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Abstract
Background: Cyclic adenosine monophosphate (cAMP) has a key signaling role in all eukaryotic
organisms. In Saccharomyces cerevisiae, it is the second messenger in the Ras/PKA pathway which
regulates nutrient sensing, stress responses, growth, cell cycle progression, morphogenesis, and
cell wall biosynthesis. A stochastic model of the pathway has been reported.

Results: We have created deterministic mathematical models of the PKA module of the pathway,
as well as the complete cAMP pathway. First, a simplified conceptual model was created which
reproduced the dynamics of changes in cAMP levels in response to glucose addition in wild-type as
well as cAMP phosphodiesterase deletion mutants. This model was used to investigate the role of
the regulatory Krh proteins that had not been included previously. The Krh-containing conceptual
model reproduced very well the experimental evidence supporting the role of Krh as a direct
inhibitor of PKA. These results were used to develop the Complete cAMP Model. Upon simulation
it illustrated several important features of the yeast cAMP pathway: Pde1p is more important than
is Pde2p for controlling the cAMP levels following glucose pulses; the proportion of active PKA is
not directly proportional to the cAMP level, allowing PKA to exert negative feedback; negative
feedback mechanisms include activating Pde1p and deactivating Ras2 via phosphorylation of Cdc25.
The Complete cAMP model is easier to simulate, and although significantly simpler than the existing
stochastic one, it recreates cAMP levels and patterns of changes in cAMP levels observed
experimentally in vivo in response to glucose addition in wild-type as well as representative mutant
strains such as pde1Δ, pde2Δ, cyr1Δ, and others. The complete model is made available in SBML
format.

Conclusion: We suggest that the lower number of reactions and parameters makes these models
suitable for integrating them with models of metabolism or of the cell cycle in S. cerevisiae. Similar
models could be also useful for studies in the human pathogen Candida albicans as well as other less
well-characterized fungal species.
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Background
Cyclic adenosine monophosphate (cAMP) is an impor-
tant signalling and regulatory molecule. In eukaryotes
cAMP activates Protein Kinase A (PKA), the target kinase
of the cAMP-mediated signal transduction pathway. In the
widely used model baker's yeast Saccharomyces cerevisiae,
this pathway regulates a variety of cellular processes,
including metabolism [1], response to stress [2,3] and
progression through the cell cycle [4,5]. The pathway is
modulated by external nutrients, most notably glucose
[6]. The transition to growth on glucose in yeast is orches-
trated by a tightly regulated pattern of changes in cAMP
levels as a result of series of interactions involving the
components of the cAMP/PKA pathway (Figure 1). Cyclic
AMP is synthesized by adenylate cyclase (Cyr1p), which
in turn is regulated by Gpa2p [7] and Ras2p [8], both of
which are G proteins. Gpa2p is activated by the G-protein-
coupled receptor Gpr1p, which in turn is activated by glu-
cose [9]. Gpa2p is deactivated by the regulator of G pro-
tein signalling protein (RGS) Rgs2p, as well as its own
intrinsic GTPase activity [10]. Ras2p is activated by the
guanine-nucleotide-exchange factor (GEF) Cdc25p [11]
and Sdc25p [12], and deactivated by the GTPase activat-
ing proteins (GAPs) Ira1p and Ira2p [13]. The level of
intracellular GTP is believed to influence the level of GTP-
bound Ras2p [14], and the GTP level increases following
a pulse of glucose [13], although the mechanism behind
this increase is not fully understood.

The cAMP level is modulated by two phosphodiesterases:
Pde2p has higher affinity for cAMP (around 1 × 10-3 mM)
[15] compared to Pde1p which has a lower affinity for
cAMP in crude extracts (around 0.1 mM) [16,17]. Yeast
cells previously starved for glucose exhibit a characteristic

"spike" of cAMP following addition of glucose to the
growth media. In wild-type cells, this spike reaches a peak
at around 60 seconds before reaching a steady level after
around 120 seconds

In the yeast cell, the only known function of cAMP is to
activate protein kinase A (PKA). A molecule of PKA con-
sists of two regulatory (R) and two catalytic (C) subunits.
Under low cAMP concentrations, the R and C subunits are
bound together to form a catalytically inactive heterote-
tramer. The complex is activated when two molecules of
cAMP bind to each R subunit, causing their dissociation
from the catalytic subunits. Following dissociation, the
free C subunits can phosphorylate their targets. In yeast,
the R subunit is encoded by BCY1, while the C subunits
are encoded by the partially redundant genes TPK1, TPK2
and TPK3. Recently specific as well as common phospho-
rylation targets of the Tpk isoforms have been identified
[18].

PKA exerts feedback on the system in several ways. First, it
has been shown that the low affinity cAMP phosphodi-
esterase Pde1p is phosphorylated following a glucose
pulse and Pde1p can be phosphorylated by bovine PKA
[19]. Phosphorylation of Pde1p leads to increased phos-
phodiesterase activity, which plays a part in reducing the
cAMP level following a glucose induced spike. Secondly,
PKA can phosphorylate Cdc25p, leading to its dissocia-
tion from Ras2p [20]. This results in a decrease in ade-
nylate cyclase activity. Finally, PKA may be able to regulate
itself, as it has been demonstrated that Tpk1p is phospho-
rylated following a glucose pulse [21].

The roles of certain components of the cAMP pathway are
still disputed. One of them is that of the Kelch Repeat
Homologue proteins Krh1 and Krh2, also known as Gpb1
and Gpb2, as they are believed to function as beta subu-
nits of Gpa2p. According to Harashima and Heitman [22]
the Krh proteins stabilize the Ira proteins, the GTPases of
the Ras proteins. Deletion of the Krh proteins leads to a
loss of the Ira proteins, and therefore cAMP signalling is
increased. However, there is evidence that shows that the
Krh proteins enhance the association between the regula-
tory and catalytic subunits of PKA, and this enhancement
is removed when the Krh proteins form a complex with
activated Gpa2 [7,23]. Further evidence for the role of the
Krh proteins comes from studies of adenylate cyclase
(cyr1Δ) mutants [7]. Yeast cyr1Δ pde2Δ mutants can sur-
vive on YPD supplemented with 5 mM cAMP. However,
the quadruple cyr1Δpde2Δkrh1Δkrh2Δ mutants survive in
the presence of 1 mM cAMP, suggesting that the Krh pro-
teins directly inhibit PKA activity, as PKA activity is neces-
sary for yeast survival. In addition a cyr1Δpde2ΔGPA2Q300L

mutant (with Gpa2 locked in its constitutively active GTP
bound state) requires 1 mM cAMP for survival. This gives

Schematic representation of elements of the cAMP pathway in S. cerevisiaeFigure 1
Schematic representation of elements of the cAMP 
pathway in S. cerevisiae.
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further support to the theory that Krh is recruited to active
Gpa2.

The reductionist approach [24] has taught us much about
individual elements of the cAMP pathway; however a
quantitative and integrated mathematical representation
is needed to fully understand its dynamics. Models of two
broad categories can be used for this purpose: determinis-
tic and stochastic [25-27]. Deterministic models which
usually consist of a series of ordinary differential equa-
tions (ODEs) to describe the system in respect to time,
have been used to study yeast systems such as glycolysis
[28], the pheromone pathway [29-31] and the cell cycle
[32]. Stochastic models on the other hand are used when
intrinsic noise is important to the system, such as when
low species numbers are involved [33]. However, stochas-
tic models can be computationally expensive to simulate
[34].

A stochastic model has been developed to examine the
effects of altering the intracellular GTP levels on the Ras/
cAMP/PKA pathway [14]. However, in yeast the compo-
nents of the cAMP pathway are present in high numbers
(proteins in thousands, nucleotides in millions) making a
deterministic model more appropriate. Moreover, this
stochastic model did not include the Krh proteins. In this
study we present a deterministic mathematical model of
the yeast Ras/PKA/cAMP pathway, with components such
as the Krh proteins that have not been included before.
Our model has been fitted to experimental data. It is
much easier to simulate than is the previously reported
stochastic model, yet it can faithfully replicate intracellu-
lar species concentrations observed at steady state, and
following a perturbation of the system with glucose.

Methods
ODE models of biochemical systems consist of variables
and parameters. The variables represent species concentra-
tions, whereas the parameters include rate coefficients,

kinetic parameters, etc. If we represent the variables (xi) as
a vector X:

and the parameters (ki) as a vector θ:

then an ODE model can be represented with the follow-
ing equation:

The models generated in this study are summarised in
Table 1. The reaction formulae which form the basis of the
models were entered into Gepasi [35] and/or Copasi [25],
and these programs were used for earlier inspection of the
models. The models were later exported in Systems Biol-
ogy Markup Language (SBML) format [36], which allowed
the models to be exchanged between programs. SBTool-
box in Matlab [37] was used for parameter estimation,
parameter sensitivity analysis and model simulations.

Steady state parameter sensitivity analysis was carried out
according to the following equation:

where Sij is the sensitivity of species i in relation to param-
eter j, Xssi is the steady state level of species i, pj is the value
of parameter j, and Δpj is a perturbation of parameter j
(equal to 1% of the parameter value).

Cyclic AMP time course data were taken from the litera-
ture [19,38]. As cAMP levels are often reported in terms of

X x x xn
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p j
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Table 1: Summary of the models generated in this study.

Model name No. of parameters No. of variables Description

PKA Model A 5 9 Deterministic model of the PKA module based on Cazzaniga et al [14]

PKA Model B 5 9 PKA Model A with optimized parameter values

PKA Model C 2 3 Simplified PKA module with mass action kinetics

PKA Model D 2 4 Simplified PKA module with Michaelis-Menten kinetics

Simplified cAMP Model A 16 5 Conceptual model of the entire cAMP pathway

Simplified cAMP Model B 18 6 Simplified Model A modified to include Krh proteins

Complete cAMP Model 27 15 Complete model of the cAMP pathway with estimated parameters
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nanomoles per gram of wet weight (or equivalent) it was
necessary to convert them to nanomolar using the follow-
ing formula:

where C(nM) is the nanomolar concentration of cAMP,
C(nmolesgww-1) is the cAMP concentration in nanomoles
per gram of wet weight reported in the literature, Cw is the
conversion factor from grams wet weight to grams dry
weight (0.15) and Vc is the volume of 1 × 107 cells in litres
(2.68 × 10-6, there are approximately 1 × 107 cells in 1
gram of dry weight).

We recognise that ODE models of this type assume that all
cells are identical, which may well not be the case [39].

Parameter estimation
The values of system parameters which were not experi-
mentally derived, were fitted to experimental cAMP time
course data using simulated annealing [40,41], an estima-
tion method that is very efficient in finding a close
approximation of the global minimum of an optimiza-
tion problem. It is based on a probabilistic search, in
which every iteration of the algorithm replaces the current
solution by a random nearby solution, using a probability
distribution that tends to move the solution towards the
global minimum. The simulated annealing algorithms
found in SBToolbox in Matlab [37] with the SBToolbox
function SBparameterEstimation were used for parameter
estimation in the current study.

Results
The Protein Kinase A module
The only known biochemical role of cAMP is to activate
PKA. This process has a complicated reaction scheme,
which is challenging to model. A general guiding princi-
ple when building models is to make the model as simple
as possible, while capturing realistic behaviour [42]. The
expected behaviour of any PKA model must be consistent
with the currently available experimental evidence. Firstly,

a degree of PKA activity is required for cell viability [43].
If no cAMP is present, the cell is nonviable [44]; therefore
all catalytic subunits must be contained within the inac-
tive tetramer in the absence of cAMP. The level of free cat-
alytic subunits must be sensitive to the level of cAMP. The
cAMP level can range from 0.015 mM in glucose starved
cells, to approximately 0.05 mM (a peak of cAMP induced
by a glucose pulse) [38].

The stochastic PKA module reported by Cazzaniga et al
[14] makes several assumptions. The binding constants
for the association of a cAMP molecule with the PKA
tetramer are the same for all cAMP bound states of PKA, as
well as the dissociation constants. The underlying
assumption is that cAMP binds to PKA in a non-coopera-
tive manner, i.e. the binding of a molecule of cAMP to
PKA does not affect the binding/dissociation of further
cAMP molecules. In addition, the dissociation of the
cAMP-bound PKA holoenzyme, and the subsequent dis-
sociation of cAMP from the free R subunit is considered to
be very fast, as is the reassociation of the PKA holoen-
zyme. We have adopted the same assumptions for our
deterministic model.

The stochastic PKA module found in [14] can be con-
verted into a series of deterministic ODEs to give PKA
Model A (Table 1). The reactions of this module are sum-
marized in Table 2. The kinetic rate constants are taken
from the stochastic time constants found in [14]. This
deterministic model can be tested by simulating it over a
100-second time course. Initially the cAMP level is set to
0 and the PKA level is set to 2500 molecules per cell. After
10 s the cAMP level is set to 270900 molecules per cell
(equivalent to 0.015 mM). After 30 seconds the cAMP
level is increased to 903000 (equivalent to 0.05 mM), and
after 60 seconds the cAMP level is decreased to 270900
molecules per cell. For the cAMP level to affect the greatest
control on the system, the difference in the level of free
catalytic subunits of PKA between low and high cAMP lev-
els should be as high as possible. Cyclic AMP activates
PKA, therefore we expect to see an increased difference

C nM
C nmolesgww Cw

Vc
( )

( )=
- ×1

(5)

Table 2: Reactions of PKA Model A

Reaction name Formula Rate law

cAMP-PKA association cAMP + PKA.x*cAMP ⇒ PKA.(x+1)*cAMP kcAMPgain[PKA·x*cAMP][cAMP]

cAMP-PKA dissociation PKA.x*cAMP ⇒ PKA.(x-1)*cAMP + cAMP kcAMPloss[PKA·x*cAMP]

PKA dissociation PKA*4cAMP ⇒ 2R*2cAMP + 2 C kPKAdiss[PKA*4cAMP]

R-cAMP dissociation R*2cAMP ⇒ R + 2 cAMP kRcAMPdiss[R*2cAMP]

PKA association 2 R + 2 C ⇒ PKA kPKAass[R]2[C]2
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between active and inactive PKA when cAMP levels are
physiologically high.

As shown by the blue trace of Figure 2 (panel A) no free
catalytic subunit is present when cAMP is set to zero. The
model shows changes in the proportion of free catalytic
subunits of PKA when cAMP is set to low (Clow) and high
(Chigh) levels. However the difference between the two
states is not great – 27.7% when cAMP is low compared to
40.6% when cAMP is high. It is therefore important to
optimize the model, and for this purpose parameter sen-
sitivity analysis was carried out. As shown in Figure 2
(panel B), the parameter kcAMPgain is the most sensitive
to variations in PKA level. The parameters of this model
were scanned further to identify those which determined
the highest difference between Clow and Chigh. Figure 2
(panel C) shows how the difference between Clow and Chigh
depends on the parameters kcAMPgain and kcAMPloss.
The peak values of this distribution were used to create an
optimised model, named PKA Model B, whose simulation
is shown by the red trace of Figure 2 (panel A). In PKA
Model B, the level of Clow now stands at ~10% whilst that
of Chigh is approximately 90%.

With regards to modelling PKA activation, we wanted to
test if the multi-reaction module used so far could be
approximated with mass action kinetics or Michaelis-
Menten type kinetics. We therefore generated two new
PKA Models named C and D, respectively for mass action
and Michaelis-Menten kinetics. In these new models, the
reaction scheme becomes:

These models are defined by the following ODEs.

PKA Model C:

PKA Model D:

We found that these simplified PKA modules could accu-
rately approximate species levels of the optimized PKA
Model B, with the following parameters: for PKA Model C,
kA = 8.72e-17; kR = 1000; for PKA Model D, Vmaxf = 1e-13;
KMF = 1e7; Vmaxr = 1000; KMr = 0.01 (Figure 3).

We also compared steady state proportions of free cata-
lytic subunit of PKA (Cfree) of each PKA model as a func-
tion of the cAMP concentration (Figure 4). At low cAMP
concentrations, the Michaelis-Menten based model (PKA
Model D) slightly over-estimated, while the mass action
based model (PKA Model C) slightly underestimated the
level of Cfree, respectively, in comparison to the optimised
PKA Model B.

The results of simulating these models show that it is pos-
sible to simplify the PKA module greatly without loss of
performance. It is preferable to use the mass action based
module, as it has just three state variables and two param-
eters. This compares favourably to the complex PKA mod-
ule which has nine state variables and four parameters.
Therefore we adopted the mass action based module to
construct the model of the entire cAMP pathway.PKA  PKAi aÛ 2

d
dt

kA kR
[ ]

[ ] [ ] [ ]
PKAa

cAMP PKAi PKAa= × × - ×4 2 (6)

d
dt

Vmax f
K Mf

Vmaxr
K Mr

[ ] [ ] [ ]
[ ]

[ ]PKAa cAMP PKAi
PKAi

PKAa= × ×
+

- ×
+

4 2

[[ ]PKAa

(7)

Deterministic model of the PKA moduleFigure 2
Deterministic model of the PKA module. (A) Simulation of PKA Model A (blue trace) and PKA Model B (red trace). The 
cAMP level is 0 initially, and is increased to 270900 molecules per cell (equivalent to 0.015 mM) after 10 seconds, increased to 
909000 molecules per cell after 30 seconds, and decreased to 270900 molecules per cell after 60 seconds. (B) Steady state 
parameter sensitivity analysis carried out on the PKA module. (C) Parameter scan of PKA Model A. The greatest value for PKA 
difference (79.1%) is achieved when kcAMPgain = 0.1, kcAMPloss = 2.2 × 105, kPKAdiss = 1 × 105, kRcAMPdiss = 100, kPKAass = 1000.
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Development and simulation of a conceptual model of the 
complete cAMP pathway
As a step towards developing a deterministic model of the
complete cAMP pathway, we first constructed a concep-

tual model named Simplified cAMP Model A (Table 1). It
consists of three ODEs (equations 8–10), based on mass
action kinetics and uses unitless species concentrations
and parameter values shown in Table 3. Equation 8 repre-
sents the combined G proteins activation and inactivation
module, equation 9 – the PKA module, and equation 10
– cAMP synthesis and degradation.

The conservation relationships in Simplified cAMP Model
A are described below in equations 11–12 and represent
the conservation of the total number of G proteins (GP),
and that of total PKA molecules, respectively:

d
dt

kF kR
[ ]

([ ] [ ]) [ ]
GPa

totalGPa GPa Glucose GPa= × - × - ×

(8)

d
dt

kF kR
[ ]

([ ] [ ]) [ ]
PKAa

totalPKA PKAa cAMP PKAa= × - × - ×

(9)

d
dt

ACbasal kA
Ki

VmaxPde[ ] ( [ ])
( [ ])

[ ]cAMP GPa
PKAa

PKAa= + ×
+ ×

- × ×
1

1[[ ]
[ ]

[ ]
[ ]

cAMP
cAMP

cAMP
cAMPK MPde

VmaxPde
K MPde1

2
2+

- ×
+

(10)

[ ] [ ] [ ]totalGP GP GPi a= + (11)

[ ] [ ] [ ]totalPKA PKA PKAi a= + (12)

Optimisation of the PKA modelFigure 3
Optimisation of the PKA model. The blue trace shows 
the simulation of PKA Model B, the red trace – PKA Model 
C, and the green trace – PKA Model D. The cAMP level is 0 
initially, and is increased to 270900 molecules per cell (equiv-
alent to 0.015 mM) after 10 seconds, increased to 909000 
molecules per cell after 30 seconds, and decreased to 
270900 molecules per cell after 60 seconds.

Steady state levels of free C in the PKA models under vari-ous cAMP levelsFigure 4
Steady state levels of free C in the PKA models 
under various cAMP levels. The blue trace shows the 
simulation of PKA Model B, the red trace – PKA Model C, 
and the green trace – PKA Model D. Parameters of PKA 
Model B are the same as in Figure 3. Parameters of PKA 
Model C are: kA = 8.72 × 10-17; kR = 1000. Parameters of PKA 
Model D are: kcat = 10-13; KmF = 107; VmaxR = 1000; KmR = 0.01.

Table 3: Parameters of Simplified cAMP Model A

Parameter Value

GPR kF 0.1

GPR kR 0.01

PKA kF 0.1

PKA kR 0.1

Vmax AC 50

Km AC 1

Ki AC 100

Vmax Pde1 10

Km Pde1 1

Vmax Pde2 1

Km Pde2 1
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where GPi and GPa are the numbers of inactive and active
G proteins, respectively. PKAi and PKAa are the number of
inactive and active PKA molecules, respectively.

The Simplified cAMP Model A was tested to see if it could
reproduce the changes in cAMP levels observed experi-
mentally during a glucose pulse. In a preliminary step, the
initial concentrations of cAMP, PKAi and GPi were set to 1,
and PKAa, GPa and glucose were set to zero. A steady state
was then found, and subsequently all concentrations were
set to their steady-state level. A simulation of the model
was then run changing the glucose concentration to 5 after
5 time units. As shown in Figure 5 (panel A), a spike of
cAMP was observed when the glucose concentration was
increased and simultaneously GP and PKA activated.
Apart from the slight dip in cAMP observed at time 10, the
simulation accurately reproduces published experimental
data [9,19,38].

To test if the model would also accurately reproduce phe-
notypic cAMP profiles of pde1Δ and pde2Δ mutants, the
cAMP ODE (equation 10 defined above) was modified to
remove the Pde1 and Pde2 reactions. The resultant
"mutant" models were simulated as before, and as shown
in Figure 5 (panel B), the simulations accurately repro-
duce the experimental data [19] (again with the exception
of the slight dip in cAMP profile seen in the wild type and
pde2Δ model mutants). We therefore conclude that this
greatly simplified conceptual model is capable of repro-
ducing the essential dynamics of changes in cAMP levels
observed in response to glucose addition in wild-type as
well as in the cAMP phosphodiesterase deletion mutants.

We then used this model to test the roles of the Krh pro-
teins, which according to Harashima and Heitman [22]
act by stabilizing the Ira proteins, whereas according to
Peeters et al. [7,45] they directly inhibit PKA. Initially we
incorporated the Krh proteins into the Simplified cAMP
Model A based on their function proposed by Peeters et al.
The model extended in this way is called Simplified cAMP
Model B. The ODE for PKA has been modified accordingly
to include the Krh proteins (equation 13). The rate of PKA
activation is decreased by Krh, and the rate of PKA deacti-
vation is increased by Krh:

The formation of the G protein complex was modeled
with the following mass action equation:

We tested Simplified cAMP Model B to see if it could
reproduce the results from studies on adenylate cyclase
mutants by Peeters et al. [7]. For this purpose, adenylate
cyclase was removed from the model. The adenylate
cyclase deletion model (cyr1Δ) was simulated with cAMP
concentration set to 1. The GPA2Q300L (Gpa2 constitu-
tively active) mutant was modeled by setting the concen-
tration of GPa to 1 and the parameter VmaxGPdeact to 0. The

d
dt

kF
kI

kR
[ ] ([ ] [ ])

( [ ])
[

PKAa totalPKA PKAi cAMP
Krh

PKAa= × - ×
+ ×

- ×
1

]] ( [ ])× + ×1 kA Krh

(13)

d
dt

kF KRGPaKrh GPaKrh
[ ]

[ ] [ ] [ [ ]
GPaKrh

GPA Krh GPaKrh= × × - ×

(14)

Predictions of Simplified cAMP Model AFigure 5
Predictions of Simplified cAMP Model A. (A) Species concentrations before and after a pulse of glucose. (B) Cyclic AMP 
levels of pde1Δ and pde2Δ mutants: blue trace – wild type; red trace – pde2Δ; green trace – pde1Δ. Glucose is increased to 5 
after 5 seconds in both simulations.
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pde2Δ mutant model was simulated as described earlier.
The krh mutant was simulated fixing GPa levels to 1.

As shown in Figure 6 the cAMP and PKAa levels of the
mutant model simulations are in agreement with experi-
mentally observed phenotypes. The cyr1Δ model mutant
has near-zero steady state levels of cAMP and PKA, which
corresponds well with the fact that a cyr1Δ mutant is non-
viable. Deleting Pde2p in the model elevates cAMP and
PKAa levels, a result which agrees with the observation
that a cyr1Δpde2Δ mutant is viable if supplemented with
external cAMP. Deletion of Krh in the model produces a
further increase in PKAa, which is in agreement with the
observation that these mutants require less exogenous
cAMP for viability [45]. Simulation of the model gives
results that correspond well to the observations of Peeters
et al., [7] when Krh is modeled as a direct inhibitor of PKA.

We attempted to make a model of Krh activity as proposed
by Harashima and Heitman [22]. In the Simplified cAMP
Model B, Krh is quickly reassociated with the G proteins,
allowing the system to exert negative feedback. However,
any feedback in the mechanism proposed by Harashima
and Heitman [22] is impossible because the Ira proteins
are degraded, and re-synthesis of these proteins could not
be fast enough to allow the Ira proteins to inhibit the Ras
proteins. Therefore in all further developments of the
complete cAMP pathway models Krh was retained as a
direct inhibitor of PKA.

Modelling the complete cAMP pathway's response to 
glucose
The simplified conceptual model allowed us to capture
the essential dynamics of the cAMP pathway and also to
successfully incorporate the role of the Krh proteins. In
order to fully understand the dynamics of this complex
pathway we created a deterministic model which includes
all components of the cAMP pathway and their interrela-
tionships as currently reported. This Complete cAMP
Model (Table 1 and Figure 7) consists of several distinct
"modules" which are described below.

Glucose import and metabolism
The import of glucose was modelled using the following
equation, as in [46]:

where vtr is the rate of transport (in mM per second), s is
the extracellular glucose concentration, p is the intracellu-
lar glucose concentration, KM is the Michaelis constant (in
mM) and Ki is the interaction constant.

The metabolism of glucose via glycolysis was summarized
with mass action kinetics, so that the intracellular glucose
concentration did not exceed 1.5 mM during simulation,
as described [46].

Gpa2 and Krh
As described earlier, Gpa2 is activated by Gpr1, and Gpr1
is activated by extracellular glucose. The activation of
Gpr1 is modelled with mass action kinetics, whereby
Gpr1 forms a complex with extracellular glucose. The acti-
vation of Gpa2 is based on mass action kinetics, with acti-
vated Gpr1 as an essential activator. Deactivation of Gpa2
is modelled using a basal rate of deactivation (represent-
ing the intrinsic GTPase activity of Gpa2), which can be
enhanced by Rgs2. The binding of Gpa2 to Krh to form a
complex is represented with simple mass action kinetics.

Ras2
Ras2 is very challenging to model because a large number
of molecular species are involved in its regulation. It is
directly activated by Cdc25, but it is activated indirectly by
glucose. We chose to model the activation of Ras2 using
general hyperbolic modifier kinetics. In this reaction, glu-
cose acts as a modifier which increases the rate of the reac-
tion, but the reaction is dependent on Cdc25. The
deactivation of Ras2 was modelled using modified mass
action kinetics with Ira as an activator. This captured the
intrinsic GTPase activity of Ras2.

v V
s K M p K M

s K M p K M Kisp K M
tr = -

+ + +

/ /

/ / /1 2 (15)

Cyclic AMP and PKAa levels in Simplified cAMP Model B mutants when cAMP levels are set to 1 and PKAa set to 0Figure 6
Cyclic AMP and PKAa levels in Simplified cAMP 
Model B mutants when cAMP levels are set to 1 and 
PKAa set to 0. Model mutant genotypes are: cyr1Δ (green), 
cyr1Δpde2Δ (blue), cyr1Δpde2Δkrh1/2Δ (red), cyr1Δpde2Δ 
GPA2Q300L (cyan).
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Adenylate Cyclase
Adenylate cyclase is represented as a Michaelis-Menten
enzyme, with the following modifications. Activated
Gpa2 and activated Ras increase the kcat of adenylate
cyclase, increasing the maximum activity of the enzyme.
In order to simplify the model, the substrate for adenylate
cyclase (ATP) is not included, as the intracellular concen-
tration of ATP is always greatly in excess of the cAMP con-
centration.

PKA
PKA is modelled using the mass action kinetics module
with the addition of the actions of the Krh proteins
described earlier. The forward reaction (PKA dissociation)
is inhibited by Krh, and the backward reaction (PKA asso-
ciation) is activated by Krh.

The Phosphodiesterases
Pde2 is represented as a Michaelis Menten enzyme with a
Km value of 0.002 mM, determined by parameter estima-
tion (Table 4). Pde1 has been shown to be activated by
phosphorylation, so the phosphorylated form has a lower
Km and higher kcat than the dephosphorylated form. For
this reason, Pde1 is represented by two species – the phos-
phorylated and the dephosphorylated form of Pde1p,
respectively.

The model was written in SBML format [36] and is
included as Additional file 1. The pathway diagram was
constructed using CellDesigner [47], incorporating the
Systems Biology Graphical Notation (SBGN) scheme
http://www.sbgn.org/. The representation of the model is
shown in Figure 7, and its reactions and rate laws are
shown in Table 5. The parameters of the Complete cAMP
Model are given in Table 4, including both estimated and
experimentally derived parameters. The cAMP data used
for the parameter estimation were taken from [38], where
5 mM glucose was added to glucose-starved cell suspen-
sion after 60 seconds, followed by the addition of 100
mM glucose after 240 seconds. The cAMP profile (Figure
8) computed by simulation of our Complete cAMP Model
after parameter estimation is in good agreement with pre-
vious observations.

The Complete cAMP Model illustrates several important
features of the pathway. The balance of flux between
cAMP synthesis and hydrolysis (Figure 9, panel A) dem-
onstrates that Pde1p is more important than is Pde2p for
controlling the cAMP levels following glucose pulses, as
the effect of Pde1p on the rate of cAMP hydrolysis is much
greater than that of Pde2p. Furthermore, the level of active
Gpa2 is proportional to the level of extracellular glucose,
and the level of Krh drops as it forms a complex with acti-

Schematic representation of the Complete cAMP model, using the SBGN notationFigure 7
Schematic representation of the Complete cAMP model, using the SBGN notation.
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vated Gpa2 (Figure 9, panel B). Importantly, the propor-
tion of active PKA (Figure 9, panel C) is not directly
proportional to the cAMP level (Figure 8), allowing PKA
to exert negative feedback on the cAMP level, even when
the cAMP level drops. PKA exerts this feedback by activat-
ing Pde1p (Figure 9, panel A) and deactivating Ras2 via
phosphorylation of Cdc25 (Figure 9, panel D). The latter
mechanism is a feature of the Complete cAMP Model but
not of the Simplified cAMP Model A and explains why
cAMP level can come down after a glucose pulse in the
Complete cAMP Model but not in the Simplified cAMP
Model A.

Discussion
We have successfully created a series of deterministic
mathematical models to investigate the cAMP pathway in
S. cerevisiae. These range from simplified, conceptual
models of the pathway, to an extensive model that fits
experimental data. We were able to build a simplified
model of the PKA module, containing only two variables
and two parameters, without compromising the behav-
iour of the system. The simplification of the PKA module
demonstrates the power of deterministic models. The
components of this pathway are present in high abun-
dance (proteins in thousands, nucleotides in millions per
cell), making a deterministic model better suited than a
stochastic one (we note also that we are not seeking to
model potentially hundreds of kinds of protein molecule
with different post-translational modifications).

Table 4: Parameters of the complete cAMP pathway Model

Parameter name Value Units Source

Glucose transport KM 0.08 mM [37]

Glucose transport V 1.7 mmol/s [37]

Glucose transport Ki 0.91 [37]

Glucose Utilisation kF 0.03 l/s This work

Gpr1 Glucose association k1 0.003 l2/mmol*s This work

Gpr1 Glucose dissociation k1 0.14 l/s This work

Gpa2 activation kA 57682.6 l2/mmol*s This work

Gpa2 deactivation kF 0.899 l/s This work

Gpa2 deactivation kA 12989.4 l2/mmol*s This work

Gpa2-Krh association kF 391089.6 l2/mmol*s This work

Gpa2-Krh dissociation kF 6.12 l/s This work

Ras2 activation kcat 0.74 l/s This work

Ras2 activation KM 1.38 × 10-3 mmol/l This work

Ras2 activation Kd 0.044 mmol/l This work

Ras2 activation a 32.9 This work

Ras2 activation b 63.8 This work

Ras2 deactivation kF 0.042 l/s This work

Ras2 deactivation kA 519.8 l2/mmol*s This work

cAMP synthesis kcatGpa2 2933.9 This work

cAMP synthesis kcatRas2 650 This work

cAMP synthesis KM 4 × 10-3 mM This work

PKA activation kF 7.6 × 108 This work

PKA activation kI 100 l/mmol This work

PKA deactivation kF 19.9 This work

PKA deactivation kA 2.2 × 104 l/mmol This work

Cdc25 phosphorylation kcat 0.18 l/s This work

Cdc25 phosphorylation KM 5.2 × 10-3 mmol/l This work

Cdc25 dephosphorylation kcat 2.52 l/s This work

Cdc25 dephosphorylation KM 1.6 × 10-2 mmol/l This work

Pde1 phosphorylation kcat 6.82 l/s This work

Pde1 phosphorylation KM 8.6 × 10-3 mmol/l This work

Pde1 dephosphorylation kcat 2.4 l/s This work

Pde1 dephosphorylation KM 1.07 × 10-3 mmol/l This work

cAMP hydrolysis (Pde1) kcat 1.1 l/s This work

cAMP hydrolysis (Pde1) KM 0.85 mmol/l This work

cAMP hydrolysis (Pde1p) kcat 25.25 l/s This work

cAMP hydrolysis (Pde1p)KM 6 × 10-7 mmol/l This work

cAMP hydrolysis (Pde2)kcat 1 l/s This work

cAMP hydrolysis (Pde2) KM 0.002 mmol/l [15]

Table 4: Parameters of the complete cAMP pathway Model 
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Table 5: Reactions of the Complete cAMP pathway Model

Reaction name Substrates Products Rate law

Glucose transport (reversible) Glucout Glucin

Glucose metabolism Glucin kf [Glucin]

Gpr1-Glucose Association Gpr1, Glucout Gpr1Glucout kf [Gpr1] [Glucout]

Gpr1-Glucose dissociation Gpr1Glucout Gpr1,Glucout kf [Gpr1Glucout]

Gpa2 activation Gpa2i Gpa2a kA [Glucout] [Gpa2i]

Gpa2 deactivation Gpa2a Gpa2i (kA [Rgs2] + kf) [Gpa2a]

Gpa2-Krh association Gpa2a,Krh Gpa2aKrh kf [Gpa2a] [Krh]

Gpa2-Krh dissociation Gpa2aKrh Gpa2a,Krh kf [Gpa2aKrh]

Ras2 activation Ras2i Ras2a

Ras2 deactivation Ras2a Ras2i (kA[Ira]+kf)·[Ras2a]

cAMP synthesis cAMP

PKA activation PKAi 2*C

PKA deactivation 2*C PKAi kf[C]2·(1 + (kA[Krh]))

Cdc25 phosphorylation Cdc25 Cdc25P

Cdc25 dephosphorylation Cdc25P Cdc25

Pde1 phosphorylation Pde1 Pde1P

Pde1 dephosphorylation Pde1P Pde1

cAMP hydrolysis (Pde1) cAMP

cAMP hydrolysis (Pde1P) cAMP

cAMP hydrolysis (Pde2) cAMP

V
s K M p K M

s K M p K M Kisp K M

/ /

/ / /
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+ + +1 2
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In our PKA Model, the activation of PKA is worthy of par-
ticular attention. In previously published models, PKA
activity was directly proportional to the cAMP level [14].
However, it has been proposed that PKA autophosphor-
ylation provides a feed-forward mechanism for PKA acti-
vation [48], as Tpk1p is phosphorylated following a
glucose pulse [21]. Alternatively, it is proposed that Krh
inhibits PKA, and this inhibition is removed when Krh is
recruited to activated Gpa2 [45]. Our Simplified cAMP
Model B shows that the latter scenario is more likely, as
this model corresponds well with observable phenotypes.

Our Simplified cAMP Model shows that the basic dynam-
ics of the pathway in response to glucose can be explained
with a relatively straightforward feedback mechanism.
The activation of PKA by cAMP, followed by the activation
of Pde1 and the inhibition of adenylate cyclase is suffi-
cient to produce a characteristic "spike" of cAMP, fol-
lowed by the emergence of a new steady state level of
cAMP and PKA. This model has been tested by creating
phosphodiesterase deletion mutant models (Figure 5,
panel B). Deleting Pde2 in the model results in a higher
steady state level of cAMP, but it does not significantly
affect the cAMP spike. This phenotype is indeed found in
yeast pde2Δ mutants [3]. However, removing Pde1 from
the model results in a cAMP spike with increased peak
height and duration, which is comparable to that experi-
mentally determined in pde1Δ mutant [19].

In the Simplified cAMP model A, a slight dip in the level
of cAMP can be seen before the cAMP level reaches a

steady state after a pulse of glucose. Although this slight
oscillation is not widely noted in the literature, it is possi-
ble to observe it in some experiments [38]. The presence
of the slight oscillation in the model is dependent on the
parameters of the model and the glucose concentration. It
remains to be seen whether this oscillation is truly present
in all or any circumstances.

The Simplified cAMP Model B (which incorporates the
Krh proteins) demonstrates the significance of the nega-
tive feedback. Furthermore, it shows that this feedback is
possible if the Krh proteins were acting as direct inhibitors
of PKA as proposed by Peeters et al. [7,45] rather than sta-
bilising the Ira proteins as proposed by Harashima and
Heitman [22]. At the same time, it predicts that cAMP lev-
els should decrease more rapidly in the
cyr1Δpde2Δkrh1Δkrh2Δ mutant than in the cyr1Δpde2Δ
mutant. It will be interesting to see if these mutants
behave in the way predicted by our models.

Although the Simplified cAMP Model could account for
the majority of the behaviour of the cAMP pathway, there
were exceptions. Most notably, in simulations of the
pde1Δ mutant model, the steady state level of cAMP
became significantly higher after a glucose pulse than it
was before (Figure 5, panel B). This is not seen experimen-
tally, where there is little difference between the post-glu-
cose cAMP levels seen in a wild type and pde1Δ mutant
[19]. This feature of the Simplified cAMP Model
prompted us to develop the Complete Model. Our Com-
plete cAMP Model represents the first effort to consolidate
all the known elements of the cAMP pathway into one
deterministic mathematical model. In addition to this, we
have fitted the parameters of our model to experimental
data. The fact that the complete cAMP pathway model can
reproduce cAMP levels found in the literature indicates
that the model is a reliable in silico approximation of the
in vivo system. Furthermore, our model has other advan-
tages. Firstly, as a deterministic model, it is computation-
ally inexpensive to simulate and easy to analyze.
Secondly, it represents a physiologically realistic steady
state before glucose is introduced, in that the cAMP level
is not zero. This contrasts with the model found in [14],
in which the cAMP level is set to zero before glucose addi-
tion, which is biologically impossible, as cAMP is required
for cell viability. After glucose addition, the model cor-
rectly represents the dynamical changes in cAMP level,
until the cAMP level reaches a new steady state.

The models of the cAMP pathway described in this study
make a number of predictions that could be tested exper-
imentally. As a matter of further investigations in our lab,
different species would be characterized following a pulse
of glucose in terms of phosphorylation (Pde1p, Cdc25p),

Result of parameter estimation of the Complete cAMP ModelFigure 8
Result of parameter estimation of the Complete 
cAMP Model. The blue dotted trace represents cAMP data 
from [35], and the solid blue trace represents cAMP levels 
computed by the model.
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GTP loading (for Gpa2p), changes in cAMP levels (in
cyr1Δpde2Δkrh1Δkrh2Δ in comparison to cyr1Δpde2Δ).
Our Complete cAMP Model will no doubt be improved
and tested further in the future. As more parameters are
derived through experimentation, they can be included
into the model to replace currently estimated parameters.
We provide this model in SBML (Additional file 1), so that
it can be easily expanded as scientific knowledge
increases. For example, details on the mechanism of glu-
cose activation of Ras2 could be incorporated when this
mechanism is elucidated.

This model could be integrated with models of other
pathways, a good example being that of the cell cycle,
given the fact that cell cycle progression is controlled
partly by the cAMP pathway [49]. It could also be inte-
grated with a metabolic model such as the community

consensus version recently published [50] via known PKA
targets. Furthermore it could be adapted to other organ-
isms such as the human fungal pathogen Candida albicans,
as it is well documented that the cAMP pathway plays a
key role in regulating virulence [51].

Conclusion
We report a deterministic mathematical model of the
cAMP-mediated signal transduction pathway in S. cerevi-
siae. The model is easier to compute and simulate as it has
a reduced number of variables and parameters in compar-
ison to previously reported stochastic model of this path-
way. Furthermore, our model contains components such
as the regulatory Krh proteins that have not been included
before. It is able to simulate accurately experimentally
derived patterns of cAMP changes observed in different
pathway mutants in response to glucose addition. We sug-

Predictions of the Complete cAMP ModelFigure 9
Predictions of the Complete cAMP Model. (A) cAMP synthesis and hydrolysis rates. Glucose is increased to 5 mM at 
time 60, and increased to 100 mM at time 240. Blue trace: rate of cAMP synthesis. Red trace: rate of cAMP hydrolysis by Pde1. 
Green trace: rate of cAMP hydrolysis by Pde2. (B) Levels of species in the Gpa2 module. Blue trace: inactive Gpa2. Green 
trace: active Gpa2. Red trace: Krh. Cyan trace: complex of activated Gpa2 and Krh. (C) Levels of active (blue trace) and inac-
tive (green trace) PKA. (D) Levels of Ras2a and Cdc25 in response to 5 mM glucose at time 60sec, and 100 mM at 240 sec. Top 
part: Ras2a (blue trace); bottom part: phosphorylated (green trace) and unphosphorylated (blue trace) Cdc25.
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gest that it is suitable for integration with other models
such as that of the cell cycle or metabolism and that it
could be adapted to medically important yeast species
such as the human fungal opportunistic pathogen C. albi-
cans.
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