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Abstract

Background: The characterization of the global functional structure of a cell is a major goal in
bioinformatics and systems biology. Gene Ontology (GO) and the protein-protein interaction

network offer alternative views of that structure.

Results: This study presents a comparison of the global structures of the Gene Ontology and the
interactome of Saccharomyces cerevisiae. Sensitive, unsupervised methods of clustering applied to a
large fraction of the proteome led to establish a GO-interactome correlation value of +0.47 for a
general dataset that contains both high and low-confidence interactions and +0.58 for a smaller,

high-confidence dataset.

Conclusion: The structures of the yeast cell deduced from GO and interactome are substantially
congruent. However, some significant differences were also detected, which may contribute to a
better understanding of cell function and also to a refinement of the current ontologies.

Background

Gene Ontology (GO) is "a set of structured vocabularies
for specific biological domains that can be used to
describe gene products in any organism" [1]. GO attempts
to summarize the current knowledge of the basic compo-
nents that shape cell function in a given organism. How-
ever, the current GO is still limited, given that we
understand only part of the functions of any cell. Moreo-
ver, our current views are biased by the concentration of
research efforts on some aspects of cell metabolism and
function in detriment of others. This bias is caused by
most data used to assign GO terms deriving from hypoth-
esis-driven approaches.

In the last years, large protein-protein interaction (PPI)
datasets have been characterized in several organisms

using non-directed, massive approaches (reviewed in ref-
erences |2-4]). This accumulation of knowledge is of fun-
damental importance, because the set of all PPIs (known
as PPI graph, PPI network or interactome) may be envis-
aged as a functional map of the cell [3,5,6]. The fact that
most interactome data have been obtained by non-
directed approaches avoids the bias just described for GO.
However, PPI data have also their own significant biases
and shortcomings. An intrinsic problem is unavoidable:
some aspects of cell metabolism may require few or no
PPIs and therefore they will not be reflected in the interac-
tome. The second problem is that so far, even in the best
analyzed species, data are still partial. In addition, some
protein interactions (e. g. those that occur along brief peri-
ods of time) are difficult to detect with the current meth-
ods. Finally, there is some controversy over the quality of
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the PPI data generated in massive, high-throughput exper-
iments [7-11].

GO and interactome provide alternative views of how an
organism is structured and functions. It is thus logical to
explore whether they are congruent. This is however prob-
lematic, because GO and PPI data are very different. On
one hand, gene products may be either annotated or not
with GO terms. Thus, from the point of view of each GO
term, the classification is dichotomous. On the other
hand, PPI data are best expressed as a graph or network of
units (proteins) connected by edges (known interactions).
How to compare then these two, so different, types of
information? The simplest way to collate GO and interac-
tome data is to characterize from PPI results groups of
densely connected units, i. e. modules [12-15] and then to
establish whether modules are statistically enriched for
particular GO terms. This strategy has been followed with
success by several groups [12,15-18]. Discussions cur-
rently center in the best way to define modules so they
make sense from either the mathematical or the biological
point of view (e. g. refs. [18-20]), but it is generally
accepted that modules are often enriched for particular
GO terms. This congruence between GO and PPI data has
led to works in which proteins are assigned functions
according to the GO annotations of their interaction part-
ners [21-23]. Similarity in GO annotations has been also
used to predict interactions among pairs of proteins
[24,25].

It is very significant to point out that those results imply
just local congruence, but not necessarily global similar-
ity, between the interactome and GO structures. GO and
interactome could be congruent if we focus on highly con-
nected and well-known sets of proteins, but still be very
different in their global structures. In fact, in a deep sense,
it is trivial to find out that proteins in a particular module
often share GO annotations, if only because many mod-
ules detected correspond to, or at least include, protein
complexes, which contain units that work together in the
cell. Thus, all analyses performed so far fall short of
addressing the general question of whether GO and PPI
data offer compatible views of an organism.

It is also clear that, to characterize the level of global sim-
ilarity between GO and interactome, the analysis of mod-
ules has important methodological limitations. First,
proteins excluded from modules are not analyzed, so a
fully global, statistical estimation of congruence is intrin-
sically impossible. Second, the interactome graph struc-
ture has small world properties, meaning that many units/
proteins are connected to other proteins and that the dis-
tances among all them, measured as their shortest path
lengths, are very small [26,27]. These problems suggest
that a novel type of approach is needed. In recent works,
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we described novel strategies of graph analysis and we
showed their usefulness to explore the structures of differ-
ent complex biological graphs, such as the interactome or
protein domain graphs [15,28-30]. Our methods generate
hierarchical structures, dendrograms, based on the aver-
age strength of the connections among the units of a
graph, and then establish whether clusters in the dendro-
grams are enriched for units with particular features.
These procedures open the way for a global comparison of
interactome and GO. Particularly, they avoid the need of
selecting modules to compare with GO. In interactome-
based dendrograms, it is possible to include all proteins
that we wish to analyze - without dividing them into
those highly connected, included in modules, and those
excluded from them - and to establish whether any clus-
ter of proteins, no matter the number of direct interac-
tions among its members, is enriched for GO terms. As we
will show, this allows for a precise mathematical determi-
nation of the similarity between the GO-based and the
interactome-based classifications.

In this study, we obtained a hierarchical representation of
large fragments of the interactome of Saccharomyces cerevi-
siae. Then, we determined and quantified the global simi-
larity between a significant part of the structures of
interactome and GO in the yeast. Our results greatly
enrich our knowledge of the relationships between the
alternative views of the yeast cell that its gene ontology
and interactome provide.

Results

A strategy to compare interactome and GO
Saccharomyces cerevisiae has by far the best characterized
interactome of any eukaryote. We thus decided to focus
our research on this species. Our goal was to explore the
yeast data and to determine whether the hierarchical
structure of the GO is reflected in the interactome. We
chose a simple design, based on analyzing large parent
GO terms which are subdivided into several child GO
terms. The question that we wanted to solve is whether we
were able to detect clusters corresponding to the child
terms in a dendrogram, generated from PPI data, which
included all the proteins of a parent GO term. If we were
able to do so, it would mean that GO and interactome
have similar structures.

Therefore, our general strategy to establish the level of
congruence between interactome and GO had two steps
(Figure 1). First, trees were generated, using UVCLUSTER
(ref. [15]; see Methods), for proteins encoded by genes
included in a general, parent GO term. As indicated
above, these trees are based on the relative strength of the
connections among proteins, based on interactome data.
Second, TreeTracker [30] was used to determine whether
groups of proteins which appeared clustered together in
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Overview of the strategy used to compare GO and the interactome. For a given parent GO term, we extracted the
proteins annotated with it and determined their primary distances (shortest path length) in the protein interaction network.
The resulting graph was transformed into a dendrogram with UVCLUSTER. We then retrieved the proteins annotated with
each child GO term and labeled them in the tree. We finally detected, using the program TreeTracker, the clusters in the tree

significantly enriched for each child GO term.

those trees were significantly enriched for some child GO
terms, hierarchically situated just below the parent term in
the GO structure. If interactome and GO are congruent,
we would expect to detect in a tree clusters of units
enriched for the child GO terms. A significant technical
point is that, because we use each parent term in isolation,
we avoided the analytical problems which would derive
from the fact that sometimes a GO term has several parent
terms.

Table 1 summarizes the data for the nine parent terms
selected for this study (see Methods for the criteria used
for choosing them). Interactome data were obtained from
two different databases. First, we used all the information
available for S. cerevisiae at the Database of Interacting
Proteins (DIP; http://dip.doe-mbi.ucla.edu). This dataset
contains both low- and high-throughput data, although

about 80% of the interactions derive from massive exper-
iments. Second, we used the "Binary gold standard data-
set" (which we will call from now on "GOLD dataset"), a
set of 1318 high-confidence binary interactions selected
by Yu et al. [31]. The comparison between the results
obtained with the DIP dataset and those obtained with
the GOLD dataset will allow us to determine whether
using massive data creates biases that may affect our gen-
eral conclusions.

About 79% of the proteins annotated with the nine
selected parent terms were included in the interactome
dataset that we obtained from the DIP database. The final
groups of proteins included in both the GO and the DIP
interactome dataset contained from 230 to 632 units
(average: 354 units; Table 1). This means that each com-
parison included from 4 to 11% of all S. cerevisiae pro-
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Table I: Parent GO terms selected for the analysis, and number of elements included.

GO term Level' Genes?  ORFs?  Prot. Prot.DIP/ Prot. Prot.GOLD/
DIP4 ORFs (%) GOLDs5 ORFs (%)

Developmental process (BP) | 768 757 632 83.5% 257 34.0%
Reproduction (BP) I 299 298 245 82.2% 11 37.3%
Establishment of cellular localization (BP) | 573 568 452 79.6% 188 33.1%
Response to stimulus (BP) | 670 657 514 78.2% 207 31.5%
Ribonucleoprotein complex (CC) 2 556 459 318 69.3% 96 20.9%
Organelle envelope (CC) 2 346 345 230 66.7% 69 20.0%
Transcription regulator activity (MF) | 307 303 276 91.1% 107 35.3%
Structural molecule activity (MF) | 307 286 231 80.8% 75 26.2%
Transporter activity (MF) | 380 377 297 78.8% 63 16.7%

Average: Average:

78.9% 28.3%

BP: Biological Process; CC: Cellular Component; MF: Molecular Function. !: Levels of the parent GO terms. Level | terms are hierarchically located
just below the three main categories (BP, CC and MF) while Level 2 terms are below a Level | term. 2 Number of genes selected for the analysis,
i. e. those ascribed to the parent GO term which are also included in one of the selected child GO terms. 3: Genes among those in the previous
column that contain ORFs and therefore encode for proteins. # Number of products among those in the selected ORFs for which interactions

were compiled in the DIP database. 5: Same as 4, but for the GOLD dataset.

teins. The nine comparisons together included about 44%
of the proteins present in the yeast (percentages derived
from [32]; notice that a protein may be annotated with
multiple terms). The GOLD dataset is much more
reduced. Only 28% of the proteins annotated with one of
the nine parent GO terms were found in that dataset. The
average size of the groups analyzed was correspondingly
much smaller than those found in DIP, including in aver-
age just 130 proteins (range 63 — 257; Table 1). In the next
sections, we will first discuss the results obtained for the
DIP dataset and, later, we will show that our main find-
ings are confirmed with the smaller, high-confidence
GOLD dataset.

Interactome and GO structures are substantially
congruent: DIP data

The nine selected parent GO terms were subdivided into
child terms, which are detailed in Table 2. Using DIP data,
we found that each child GO term included an average of
96.7 proteins. Table 2 also shows an important prelimi-
nary point, namely that interactome and GO data are
largely independent. Less than 5% of the proteins ana-
lyzed in the DIP dataset were assigned to a particular GO
because of PPI data in absence of other evidence (i. e.
assignations annotated as "inferred from physical interac-
tion" in GO databases). Moreover, this percentage dimin-
ishes to only 3% if two exceptional child GO terms (Small
nucleolar ribonucleoprotein complex and Structural constituent
of cytoskeleton) are excluded and is 0.0% for 19 of the 46
child GO terms. Therefore, we can confidently assume
that, if we find evidence for global congruence between
the GO and interactome structures, this will not be caused
by PPI being systematically used to define to which GO
terms the proteins are assigned.

Once the data had been chosen, UVCLUSTER was used to
obtain dendrograms, one per each of the nine parent GO
terms (see Methods). Then, we searched for clusters of
units significantly enriched for child GO terms using
TreeTracker (see again the Methods section for the
details). In Table 3 and Additional File 1, we describe the
results obtained. Table 3 contains the summary of results
for parent GO terms and Additional File 1, the details for
child GO terms. We used four parameters (coverage,
purity, ambiguity and @ coefficient; see Methods for pre-
cise definitions) to quantify the results obtained. The
summary of the results detailed in Table 3 is as follows: 1)
Confirming that our methodology indeed detects clusters
highly enriched for the corresponding GO terms, the
purity of the clusters (i. e. the percentage of proteins
included in a positive cluster, detected as significantly
enriched for a given GO term, which indeed belong to
that GO term), was high (62 - 96%, average: 80.1%). This
is good evidence for our approach being very sensitive, in
agreement with our previous work [30]; 2) Coverage (a
measure of to which extent a given GO term is detected in
the interactome data), was quite complete, ranging from
34 to 67%, with a global average of 51.2%. This means
that a significant fraction of proteins in the examined GO
classes are recovered in the interactome-based clusters.
Interestingly, GO terms in the Biological Process category
had higher coverages (average: 61.2%) than those in the
Cellular Component (average: 49.7%) or Molecular Func-
tion (average: 39.0%) categories; 3) Ambiguity, which
measures cluster overlap, was variable, ranging from 0 to
20% (average: 7.7%); and, 4) Finally, Phi coefficients (®),
a precise measure of correlation between GO and interac-
tome data (see Methods), are all positive and quite high
(+0.39 to +0.64), with an average of +0.47 + 0.03. This last
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Table 2: Summary of the GO terms used in this study.
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GO term N (P) N (P) GO term N((P) N (P)GOLD
DIP GOLD DIP
Developmental process (32502) 632 (16) 257 (8) Organelle envelope (31967) 230 (12) 69 (2)
Reproductive developmental process 26 (0) 13 (0) Organelle inner membrane (19866) 105 (8) 27 (2)
(3006)
Anatomical structure development 186 (15) 94 (8) Organelle outer membrane (31968) 24 (0) ---
(48856)
Cellular developmental process (48869) 450 (1) 169 (0) Organelle envelope lumen (31970) 25 (0) ---
Aging (7568) 40 (0) 22 (0) Nuclear envelope (5635) 86 (3) 35 (0)
Mitochondrial envelope (5740) 148 (9) 34 (2)
Reproduction (3) 245(7) 111 (4
Sexual reproduction (19953) 95 (0) 41 (0) Transcription regulator activity (30528) 276 (14) 107 (5)
Asexual reproduction (19954) 74 (6) 44 (4) Transcriptional activator activity (16563) 50 (0) 24 (0)
Reproductive process (22414) 207 (7) 88 (4) Transcriptional repressor activity (16564) 35(2) 13 (1)
Rep. of a single-celled organism (32505) 220 (7) 99 (4) Transcription factor activity (3700) 45 (2) 13 (1)
RNA polymerase Il transcription factor 112 (4) 44 (1)
activity (3702)
Establishment of cellular localization 452 (21) 188 (10) Transcriptional elongation regulator activity 14 (6) ---
(51649) (3711)
Secretion by cell (32940) 206 (9) 84 (3) Transcription cofactor activity (3712) 36 (1) 16 (0)
Establishment of nucleus localization 17 (0) ---
(40023)
Intracellular transport (46907) 409 (21) 175 (10) Structural molecule activity (5198) 231 (29) 75 (18)
Structural constituent of ribosome (3735) 115 (0) 21 (0)
Response to stimulus (50896) 514 (3) 207 (0) Structural constituent of cytoskeleton (5200) 50 (29) 31 (18)
Response to endogenous stimulus 197 (3) 101 (0)
9719)
Cellular response to stimulus (51716) 13 (0) - Transporter Activity (5215) 297 (8) 63 (1)
Response to abiotic stimulus (9628) 83 (0) 32 (0) lon transport activity (15075) 111 (5) 16 (0)
Response to external stimulus (9605) 27 (0) 13 (0) Carbohydrate transporter activity (15144) 26 (0) ---
Response to biotic stimulus (6907) 19 (0) - ATPase activity, coupled to movement of 41 (2) -
substances (43492)
Response to chemical stimulus (42221) 212 (0) 65 (0) Amine transporter activity (5275) 27 (0) ---
Response to stress (6950) 370 (3) 159 (0) Organic acid transporter activity (5342) 32 (0) ---
Carrier activity (5386) 67 (0) 13 (0)
Ribonucleoprotein complex (30529) 318 (64) 96 (12) Intracellular transporter activity (5478) 28 (0) 17 (0)
Small nuclear ribonucleoprotein 58 (2) 24 (0) Protein transporter activity (8565) 48 (1) 29 (1)
complex (30532)
Preribosome (30684) 12 (4) --- Lipid transporter activity (5319) 11(2) -
Spliceosome (5681) 74 (12) 33(2)
Small nucleolar ribonucleoprotein 49 (43) 10 (9)
complex (5732)
Ribosome (5840) 156 (5) 45 (1)
Polysome (5844) I'1(0) ---

Results for both the DIP and GOLD datasets are indicated. Parent GO terms are indicated in bold and, below them, the child GO terms are
detailed. The numbers in parentheses adjacent to the names refer to the numerical identifiers of the GO terms. N: number of proteins for which
we obtained PPl data and whose genes were annotated to the GO term. (P): in parentheses, number of proteins among those N that are annotated
with the GO term based exclusively on PPl evidence. The child GO terms with less than |10 proteins found when analyzing the GOLD dataset were

not further examined (dashes).

result demonstrates that the GO and interactome classifi-
cations are, when globally considered, significantly simi-
lar.

Additional File 1 details the results for all child terms. In
addition of the purity, coverage and @ coefficient values,
that table also details how many significant, non-overlap-
ping clusters were detected for each GO term and how
many proteins corresponding to the GO child term were

present in average in each cluster. The summary is that
positive clusters were detected for 45 of the 46 child GO
terms. Purities larger than 70% were observed for 31 out
of those 45 child GO terms and 22 of the 46 child GO
terms had coverages larger than 50%. ® values were posi-
tive for all 45 child GO terms for which we found signifi-
cant clusters. Once put aside the two already mentioned
child GO terms with a high number of assignments based
on PPI data, which may therefore be spuriously significant
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Table 3: General results for the parent GO terms. Analyses using the DIP dataset.

GO TERMS Coverage Purity Ambiguity
(Average) ®(average £ s.e.m.)

Developmental process (32502) 63.6% (402/632) 62.2% 13.0% (74/570) 0.46 + 0.02
Reproduction (3) 58.4% (142/245) 94.1% 0% (0/25) 038 £0.11
Establishment of cellular localization (51649) 66.8% (302/452) 88.4% 1.1% (3/264) 043 £0.10
Response to stimulus (50896) 56.4% (290/514) 77.5% 19.5% (32/164) 0.46 + 0.05
Ribonucleoprotein complex (30529) 59.7% (190/318) 77.8% 12.8% (31/242) 0.64 £ 0.06
Organelle envelope (31967) 39.6% (91/230) 84.9% 1.2% (1/83) 0.47 + 0.09
Transcription regulator activity (30528) 43.5% (120/276) 67.6% 15.0% (30/200) 0.40 £ 0.08
Structural molecule activity (5198) 39.8% (92/231) 95.6% 0% (0/165) 0.53
Transporter Activity (5215) 33.7% (100/297) 72.5% 6.4% (12/186) 0.43 £ 0.06

(Small nucleolar ribonucleoprotein complex and Structural
constituent of cytoskeleton; see above), we determined the
significance level for the other 43 child GO terms using a
chi square test and Bonferroni's correction (see Methods).
® was highly significant for 41 of those 43 terms (Addi-
tional File 1). These results further confirm that GO and
interactome are notably congruent.

Figures 2 and 3 graphically show typical results. Figure 2
depicts the UVCLUSTER-based dendrogram of the parent
GO term Ribonucleoprotein complex, which includes well-
known cellular components such as the ribosome or the
spliceosome. Significant clusters for its six child terms are
indicated. Interestingly, significant clusters for four out of
the six child GO terms (Spliceosome, Ribosome, Small nucle-
olar ribonucleoprotein complex and Preribosome) were almost
completely independent, while significant clusters for the
other two (Small nuclear ribonucleoprotein complex and Poly-
some) appeared included in more comprehensive clusters
positive for other child GO terms (Spliceosome and Preri-
bosome, respectively). This overlap explains the relatively
high ambiguity of the Ribonucleoprotein complex term
(12.8%; Table 3). In Figure 3, the graph with all the
known direct PPI among the proteins in the parent GO
term is shown. The color codes allow visualizing why the
Spliceosome and Small nuclear ribonucleoprotein complex
terms overlap in the UVCLUSTER analyses: a large
number of proteins are annotated with both GO terms
(shown in Figure 3 as blue/yellow dots). The high degree
of purity (77.8%) for the Ribonucleoprotein complex GO
term can be also easily visualized in this representation:
notice the very few dots with a color different from that of
the clusters (surrounded by the polygons). Those corre-
spond to the few proteins included in a cluster but not
annotated with the corresponding child GO term.

Analyses of the GOLD dataset: confirming the congruence
between GO and interactome

While the results shown in the previous section provide
the general picture of the congruence between the GO and
interactome classifications that we were interested in

determining, we performed additional analyses using the
GOLD dataset in order not only to validate those results,
but also to check for the potential effects of low-confi-
dence interactions in our conclusions. First, we repeated
the screening for assignations to GO terms based only in
PPI data, again finding that only 5.6% of the proteins
included in our parent GO terms according to the GOLD
dataset were in that class and that the percentage again
went down to 2.7% when we excluded the same two
exceptional terms Structural constituent of cytoskeleton and
Small nucleolar ribonucleoprotein complex, mentioned
above. Once demonstrated the almost complete inde-
pendence of the GO and interactome data, we performed
the same analyses that we did before for the DIP dataset.
In this case, there were just 33 child GO terms containing
10 or more units. We again focused our analyses in deter-
mining whether those 33 groups appeared in the general
dendrograms generated with all the proteins annotated to
the parent GO terms. Table 4 shows the average results for
the nine parent GO terms using the GOLD dataset. They
are in general quite similar to those shown before for the
DIP dataset (Table 3). As happened in the DIP analyses,
both the purity (76.9%; range 64.7% - 93.6%) and cover-
age (average: 78.9%; range 39.3% - 96.4%) were high.
Ambiguity was higher than in the DIP analyses (average
28.1%; range 0% - 46.2%). This result was however
expected, considering that the number of proteins in the
GOLD-based trees is much smaller than in the DIP-based
trees, favoring the overlap of the significant clusters.
Finally, the positive correlation between GO and interac-
tome measured by the @ coefficient was also highly signif-
icant and a bit higher than in the DIP-based analyses, with
an average of +0.58 + 0.06 (range: +0.37 - +0.91). This
difference in average @ coefficients for the two datasets is
however statistically not significant (t test). The results for
all child GO terms are detailed in Additional File 2. They
were very similar to those shown before for the DIP data-
set (Additional File 1). We detected significant clusters for
all (n = 33) the child GO terms of size > 10. Both purities
above 70% and coverages larger than 50% were found in
24 of those 33 terms. After eliminating the two terms with
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Figure 2

Hierarchical representation of the protein interaction network for the Ribonucleoprotein complex term. On the
left, tree based on secondary distances. The tree on the right is shown to make the topology easier to visualize. At the bottom,
"Unconnected proteins" are those with no direct interactions, which are separated from the rest by UVCLUSTER. Numbers
refer to different clusters found for the same child GO term, which are again shown in Figure 3. snoRNP complex: Small nucle-
olar ribonucleoprotein complex; snRNP complex: Small nuclear ribonucleoprotein complex. NMD: nonsense-mediated mRNA
decay. LSM: like-SM protein complex.
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Figure 3

Ribonucleoprotein complex protein interaction network. All the proteins (dots) in this parent GO term that have at
least one direct connection are shown. Colors refer to the child GO terms to which the proteins are annotated. White dots
are proteins that do not belong to any of the analyzed child GO terms. The clusters detected in our analyses are framed with
colored polygons. Color codes and cluster numbers as in Figure 2.

Table 4: General results for the parent GO terms. Analyses using the GOLD dataset.

GO TERMS Coverage Purity Ambiguity
(Average) ®(average * s.e.m.)

Developmental process (32502) 83.3% (214/257) 82.0% 7.2% (16/222) 0.51 £ 0.06
Reproduction (3) 96.4% (107/111) 82.5% 8.3% (1/12) 0.45 + 0.03
Establishment of cellular localization (51649) 86.7% (163/188) 76.8% 46.2% (49/106) 0.37 £ 0.02
Response to stimulus (50896) 78.3% (162/207) 73.2% 32.1% (18/56) 0.48 + 0.07
Ribonucleoprotein complex (30529) 82.3% (79/96) 70.7% 56.2% (41/73) 0.72 £ 0.03
Organelle envelope (31967) 87.0% (60/69) 79.5% 26.5% (9/34) 0.70 + 0.05
Transcription regulator activity (30528) 39.3% (42/107) 64.7% 33.8% (26/77) 0.42 £ 0.03
Structural molecule activity (5198) 69.3% (52/75) 68.8% 42.3% (22/52) 091
Transporter Activity (5215) 87.3% (55/63) 93.6% 0.0% (0/50) 0.63 +0.13
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a high assignment based solely on PPI data, we found that
29 of the 31 child GO terms left had significant ® coeffi-
cients. All these results confirm the major findings
obtained analyzing the DIP dataset.

Differences between the interactome and GO structures
In spite of the clear general congruence between GO and
interactome described in the previous sections, some sig-
nificant structural differences were also detected in our
analyses. We will base the following description mainly
on results obtained from the DIP dataset, but similar con-
siderations arose when considering the GOLD data (see
some details below).

First of all, several GO terms had low coverages, meaning
that PPI data to connect proteins annotated with those
terms is limited or absent. The fact that PPI data is still par-
tial obviously contributes to this problem. For example,
the GO term Ribonucleoprotein complex had a quite high
coverage (59.7% using DIP data; 82.3% using GOLD
data) largely because it included several large multipro-
tein complexes (e. g. both units of the mitochondrial
ribosome; spliceosome), for which interactome informa-
tion is abundant. However, coverage could have been
even higher except for the fact that PPI for proteins of the
cytoplasmic ribosome were scarce. In fact, no clusters for
the cytoplasmic ribosome units were detected (Figure 2).
Even so, lack of PPI data does not explain all cases of low
coverage. Often, proteins were annotated with particular
terms by facts unrelated to them collaborating in the cell.
This fact explains the especially low coverage values for
some terms in the Molecular Function category, which put
together proteins with related biochemical properties
even if their functions are, from a biological point of view,
totally unrelated. Typical in this sense were our results for
the child GO term Transcription activator activity. In the DIP
dataset, this term included 50 proteins, but only 4 pro-
teins were detected in the UVCLUSTER dendrograms
(Additional File 1). Coverage was thus one of the lowest
in the whole DIP dataset, a mere 8.0%. When we searched
for direct interactions among the 50 proteins annotated
with this GO term, we found that just 23 loosely inter-
acted (none of those had more than 2 interactions with
other proteins in the set). It is extremely unlikely that this
is solely due to PPI data for all these proteins having been
missed so far. The simplest explanation is that proteins
included in this GO term function alone or at most in
small groups, they do not form any functional module.

A second significant difference between GO and interac-
tome structures is that most child GO terms were frag-
mented into multiple significant PPI clusters. For the DIP
dataset, we detected in average 4.1 significant clusters for
each child GO term, with 14.9 proteins per cluster (Addi-
tional File 1). Similar results were obtained for the GOLD

http://www.biomedcentral.com/1752-0509/3/69

dataset (Additional File 2). This fragmentation may be
due to three different causes. First, lack of PPI data con-
necting the clusters, due to incompleteness of the current
PPI information. Alternatively, it could be due to an arti-
factual division in clusters due to methodological limita-
tions. Finally, it could also be caused by lumping of
several independent cellular modules into single GO
terms. Results shown in Figures 2, 3, 4 and 5 for the Ribo-
nucleoprotein complex GO term, using the DIP dataset, sug-
gest an important role for lumping (similar results were
obtained for other GO terms). The GO term in those fig-
ures for which fragmentation is larger (Ribosome, 5 clus-
ters) is composed by groups of proteins that belong to as
many independent functional units: translation initiation
factors, ribosome stalk, elongation factors and small and
large mitochondrial ribosomal subunits. These functional
units are largely independent according to PPI data (Fig-
ures 2 and 3). The structure deduced from the interactome
is summarized in Figure 4, in which the relationships
among the significant clusters of size > 5 are detailed. Five
of them correspond to the Ribosome GO term. When we
then determined which GO terms among those included
in the general GO term Ribonucleoprotein complex con-
tained a significant number of proteins belonging to the
five detected Ribosome clusters (see Methods), we found
the results summarized in Figure 5. The fact that four clus-
ters (nos. 1, 2, 3, 5) are detected as significantly enriched
in different low-level GO terms demonstrates that the
detection of multiple clusters is not spurious, but caused
by real heterogeneity among the functions of the proteins
included in different clusters. The appearance of multiple
clusters may thus be ascribed to the fact that the general
Ribosome GO term indeed includes independent func-
tional units.

Figure 4 also shows the third main characteristic discrep-
ancy that we have observed between interactome and GO:
some clusters (snRNP, snoRNP 1, Ribosome 2) are
included within others. This is due to multiple proteins
being annotated with two or more GO terms (Figure 3).
The high degree of overlapping among GO terms can be
best detected when we again determine the GO terms to
which the proteins in the clusters are annotated (Figures 5
and 6). In some cases (Figure 5), the degree of overlap is
limited. However, in others the overlap is very considera-
ble. For example, to generate Figure 6 we took the clusters
of size > 5 detected for the GO terms Spliceosome, snRNP
and snoRNP shown in Figures 2 and 3 (a total of 4 clusters;
DIP dataset) and we determined all the GO terms for
which a significant enrichment of proteins in those clus-
ters was present. Notably, all 11 GO terms detected as car-
rying a higher than expected number of proteins present
in those clusters were actually significant for proteins
included in two or even three of them (Figure 6). Similar
results were found for some other GO terms.
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Ribonucleoprotein

complex

Spliceosome sno RNP 3 Riboseme 1 Preribosome Ribosome 3 Ribosome 4 Ribosome 5
Ribosome Transiation large efongation factors smalf
synthesis initiation factors mitochondrial mitochondrial

subunit subunit
sn RNP Ribosome 2
Ribosome stalk
sno RNP 1
LSM
Figure 4

Interactome-based structure of the GO term Ribonucleoprotein complex, as deduced from Figure 2. For simplic-
ity, significant clusters of size < 5 are omitted. This eliminates the term Polysome, for which only one cluster of size = 3 was

found.

Discussion

In this study, we quantified for the first time the global
congruence between the structures of the GO and interac-
tome of a eukaryotic species. We used a simple scheme of
analysis, which only considers large parent GO terms with
multiple child GO terms. This allowed us to analyze large
numbers of proteins with minimal design problems,
which could be caused by using smaller groups (e. g. those
lower in the GO hierarchy) or by the intrinsic structure of
directed acyclic graph characteristic of the GO (which
would have influenced the results in more complex
designs, e. g. when using multiple GO levels). In spite of
this intrinsic simplicity of design and the fact that we have
not analyzed the complete GO or the whole interactome
of S. cerevisiae, it is reasonable to expect that our results
can be extrapolated to the cell as a whole. Most especially,
our main conclusion, that the congruence between the
structures deduced from GO and PPI is high, seems ines-
capable. This result goes well beyond previous efforts,
which simply characterized whether groups of highly con-
nected proteins, modules, were enriched for GO terms.

These results have important implications. A first conclu-
sion is that our analyses show that GO classifications
often have a strong structural basis: proteins annotated
with the same GO term often interact, or at least they are
sufficiently close in the interactome graph as to be

detected in statistically significant clusters. Second, we
have shown that the analyses of large PPI datasets, even
those that include low-confidence interactions, provide
robust results. It is true that using the GOLD dataset has
led to the detection of a higher level of congruence
between GO and interactome than that found using the
DIP dataset (® coefficient for the DIP dataset: +0.47 =+
0.03; @ coefficient for the GOLD dataset: +0.58 + 0.06),
However, this difference is statistically not significant.
Therefore, the improvement obtained by excluding low-
confidence interactions is scarce.

On the other hand, our results may also contribute to
revise the current ontologies. For example, results in Fig-
ures 2, 3 and 4, in which we showed that the Ribosome
term is divided into five interactome-based units, each
one of them inherently logical from a functional point of
view, suggest a division of this term slightly different from
the one currently available. Now, only both mitochon-
drial subunits have their own GO terms (Figure 5). Our
results suggest however that it may be better to establish
terms for the five clusters detected. Another significant
point to consider is why a substantial number of GO
terms have low coverages. Although this can be in part
explained by lack of PPI data, there are GO terms defined
for groups of proteins that most likely do not interact (see
results described for the Transcription activator activity
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Ribonucleoprotein
complex

Ribosome Polysome

0000 @®

Cytosolic Ribosomal Organellar
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Figure 5

GO terms for which it was found a significant enrichment for proteins in the clusters detected when analyzing
the Ribosome child GO term. Notice how this structure, directly taken from the GO, differs from that shown in Figure 4.
Numbers refer to the five clusters shown also in the other figures (1: Translation initiation factors; 2: Ribosome stalk; 3: Large
mitochondrial subunit; 4: Elongation factors; 5: Small mitochondrial subunit).
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Ribonucleoprotein
complex
sn RNP sno RNP Spliceosome
SnRNP SHORNP Spliceosome
snoRNP Spliceosome SnRNP
Spliceosome snoRNP

/

U2-dependent Ul2-dependent commitment
spliceosome spliceosome complex
Spliceosome Spliceosome Spliceosome

suRNP

U4/UexU5
tri-snRNP snRNP U2 sRNP U6 snRNP U1l snRNP U5
complex
Spliceosome Spliceosome Spliceosome Spliceosome Spliceosome
snRNP SnRNP SNRNP snRNP SHRNP
snoRNP snoRNP
Figure 6

GO terms for which a significant enrichment for proteins in the clusters detected for the child GO terms
snRNP, snoRNP and Spliceosome was detected. The names below the boxes refer to the child GO terms from which
derive the clusters of proteins detected as significant. Notice the obvious overlap due to many proteins belonging to two or

even the three child GO terms.

term, above). We think that to annotate with a GO term
proteins that do not work together in the cell may be
acceptable for terms in the Molecular Function category,
useful just for obtaining a biochemical classification of
gene products. In fact, terms in that category generally had
the lowest coverages (see Tables 3, 4). However, low cov-
erages for terms in the Biological Process or Cellular Com-
ponent categories should be regarded with suspicion. A

careful reconsideration of these GO terms attending to the
PPI data may generate a more natural classification.
Finally, a third significant discrepancy between GO and
interactome regards the overlaps and the hierarchical rel-
ative position of terms. The knowledge of biological net-
works may be very useful to define the levels in biological
ontologies. One of the first goals may be to avoid as much
as possible to establish at the same level two terms that
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contain many common proteins (e. g. Figure 6). Also, as
we have seen (Figures 2 and 4), according to PPI data, a
cluster for one GO term often contains a smaller cluster
for another GO term of the same level. Those two terms
may be based, at least in part, in just one functional mod-
ule, being thus substantially redundant. This situation
should be also as much as possible avoided.

Conclusion

In summary, in Saccharomyces cerevisiae, GO and the glo-
bal structure of the interactome show a substantial degree
of congruence. This is comforting, given that both classifi-
cations have been obtained almost independently. We
conclude that our current "curated" view of the yeast cell,
as schematized in the GO, is globally confirmed by the
unsupervised type of analysis developed here. However,
the discrepancies detected mean that the current develop-
ment of the Saccharomyces Gene Ontology is still incom-
plete and a better integration of PPI data may contribute
to its improvement.

Methods

We searched the GO annotations compiled in the Saccha-
romyces Genome Database (SGD; http://www.yeastge
nome.org) for large parent GO terms including 200-1000
proteins and with at least 4 child GO terms, each with 10
or more proteins. All proteins not included in a child GO
term (i. e. annotated only with the parent GO term) were
excluded from the cluster analyses. The UVCLUSTER pro-
gram [15] (see http://www.uv.es/~genomica/UVCLUS
TER) was then used to obtain the hierarchical structure of
the graphs for each set of proteins annotated with a GO
term. The starting point to obtain the hierachical trees
with UVCLUSTER analyses are the "primary distances”
among the proteins (shortest path lengths in the interac-
tome graph). They were obtained from two sources. First,
from the Database of Interacting Proteins (DIP; http://
dip.doe-mbi.ucla.edu). We used the full S. cerevisiae data-
set in DIP, which compiles information from multiple
sources, although about 80% of the included protein-pro-
tein interactions derive from high-throughput experi-
ments, either using the yeast two hybrid method or
affinity purification of protein complexes. The second
source was the "Binary gold standard set" described by Yu
et al. [31], which includes only high-confidence data,
mostly based on direct physical interactions characterized
by the two-hybrid method. For UVCLUSTER analyses,
10000 iterations, generating as many alternative topolo-
gies, and an affinity coefficient of 100 were used to esti-
mate the "secondary distances" that are used to build the
final dendrograms (see [15] for details on these parame-
ters). Secondary distances, obtained by weighting the
10000 alternative trees, have clear advantages over pri-

http://www.biomedcentral.com/1752-0509/3/69

mary distances [15]. Dendrograms using secondary dis-
tances were obtained using the UPGMA routine in Mega 3
[33].

UVCLUSTER analyses are very time consuming when the
number of units is higher than 1000 [15]. That is why we
selected parent GO terms with at most 1000 annotated
proteins. Moreover, we selected parent GO terms subdi-
vided into multiple child GO terms to speed up the recol-
lection and analysis of the data. We finally centered our
analysis on the child GO terms containing at least 10 pro-
teins for which interactome data were available, discard-
ing smaller child GO terms, to avoid biases that could be
caused by a few missing or a few false positive links in
small groups of proteins. Some child GO terms were
excluded specifically from the GOLD analyses, given that
in the GOLD dataset they contained less than 10 proteins

GO is divided into three main categories: Biological Proc-
ess, Cellular Component and Molecular Function. The
first of these groups reflects the known information about
the cellular functions in which gene products are
involved, the second refers to the locations (subcellular
structures, macromolecular complexes) in which those
products act and the third refers to the biochemical task
that the products perform (e. g. they have certain enzy-
matic activity, act as receptors, etc.). We retrieved four par-
ent GO terms from the Biological Process category and
three more for the Molecular Function category that com-
ply with our criteria of selection and were hierarchically
located just below these two main categories (these are
often called "level 1 GO terms"). However, none of the
level 1 GO terms of the Cellular Component category
matched our criteria of size and number of child terms.
We thus selected as parents two level 2 GO terms of that
category that indeed comply with those criteria. The
selected parent GO terms are summarized in Table 1.

Explorations of the dendrograms to estimate the enrich-
ment for GO terms were performed as described in [30].
This highly sensitive method, implemented in the
TreeTracker program, compares the enrichments for child
GO terms in the observed tree with those in random sim-
ulations based on the same tree topology. Whenever the
probability of finding by chance a particular enrichment
was sufficiently low (in this study, p < 0.001; i. e. only 1/
1000 of significant clusters detected are expected to be
false positives) and provided that the cluster contained 2
or more units belonging to the analyzed GO term, the
cluster was labeled as positive.

To quantify the congruence between GO and interactome,
we used four parameters. The first one is the coverage,
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which measures to which extent a GO term is recovered by
analyzing the structure of the interactome. For a parent
GO term, coverage is defined as the percentage of the pro-
teins annotated with that parent GO term that appear in
the statistically significant clusters characterized for its
child GO terms. For a child GO term, the definition is
slightly different: coverage is defined as the percentage of
proteins annotated with the child GO term that are
included in significant clusters detected specifically for
that term. The second parameter is the purity of the clus-
ters, defined as the percentage of proteins contained in
clusters significant for a given GO term which indeed are
annotated with that term. The third parameter, which we
called ambiguity, is defined as the percentage of proteins
annotated with a single child GO term that however
appear included in significant clusters for two or more
child GO terms. Ambiguity thus indicates the degree of
overlap among child GO terms according to the interac-
tome structure. However, none of these three informative
parameters (coverage, purity, ambiguity) by itself fully
measures the global congruence of the two structures. To
do so, we used a fourth parameter, the Phi correlation coef-
ficient (©; [34] p. 741), defined as:

@ = (TP TN — FP FN) /[ (TP + EN)(TN + FP)(TP + FP)(TN + FN)]

The four parameters (TP, TN, FN, FP) refer to a particular
GO term. TP (true positives) are the proteins in the clus-
ters detected as positive for a GO term which are indeed
annotated to that term. TN (true negatives) are the pro-
teins excluded from the clusters that are not annotated to
the term. FN (false negatives) are proteins annotated to
the GO term which are not included in any significant
cluster for that term. Finally, FP are proteins included in
the significant clusters that are not annotated to the GO
term. Significance of @ can be simply estimated: ®2 n,
where n is the total sample size (n = FP + FN + TP + TN),
follows a chi-square distribution with one degree of free-
dom [34-36]. Notice also that, for child GO terms, the
parameters coverage and purity, explained above, can be
respectively calculated as TP/(TP + FN) and TP/(TP + FP).

Finally, to generate Figures 5 and 6, we took each of the
significant clusters (size > 5 elements) that we wanted to
analyze and we searched for GO terms that contained
more proteins included in each cluster than expected by
chance (p < 0.01) using High-Throughput GoMiner [37].
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