0] and
eliminate [X]i and [R0] and obtain:

with  and  as defined above.

If the binding sites can be classed into k sub-groups that
have the same affinity (m1 binding sites with affinity

m2 binding sites with affinity , etc.), the expres-

sion for  can be written as follows:

In the next section, we will consider two proteins with
four binding sites each, which constitute extreme cases: In
the case of calmodulin, all binding sites are different, so

K
K A

RK B
R K A

RKC
R K A

RK D
R K B

RKC
R K B

RK D
R KC

RK D
R L K A

T K B
T K A

T K
2 =

+ + + + + + +( CC
T K A

T K D
T K B

TKC
T K B

TK D
T KC

TK D
T

K A
R K B

R KC
R K D

R L K A
T K B

T
+ + + +

+ + + + + +

)

( KKC
T K D

T+ )

(9)

K
P

P X3
3

2
= [ ]

[ ][ ]

K
K A

RK B
RKC

R K A
RK B

RK D
R K A

RKC
RK D

R K B
RKC

RK D
R L K A

T K B
TKC

T K A
T

3 =
+ + + + +( KK B

TK D
T K A

T KC
TK D

T K B
TKC

TK D
T

K A
RK B

R K A
RKC

R K A
RK D

R K B
RKC

R K B

+ +

+ + + +

)
RRK D

R KC
RK D

R L K A
T K B

T K A
T KC

T K A
T K D

T K B
TKC

T K B
TK D

T KC
TK D

T+ + + + + + +( )

(10)

K
P

P X

K
K A

RK B
RKC

RK D
R LK A

T K B
TKC

TK D
T

K A
RK B

RKC
R K A

RK B

4

4

4
3

=

=
+

+

[ ]
[ ][ ]

RRK D
R K A

RKC
RK D

R K B
RKC

RK D
R L K A

T K B
TKC

T K A
T K B

TK D
T K A

T KC
TK D

T+ + + + + +( KK B
TKC

TK D
T

(11)

K K K K KA
R

B
R

C
R

D
R R= = = =:

K K K K KA
T

B
T

C
T

D
T T= = = =:

K
Pi

Pi Xi
n =

−

[ ]
[ ][ ]1

K
Ri Ti

Ri Ti Xi
n = +

− + −

[ ] [ ]
([ ] [ ])[ ]1 1

R Ri j j j

j j j j n
i

i

=
< < < ∈

∑ 1 2

1 2 1

…
" , { ,..., } all 

(12)

[ ] [ ][ ]
, { ,..., }

R R X K K Ki
i

j
R

j
R

j
R

j j j j n
i

i

=
< < < ∈

∑0

1
1 2

1 2

…
"  all 

(13)

S K K Ki
nR

j
R

j
R

j
R

j j j j n
i

i

:
, { ,..., }

=
< < < ∈

∑ 1 2

1 2 1

…
"  all 

(14)

S K K Ki
nT

j
T

j
T

j
T

j j j j n
i

i

:
, { ,..., }

=
< < < ∈

∑ 1 2

1 2 1

…
"  all 

(15)

K i
n

K
R X iSi

nR T X iSi
nT

R X i Si
nR T X i S

i
n =

+
−

− + −
[ ][ ] [ ][ ]

([ ][ ] [ ][ ]

0 0

0
1

1 0
1

ii
nT X−1)[ ]

K
Si

nR LSi
nT

Si
nR LSi

nTi
n =

+

− + −1 1

(16)

Si
nR Si

nT

K R
1 K R

2

Si
nR

S
m

e
K

m

e
Ki

nR R e

k
k
R e

e m e e i

k

j j k

:
.

=
⎛

⎝
⎜

⎞

⎠
⎟ ( ) ⎛

⎝
⎜

⎞

⎠
⎟ ( )

≤ ≤ + + =

1

1
1

2

0

1

1

"
…

∑∑
(17)
Page 4 of 7
(page number not for citation purposes)



BMC Systems Biology 2009, 3:68 http://www.biomedcentral.com/1752-0509/3/68
the protein can be seen as having four sub-groups of bind-
ing sites containing one binding site each (m1 = m2 = m3 =
m4 = 1). In the case of hemoglobin, all binding sites are
equivalent, so there is only one sub-group of binding sites
containing four elements.

Allosteric model of calmodulin

To illustrate the practical relevance of these conversion
equations we applied them to a previously proposed
MWC model of calmodulin [8]. According to this model,
calmodulin can exist in two different states, R (that corre-
sponds to the open state, stabilised by binding of calcium)
and T (that correspond to the closed, often mistakenly
called "apo", state). Each of these states can bind four cal-
cium ions. The four different binding sites were desig-
nated A, B, C, and D (A and B on the N-terminal domain,
C and D on the C-terminal domain, with no sequential
order being implied within the domains). Each of the
states and each of the reactions was explicitly modelled,
with distinct dissociation constants for each of the sites.

The dissociation constants for the R state were  = 8.32

× 10- 6 M,  = 1.66 × 10- 8 M,  = 1.74 × 10- 5 M, and

 = 1.45 × 10- 8M. According to this model, L = 20670,

and c = 0.00396 for all four binding sites [8]. The calmod-
ulin concentration used for the model was 2 × 107 M [8],
and simulations were run using COPASI [9].

When the fractional occupancy of calmodulin is plotted
against initial free calcium concentration, simulation out-
comes seem to agree quite well with experimental obser-
vations [8], but such a plot does not provide a direct way
of quantifying this agreement.

To do this, we inserted the parameters of the MWC model
into equations 8 to 11 to obtain Adair-Klotz constants.
These can be compared to Adair-Klotz constants previ-
ously obtained in experimental studies [10-14], as listed
in Table 1. This comparison shows that all four Adair-
Klotz constants computed from the general MWC model

lie within the experimentally reported range, and thus
show that the MWC model is indeed consistent with
experimental data.

Figure 1 visualises this comparison: The Adair-Klotz curve
obtained from the MWC model is compared to experi-
mental measurements done by Porumb [12], Crouch and
Klee [10], and Peersen et al. [15] and to an Adair-Klotz fit
to the combination of all three data sets. The plot illus-
trates that the Adair curve obtained from the parameters
of the generalised MWC model presented here is similar
to that obtained from experimental data, and that com-
puting an Adair-Klotz function from the parameters of a
MWC model does indeed provide a way of comparing an
allosteric model to experimental measurements.

Allosteric model of Hemoglobin
In a similar manner, the case in which all binding sites are
equivalent [7] can be seen as a special case, in which there
is only one sub-group of identical binding sites. With four
binding sites, as is the case for hemoglobin, we obtain:
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Table 1: Apparent Adair-Klotz constants for the calmodulin 
model

this paper reported range

K1 5.1860 × 105 1.16 × 105 [11] – 1.7 × 106 [11]
K2 5.1601 × 105 1.4 × 105 [11] – 8.9 × 105 [12]
K3 1.3377 × 105 2.86 × 104 [13] – 2.9 × 106 [11]
K4 3.8784 × 104 1.7 × 103 [14] – 1.12 × 105 [13]

Apparent Adair-Klotz constants (in M) for the calmodulin model as 
computed with our method, and comparison to several experimental 
reports [10-14] and data reviews [11].

Comparison of the calmodulin model with experimental dataFigure 1
Comparison of the calmodulin model with experi-
mental data. Red curve shows the Adair-Klotz equation 
using the Adair-Klotz constants obtained from the MWC 
model of calmodulin. Symbols are used to represent data 
points from various experimental measurements of calmodu-
lin binding to calcium: Circles for Porumb [12], squares for 
Crouch and Klee [10], diamonds for Peersen et al. [15]. The 
black line represents a fit of all of these data set to the Adair-
Klotz equation, which was obtained using the "Non-linear 
curve-fitting" function in grace http://plasma-gate.weiz-
mann.ac.il/Grace/.
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Yonetani et al. [16] fitted the same data for hemoglobin
binding to oxygen once using the MWC framework and
once using the Adair-Klotz framework. This study pro-
vides an excellent opportunity to test the validity of the
conversion equations presented here: By using the results
of their MWC fit and inserting KR, KT, and L into the equa-
tions presented in [7], we get an independent determina-
tion of the Adair-Klotz constants K1 to K4. Table 2
compares the Adair-Klotz constants thus obtained to the
Adair-Klotz constants obtained by Yonetani et al. [16].
Both methods yield essentially the same results, slight dif-
ferences are presumably due to rounding errors and/or to
limitations of the data fitting algorithms used, as well as
possible over-fitting in the case of the Adair-Klotz frame-
work.

Discussion and conclusion
The generalised MWC model proposed here opens up
new ways of applying the allosteric framework: Not only
to multimers consisting of identical subunits with one lig-
and binding site on each, but also to proteins with several
binding sites of different affinities for the same ligand, be

it multimers with more than one binding site on each sub-
unit or monomeric proteins containing several binding
sites. This framework has been used for an allosteric
model of calmodulin [8], and could be useful in the anal-
ysis of a wide range of other proteins.

Other generalisations of the MWC framework have been
presented in the past. Mello and Tu [17] have proposed a
heterogeneous MWC (HMWC) model for allosteric pro-
teins or protein complexes that bind to different types of
ligand (but where there is only one affinity per ligand).
This can easily be combined with the model presented
here: The fractional occupancy for a generalised heteroge-
neous protein with two different types of ligand, and
binding sites of different affinity for each ligand, would
be:

where [X1] represents the first ligand, for which n1 binding
sites exist, and [X2] the second ligand, for which there are
n2 binding sites. For a heterogeneous complex with m
types of ligands, the equation is

The case in which binding sites for a given ligand can be
grouped into sets of same affinity is straight-forward, as is
the computation of fractional occupancy, R.

Najdi et al. [18] have proposed a generalised MWC
(GMWC) model for a protein binding to several ligand
types and regulated by multiple allosteric activators or
inhibitors. This model can be combined with the model
presented here by replacing the term that denotes sub-
strate concentration and affinity for each ligand in [18] by
the appropriate sum: in the notation employed by [18],

this would mean replacing  by

 for each ligand. Such a combined

model could then cater for proteins that bind to several
ligand types (with non-identical binding sites per ligand)
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Table 2: Comparison of MWC and Adair-Klotz constants for 
hemoglobin

this paper Yonetani et al. [16]

7.68 × 10-3 7.20 × 10-3

0.96 × 10-2 1.05 × 10-2

1.52 × 10-2 1.15 × 10-2

2.32 × 10-2 2.33 × 10-2

Experimental and theoretical determination of Adair-Klotz constants 
(in torr-1) from MWC constants at pH 7.0. KR = 3.0 × 10-2torr-1, KT = 

7.0 × 10-3 torr-1, and L = 33, as obtained by Yonetani et al. by fitting 
data with an MWC equation [16]. We used these to compute K1 to K4 

using the equations presented in [7] and here compare them to K1 to 

K4 obtained by Yonetani et al. by fitting the same data with an Adair-

Klotz equation [16]. Note that Yonetani et al. used a slightly modified 
version of the Adair-Klotz equation, meaning that K1 in [16] 

corresponds to K1 in [4], K2 in [16] to K2 in [4], K3 in [16] to 

K3 in [4] and K4 in [16] to 4K4 in [4]. To allow easier comparability, 

we used Yonetani's notation for this table and labelled the constants 

, ...,  to avoid confusion with the original Klotz notation used 

everywhere else in this paper.
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and that are regulated by multiple allosteric activators or
inhibitors.

In biology, the same question can be tackled at different
levels and with different approaches, often based on dif-
ferent underlying theoretical framework. These
approaches, however, need to be comparable to allow for
cross-validation and for the assembly of different types of
data into a comprehensive understanding of a given proc-
ess. For instance, computational modellers need a way of
comparing their models with experimental results to
assess the validity of their models. In particular, mecha-
nistic models need to be comparable to data or to the phe-
nomenological models describing them. We offer a way of
relating intrinsic association constants in allosteric mod-
els to Adair-Klotz constants and thus to bridge the gap
between generalised allosteric models and experimental
observations.

Apart from enabling modellers to validate their models –
as shown here in the two example cases – these conver-
sion equations could also help in model construction by
providing ways to constrain parameter space and facilitate
the estimation of allosteric parameters, which is very use-
ful in cases where there is little or no additional experi-
mental evidence that could help with their derivation.

Abbreviations
MWC: Monod-Wyman-Changeux; R: relaxed; T: tense.
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