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Abstract
Background: Network motifs are recurrent interaction patterns, which are significantly more
often encountered in biological interaction graphs than expected from random nets. Their
existence raises questions concerning their emergence and functional capacities. In this context, it
has been shown that feed forward loops (FFL) composed of three genes are capable of processing
external signals by responding in a very specific, robust manner, either accelerating or delaying
responses. Early studies suggested a one-to-one mapping between topology and dynamics but such
view has been repeatedly questioned. The FFL's function has been attributed to this specific
response. A general response analysis is difficult, because one is dealing with the dynamical
trajectory of a system towards a new regime in response to external signals.

Results: We have developed an analytical method that allows us to systematically explore the
patterns and probabilities of the emergence for a specific dynamical response. The method is based
on a rather simple, but powerful geometrical analysis of the system's nullclines complemented by
an appropriate formalization of the response probability.

Conclusion: Our analysis allows to determine unambiguously the relationship between motif
topology and the set of potentially implementable functions. The distribution probability
distributions are linked to the degree of specialization or flexibility of the given network topology.
The implications for the emergence of different motif topologies in complex networks are outlined.

Background
Molecular networks in cells are highly complex and
dynamic. The global behaviour of these webs and their
behavioral patterns are far too complicated to intuitively
understand their logic. One way to address this problem
is to represent them in terms of simplified interaction
graphs combining both biological data and mathematical
methods [1-6].

Much effort has been devoted to extract some general fea-
tures of such networks, dissect them into hierarchical lev-
els, modules and motifs to understand their
functionalities, dynamics and evolution [7-16]. Simple
switches and oscillators have been shown to map to the
core processes of biological decision-making, imple-
mented by two- or three-gene network motifs and charac-
terized by their behaviour around the systems' fixed
points [17-22]. However, it is reasonable to think that not
only the system's steady state is of interest, but also the
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way such equilibrium is achieved. Such transient behavior
might be characteristic, somehow representing the func-
tion performed by the genetic circuitry. In some circum-
stances, such as in stress responses, a quick change might
be favorable [23], whereas in other occasions, e.g. cell-cell
intercommunication, it might be more adequate to filter
noisy signals and respond only under absolute certainty
[24].

Transcriptional networks regulating cell responses exhibit
several biochemical wiring patterns, termed network
motifs, which appear at frequencies much higher than
expected by chance, suggesting that they may have specific
functions in the information processing performed by the
network. Over the last years, powerful bioinformatic tools
such as FANMOD [25] have been developed to detect
motif distributions in complex transcriptional networks.
One of these motifs is the feed-forward loop (FFL),
defined by a transcription factor X that regulates a second
transcription factor Y, such that both X and Y jointly reg-
ulate a target gene Z (figure 1a-b). Many examples of FFLs
can be found in complex transcriptional networks. For
example, in E. Coli, FFL is present in the L-arabinose sys-
tem, where protein Crp is the general transcription factor
(X) and AraC is the specific transcription factor (Y). This
motif regulates 40 effector operons in 22 different systems
in the network database [26]. A second example can be
found in Saccharomyces network, where the protein Mcm1
(X) regulates the expression of Swi4 (Y). Both proteins
Mcm1 and Swi4 regulate the final expression of Clb2. In
the yeast network, 39 regulators have been found that are
involved in 49 feedforward loops potentially controlling
240 genes [27]. In general, FFLs are known to be associ-
ated to multiple key regulations, exhibiting different func-
tionalities, e.g. under conditions of glucose starvation
(CRP), nitrogen limitation (rpoN), and noxious drugs
(rob), these regulators act as X in a C1 type FFL. On the
other hand, I1 type FFLs in yeast include anaerobic metab-
olism (HAP1 as X) and nitrogen starvation (DAL80 or
GLN3 as X) systems [28]. In this context, the question
about the relation between the functional response imple-
mented by FFLs and their topology arises. The study of the
response of three-gene feed-forward loops upon external
input shows that they are capable of either implementing
transient pulsing (rapid) or, filtering (delayed grader)
dynamics [28-35]. However, despite it seems clear that
motif topology has an impact on its functionality, is the
mapping between motif topology and the possible
dynamics one-to-one? Some studies have demonstrated
that topology does not necessarily determine function
[13,36,37]. Most analysis focused on motif's function
have been carried out considering single motif networks.
However, recent studies [38,39] have provided evidence
that for complex networks, the embedding of the motif

with the rest of the network needs to be taken into
account.

Here we have developed a method to systematically study
the different functions which can be implemented by each
FFL motif and how the topology determines univocally
the distribution of probabilities for these functions. A will
be shown below, this distribution is correlated with the
degree of specialization or flexibility of each motif, by tak-
ing into account the different likelihood to perform any
function. In other words: topology determines the motif's
level of functional specialization. Recently, a similar ques-
tion on the context of genetic clocks has been addressed
[40]. The conclusions of the study suggest that for these
clocks topology does not determine dynamics univocally.
Although our analysis focuses on single motifs, our results
provide new insights to understand the different distribu-
tion of motifs in more complex networks, as we will dis-
cuss later.

In order to analyze the relation between FFL's functional-
ities and topology we will describe our biological systems
in terms of a set of differential equations:

describing how concentration of different species Y and Z
change during time. Here  and Ż represent the derivatives
dY/dt and dZ/dt, respectively. The FFL topology is implic-
itly described by functions g(X) and h(X, Y). Assuming
that expression of X is unregulated, the dynamics of the
system can be represented in a two-dimensional diagram
displaying Y against Z, the so called phase space. In the
absence of input, the system evolves towards a stable state,
i.e. a specific set of values for the concentrations of Y and
Z that remain constant over time. This stable state is deter-
mined by the crossing of the so-called nullclines of the
system [41] described by the curves  = 0 and Ż = 0, i.e. g(X)
= 0 and h(X, Y) = 0 respectively. These curves define the
points of the phase space where Y and Z do not change.
The nullclines capture the essence of the dynamical poten-
tial of each component and the relevant chemical, physi-
cal or biological constraints. Their shapes reflect
saturation effects, forbidden ranges of variables or how
fast each component responds to perturbations. In other
words, a careful analysis of nullclines allows us to under-
stand the dynamics of the underlying systems and its bio-
logical implications. The crossings between both
nullclines define stable fixed points, where concentrations
of both Y and Z remain constant. Upon input the shape of
the nullclines change, providing a new, different stable
state. Hence, the system will evolve toward this new state
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following a trajectory, i.e. a set of intermediate states (Y,
Z) within the available phase space.

As will be shown below, we can analyse the geometrical
requirements necessary in order to observe different
responses to be generated and the probability for a certain
FFL to implement a given function independent of the set
of parameters. The main message of our work is that top-
ological interactions encode the shape of the nullclines,
which in turn determines the limits of possibilities. The
functional response of the FFL depends on the parameter
configuration within these limitations. In other words,
motif structure does not determine its function, but
encodes the probability of potential functions that can be
implemented. This paper is organized as follows: We first
introduce the general model of the FFL based on ODEs
and their respective nullclines. Departing from the
nullcline scenarios we determine the constraints imposed
onto the dynamics of the response of the FFL. Finally,
these constraints are formalized analytically in such a way
that all feasible types of behaviour can be evaluated. This
evaluation allows for the first time to draw generally valid
conclusions on the relation between motif topology and
function in FFLs.

Results and Discussion
General model of the FFL
The analysis is focused on the most general FFL formed by
three genes. We assume that the gene circuit acts as a func-
tional unit responding to an external input by producing
output. In figure (1) we show an schematic representation
of the FFL, depicting three genes GX, GY and GZ, with reg-
ulatory interactions among each other via their corre-
sponding proteins X, Y and Z.

Gene GX (not shown) has a constant production of its pro-
tein which is independent of the regulation of the other
proteins. We assume that X, however, is synthesized in its
inactive form and needs an external effector (the input of
the circuit) for its activation. The concentration of active X
without input is negligible. Upon addition of effector, the
activation of X proceeds very rapidly compared to synthe-
sis and decay and hence, can be approximated by a step
function

as in [28]. In the following, X will denote the active pro-
tein. Transcription of GY and GZ is subjected to internal
regulation. Production of Y depends on regulator X,
whereas production of Z depends on both X and Y. The
FFL can be described by the following ODEs

The parameter γi represents the basal production of pro-

tein i, where i = {X, Y, Z}. In this parameter we subsume
the concentration of all biochemical elements which
remain constant in time. The degradation rate of protein i
is denoted as di. The binding equilibrium of the regulators

j with the gene Gi are denoted by , with j = {X, Y, Z}.

The tunable positive parameters αX and βj describe the
type of regulatory interactions, i.e. activation or inhibi-
tion, for gene GY and GZ, respectively, without any prede-

fined specific assumptions. They provide the regulatory
rates with respect to the basal transcription. Values < 1
correspond to inhibitory regulation, whereas > 1 accounts

for activation. The parameter βXY accounts for the simulta-
neous regulation of GZ.

Traditionally, studies on FFL dynamics have been per-
formed under the assumption of Boolean logic [28,42] for
the control of the output regulation. The presented model
includes all theses cases as specific subsets of parameters.
For example, assuming a Boolean AND logic for a circuit,
where the output Z is positively regulated by Y and X, is

described by the following parameter configuration: βx =

βY = 1, βXY > 1 and . The same circuit display-

ing OR logic requires βx = βY > 1, βXY = 0 and  = 0.

Finally, n and m denote the degree of multimerization of
the regulators. The presented results, however, are consid-
ering the general case independent of the size of the regu-
latory factors.

Nullclines' analysis: Changes of the nullclines upon input
The system's fixed points can be determined by inspection
of the crossings of its nullclines. The studied input-output
system will remain stable unless an external input pushes
the FFL towards another stable equilibrium. The FFLs
dynamical response upon this change depends on a spe-
cific configuration of circuit parameters. Notwithstand-
ing, the possible response-dynamics are restricted by the
shape of the nullclines. The general expressions for the
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Schematic representation of the FFL motif and its functions.Figure 1
Schematic representation of the FFL motif and its functions. Schematic representation of the FFL motif and its func-
tions. In (a) the genetic organization is shown. Activation signal X regulates the expression of gene GY, whereas gene GZ is reg-
ulated in joined mode by gene product Y and X. This small system can be formally represented in a graph (b) with a given 
topology and a set of dynamical equations describing the kinetics of its regulatory interactions. For a given set of parameters, a 
specific type of response (c) might be observed. In (d) all possible regulatory combinations are shown.
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nullclines are obtained imposing  = 0 and Ż [41] and writ-
ten as follows:

For a general analysis of the nullclines' shape independent
of the specific parameters and the size of the multimeric
regulators, we focus on a simple set of geometrical fea-
tures. Within the phase space spanned by {Y, Z}, the
nullcline (5) is a simple, vertical straight line. Nullcline
(6) shows an horizontal asymptote located at

and crosses the vertical axis at

Furthermore, expression (6) shows a single inflection
point, i.e. a point where curvature changes from concave
to convex or viceversa, in the biological domain defined
by Y ≥ 0 and Z ≥ 0, but no extrema (local maximum or
minimum). In order to understand how the input triggers
the dynamical response, we study the configuration of the
two nullclines with X = 0, i.e. no input, versus X > 0, i.e.
with input. In figure (2) we show a numerical example. In
absence of input, the system is governed by a single stable
fixed point, denoted by ϕX = 0, located at the crossing of the
nullclines (5) and (6). On addition of input, the fixed
point moves, because the nullcline configuration changes.
Now the system shifts from ϕx = 0 to the new stable fixed
point ϕx > 0. The point ϕX > 0 is determined by the crossing
of the new location of the nullclines for X > 0. The dynam-
ical response of the system, which is represented by the
trajectory of the FFL in phase space, is generated by this
change of the stable regime. A subset of four parameters,
i.e. {αX, βX, βY, βXY}, describing the interactions of the pro-
teins, classify the type of the circuits into coherent and
incoherent according to [28]. Without input, only βY is rel-
evant for the geometry of the nullcline Ż = 0. If βY > 1 the
nullcline rises, because ZHA > Z0, whereas for βY < 1 the
nullcline decreases as shown in figure (3a). Under the

presence of an external input the other parameters
become relevant (figure (3b)):

1. The regulation of Y by X, described by αX, defines
the direction of the shift of the straight nullcline (5)
regarding its earlier position for X = 0.

2. The regulation of Z by X, described by βX, displaces
the crossing of the nullcline (6) with the vertical axis
to a higher (βX > 1) or a lower (βX < 1) value.

3. Finally, the joint regulation βXY of Z by X and Y,
strongly influences the location of the horizontal
asymptote ZHA.
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Input effects on the nullclines.Figure 2
Input effects on the nullclines. The change of the 
nullclines upon input is illustrated in these examples. The 
green lines are the nullclines (5) and (6) without input cross-
ing at point ϕX = 0. In absence of input, the system is stable in 
this point. Upon input the nullclines change and are depicted 
as blue lines, shifting the stable point to ϕX > 0. The change of 
the fixed point, forces the system to evolve towards the new 
regime. The red dashed line represents its trajectory in the 
phase space. The inset shows the corresponding time course 
of the system's output. The parameters of the simulations 

are: γY = 1, αX = 0,  = 100, dY = 0.1, γZ = 1, βX = 3,  = 

100, βY = 0,  = 1, βXY = 0,  = 100 and dZ = 0.1. In 

absence of input X = 0 and in presence of input we consider 
X = 1.
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The effects of the regulatory parameters on the geometry of the nullclines.Figure 3
The effects of the regulatory parameters on the geometry of the nullclines. In (a) we show the impact of positive 
(grey area) or negative (white area) regulation of GZ by Y. The geometrical effect associated to βY is the only independent of 
presence of input. In (b) we depict input-dependent effects associated to other regulatory parameters. Nullcline (5) shifts are 
related to the regulatory interaction of X upon GY. The orange line represents the qualitative location for αX > 1, in brown the 
location for αX < 1 is shown. Similarly, the crossing point of nullcline (6) with the vertical axis is shifted to higher (blue) or 
lower values (green) depending on the type of regulation by βX.
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As we will see in the following sections the geometrical
features generated by the biological interactions will form
the basis for the dynamical behaviour of the FFL.

Response of the FFL
To understand how the changes in the nullclines upon
input confine the feasible dynamical response of the cir-
cuit, we will focus our attention on two representative
cases, namely a coherent and an incoherent type ([28]).
We choose circuits C4 and I1, respectively, which differ
only in one regulatory interaction in GY, i.e. αX. Due to
this interaction only nullcline (5) is affected and with it
the direction of its shift as can be seen in figure (3b). The
other interactions are the same for both circuit architec-
tures (βx > 1, βY < 1) and hence the possible nullcline's
shapes associated to expression (6) are also the same. In
figure (4) we show their subset of changes realized by the
nullcline. Based on the positive interaction of βX the cross-
ing point Z0|X > 0 with the vertical axis always shifts toward
higher values for cases with input compared to cases with-
out input (Z0|X = 0).

Two biological scenarios for the joint regulation of GZ by
Y and X are plausible: either the complex acts as an activa-
tor βXY > 1 as shown in figure (4a) or as inhibitor βXY < 1.
In (4b) we show the scenario associated with the condi-
tions βXY < 1 and βXY > βY. The nullcline moves down, but
does not cross the original nullcline. In (c) conditions βXY

< 1 and βXY <βY lead to a single crossing. The same condi-
tions can lead to a double crossing of the nullclines, how-

ever our numerical analysis (data not shown) indicates
that the probability to find an adequate configuration of
parameters has very low probability (< 0.3%). For sim-
plicity we discard these cases (see Methods for a detailed
example of our analysis applied to nullclines with double
crossing). By using the relatively simple configuration of
the nullclines shown in (b) we already find different pos-
sible behaviour of the two circuits C4 and I1 due to their
opposing αX.

Whereas for C4 the nullcline's (5) shifts to higher values,
allowing only for grader trajectories (inset 1), I1 may
show instead two different functionalities. The shift direc-
tion is to lower values and hence either grader or pulser
can be implemented depending on the set of parameters
(see inset 2). The fact that a range of feasible functional
scenarios can be intuitively deduced, demands for a
method of unambiguous discrimination to resolve the
problem.

Separatrix
Sometimes, two qualitatively different dynamics are pos-
sible for a given set of nullclines (figure (4b)). In that case,
if we consider any arbitrary initial point (Y, Z) in phase
space (i.e. any arbitrary concentration values of Y and Z)
phase space can be divided into two different areas. As
shown in figure (5) this partition of phase space is charac-
terized by a different functional behaviour of the trajecto-
ries upon input: starting in one part (yellow area) the
trajectory will first join/intersect the nullcline Ż = 0 and

Possible shapes of nullcline.Figure 4
Possible shapes of nullcline. The set of possible shapes for the nullcline Ż = 0 with (brown) and without (blue) input. Fig-
ures (a), (b) y (c) correspond to different biological regulations. In (a) the joined regulation by proteins X and Y enhances the 
production of the output Z (βXY > 1). In (b) and (c) the production of Z is reduced (βXY < 1), but in (b) the reduction is smaller 
due to βXY > βY, whereas in (c) we apply strong inhibition βXY <βY. Insets in (b) show the feasible trajectories for C4 and I1, 
respectively. For C4 the functionality of the trajectory is uniquely defined as grader, whereas I1 can implement pulser or grader 
dynamics, depending on the specific parameters.
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then following the nullcline until it reaches the fixed
point. Starting from an arbitrary point in the other region
(grey area) the trajectory will only reach the nullcline in
the fixed point ϕX > 0. This qualitative difference in the tra-
jectories gives rise to a different functional behaviours of
the circuit (see figure (6)).

The system without input is determined by its fixed point
ϕX = 0. The circuit will exhibit a given dynamic behavior
depending on which part of phase space ϕX = 0 is located.
The location of the boundary between the two dynamical
areas, termed separatrix, allows classifying the functional-
ity of the trajectory. The key elements for the discrimina-
tion of the different possible functionalities, for a given
geometry of the nullclines, is the relative position of three
points: the crossing of the vertical nullcline  = 0 without
input, with: i) the nullcline Ż = 0 without input (ϕX = 0), ii)
the separatrix (S) and with iii) the nullcline Ż = 0 with
input (ξ). We illustrate this with an example (circuit I1) in
figure (7a-c) where the relative positions of the crossing
points and their implication for the time course is out-

lined. An analytical estimation of the separatrix and all the
possible combinations of these elements with its resulting
dynamics are presented in Supplementary Materials.

Our analysis can be generally applied to all three-gene
FFLs. We have shown that both examples show enough
plasticity in the dynamics to implement different type of
response. In the next section we will focus on the proba-
bility of emergence of the different feasible types of
dynamics.

Probability of emergence of different FFL's dynamics
In the previous section we have shown that in both exam-
ples, C4 and I1, more than one possible dynamic behav-
ior can be obtained depending on the specific set of
parameters chosen. Generally we can list six types of

Schematic representation of two areas characterizing the behaviour of the trajectory.Figure 5
Schematic representation of two areas characteriz-
ing the behaviour of the trajectory. The nullclines of the 
system with input are depicted in brown. Any trajectory 
starting in the pink area will reach the nullcline Ż = 0 first and 
then follow its path to the fixed point ϕX > 0. Any trajectory 
starting in the blue area will reach the fixed point directly 
without intersecting the nullcline first. The frontier between 
these two regions, the separatrix, is drawn in green. As 
example some trajectories have been depicted to illustrate 
their qualitatively different course. Qualitative representation of all possible timecourse responses realized by FFLs.Figure 6

Qualitative representation of all possible timecourse 
responses realized by FFLs. Here, 'G' indicates grader 
and 'P' pulser response of the circuit. The initial slope is rep-
resented by '+' or '-' in our nomenclature. The difference of 
the initial versus the target concentration is denoted as 'T +' 
or 'T-'.
Page 8 of 18
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dynamics, namely positive or negative graders (G+, G-)
and positive or negative pulsers (P+, P-). Grader response
corresponds to an increase (+) or decrease (-) of the con-
centration of Z characterized by a transient from the ini-
tial to the final state where the concentration of Z never is
higher (G+) or lower (G-) than the final concentration. In
general, grader responses are related with responses able
to filter noise and respond only on absolute certainty [24].
On the other hand, a pulser response is characterized by a
rapid increase (P+) or decrease (P-) of the concentration of
Z reaching higher (+) or lower (-) values of Z before they

reach the final state. Note that for the pulsers independ-
ently of the pulse direction (P+ or P-) the final concentra-
tion of output protein Z can be higher (T+) or lower (T-)
than the initial concentration. Hence we separately ana-
lyze four different pulser dynamics, namely P+(T+), P+(T-),
P-(T+), P-(T-). The time courses of the different functional-
ities are outlined in figure (6). A specific subset of dynam-
ics can be determined for each FFL frequently containing
functions, which cannot be implemented. Based on this
results the main question is: Are all the feasible dynamics
equally probable? To address this question we have per-

Positional effect of the separatrix.Figure 7
Positional effect of the separatrix. Here we illustrate the positional effect of the separatrix S, ξ and ϕX = 0 on the functional 
behaviour of the FFL (a-c). The relative position between the three crossing points with the vertical nullcline  = 0 without input 
determines the functionality of the time course. Positioning shown in (a) results in grader, whereas (b) and (c) display pulser 
dynamics. The respective relative location is outlined in the boxes. In (d) the unique backbone of parametric requirements 
defining univocaly the shape of the nullclines is shown. Each column describes the relation (> or <) between two characteristic 
elements (head column). The single values are described in the text. Column 'Slope' refers to the slope of the nullcline Ż = 0 
with input (X > 0) and can be positive or negative. The columns containing '∅' or '*' do not need to be explicitly addressed, 
because of parametric inter-dependencies (see text).
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(page number not for citation purposes)



BMC Systems Biology 2009, 3:84 http://www.biomedcentral.com/1752-0509/3/84
formed an analytical study of the parametric requirements
necessary to implement a given type of dynamical
response.

Backbone of requirements for the FFL response
We can deduce geometrically all possible sets of trajecto-
ries. We discriminate the necessary parametric conditions
for the emergence of one specific dynamic among all the
possible, due to the relative position of the initial point ϕX

= 0 of the trajectory in relation to the separatrix S, ξ and the
specific shape of the nullclines. The parametric condi-
tions, which determine the shape of the nullcline, can be
systematically formalized. The key geometrical elements
of the nullclines can be described by a set of exclusive par-
ametric combinations defined in a string, which we call
the backbone of requirements. Each position in this
sequence contains the solution for two possible paramet-
ric states.

The example shown in figure (7) is meant to illustrate the
procedure. The cases in (a-c) display the same geometrical
shape and can be described by a single backbone of
requirements shown in (d). Note that not all the elements
of the parametric sequence need to be defined explicitly.
In certain occasions some of them are uniquely defined by
previous conditions, denoted by *, or otherwise do not
have an impact on the geometrical scenario, represented
by '∅'. For example position one is denoted '∅'. If condi-
tion two (βXY > βY) is satisfied, position one is not rele-
vant, because both solutions (βXY > 1 or βXY < 1), provide
the same geometry. On the other hand position four,
denoted as '*', is always solved as '>', because it can be
deduced from the second condition given that βX > 1.

Quantification of the dynamical probabilities
Within the framework of our model, we assume that the
feasibility of given dynamical behaviour (transient
response) is heavily dependent on the number of exclu-
sive, parametric configurations necessary for the realiza-
tion of this behaviour. These are subsumed in the
backbone of requirements. We have generated all possible
backbone sequences for the circuits C4 and I1. For each of
these sequences the separatrix discriminates among differ-
ent dynamics as we have shown in figure (7a-c). In circuit
C4 we have found 18 different sequences implementing
five different types of dynamics, where as for circuit I1, 21
sequences implement four different behaviors. The
detailed list of backbone sequences are shown in Supple-
mentary Materials. The total number NC of possible
requirements captured within one sequence i within a cir-
cuit k = {C4, I1} is constant and follows the sum:

Here,  represents the number of requirements having

no impact on the nullclines' geometry. For this kind of
elements of the sequence, both possible solutions ('>' or
'<') are valid and hence discrimination is unnecessary.

Therefore,  different combinations of parameters are
described by the same backbone sequence providing the

same geometry for the nullclines. The second term , is

the number of elements predefined by other conditions of

the backbone. Finally,  is the number of requirement

actually necessary to determine univocaly the shape of the
nullcline. In other words, in order to implement a deter-
mined backbone sequence it is sufficient to properly

establish the conditions .

Once these conditions are set, the rest of the sequence is
determined. This allows to calculate the probability for a
given set of parameters to implement a certain backbone
sequence i as

For a given FFL topology it is possible to find different sets
of parameters compatible with such topology but imple-
menting different dynamics among the six possibilities.
Each set of parameters fits in a specific backbone
sequence. For each backbone sequence there exist three
different relative positions of the separatrix discriminating
among the different possible dynamics. This idea is illus-
trated in figure (7). The same backbone sequence shown
in 7d can implement two different dynamics, namely
G+and P+ T +. The location of the separatix shown in fig-
ures (7a-c) depends on the numerical values of the param-
eters. If these specific values locate the separatrix as
depicted in figure (7a) the FFL motif will implement a
grader dynamics, whereas other locations (see figures (7b,
c)) will provide a pulser dynamics. The probability of cir-
cuit k to implement a given dynamic j = {G+, G-, P+(T+),
P+(T-), P-(T+), P-(T-)} described by the backbone sequence
i can, thus, be calculated as:

where Ψijk is the number of equal dynamical outcomes j

for a given backbone i in the k-th FFL and Tjk the total

number of backbone sequences implementing dynamic j.
N N N NC ik ik ik
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The normalization constant Ωk is defined by imposing the

condition  and gives:

By calculating the probability of implementation of the
different types of dynamics for the different FFLs we
obtain an interesting picture regarding our initial ques-
tion, whether the topology of the FFL implements its func-
tion. As shown in figure (8a) the coherent FFL C4
implements five different types of dynamics. Their proba-
bility (given an arbitrary set of parameters) is however
very different. We find that C4 is significantly specialized
for G+ dynamics. The degree of specialization is equally
reflected in its robustness versus parametric change. On
the other hand, the incoherent FFL I1 potentially imple-
ments four different types of dynamics, as shown in figure

(8b). The probabilities for I1 to implement these func-
tionalities are within the same range, unlike in C4. In fig-
ure (8c) the distribution of probabilities of C1 (the most
abundant FFL) obtained performing the same analysis is
shown. The specific topology allows for flexibility at the
cost of less specialization. We see that the topology of the
FFL does not implement its function, but instead the
probability of a certain function to arise. If, for a given
FFL, the distribution accentuates a certain function, the
FFL is said to be specialized for this function. If the prob-
abilities are located within the same range, the topology
implements flexibility. Both aspects are equally relevant
in terms of adaptation and evolvability.

The highest level of specialization of a given motif would
correspond to a distribution of probabilities displaying a
single peak, whereas the maximum level of flexibility
would correspond to a flat distribution of probabilities,
where all the potential dynamics would be equally prob-
able. In order to compare the level of specialization of dif-
ferent FFL topologies we propose to measure the
peakedness of the probability distribution, i.e. the kurtosis
[43] (see Methods for details about kurtosis). The values
of kurtosis are KC1 = 4.6, KC4 = 7.8 and KI1 = 1.28, respec-
tively indicating that C1 has an intermediate level of spe-
cialization with respect to C4 (more specialized) and I1
(more flexible). The same qualitative distributions are
obtained by numerical simulation choosing random sets
of parameters and counting the frequency of each dynam-
ics (data not shown).

Conclusion
FFL motifs appear frequently in cellular regulatory net-
works. Despite the efforts devoted to understand how
FFLs encode their functionalities, the question about the
relation exact between function and topology remained
open. In this work we have presented a new analytical for-
malism based on the geometric analysis of the system's
nullclines to elucidate this question. We found that the
dynamical response triggered by the external input can be
analysed in terms of: i) the nullcline's geometry as
described by a backbone sequence of parametric condi-
tions and ii) the specific location of the initial stable state
in the phase space with respect to the nullclines and the
separatrix. This puts us into the position to unambigu-
ously enumerate the probability of a given FFL to imple-
ment a certain function. Our results support this view
topology does not define a unique functionality, as have
been previously discussed, ([36]). Circuits with the same
topology can implement different functions, yet not all of
these possible dynamics are equally probable. However,
topology defines univocally the distribution of probabili-
ties for the emergence of the different feasible responses.
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The probability for emergence of specific functionalities.Figure 8
The probability for emergence of specific functionali-
ties. In (a) the distribution for the coherent FFL C4 is shown. 
The probability to implement G+ dynamics is significantly 
higher than to implement any other possible function. In (b) 
we plot the distribution of the incoherent FFL I1. All possible 
functions range at similar probability values. The two FFLs 
differ in a single regulatory interaction.
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For illustrative purposes we have analyzed two interesting
examples, namely circuits C4 and I1, exhibiting the same
regulatory interactions except a single regulation of the
gene GY by the protein X. In these cases we found two par-
adigmatic scenarios: circuit C4 can implement G+

response with significantly higher probability than the
other feasible dynamics, whereas, I1 exhibit more uni-
form distribution of probabilities. These results demon-
strate that C4 has a specialized topology, optimal for the
implementation of grader response, whereas I1 has a high
degree of flexibility among different dynamics. Under an
evolutionary perspective, a trade-off between these differ-
ent features, flexibility and specialization, is likely to play
an important role. This problem will be investigated else-
where.

In single motif networks a given function will be imple-
mented with high probability by the most specialized
topology. However, in evolved, complex networks other
aspects need to be considered. In order to obtain reliable
networks, i.e. robust and with high fault tolerance, com-
plex topologies can emerge as a result of the evolutionary
process. An evolved and fit network is not necessarily the
sum of its optimal sub-modules. In order to provide
redundancy and degeneracy, flexible sub-modules, able to
change their functionalities with minimal cost are often a
good solution to reliability [44]. Future work will be
devoted to analyze the implications of these two charac-
teristics in the natural emergence of current biological net-
works.

Methods
Analytical estimation of the separatrix
The unique discrimination of the circuit's dynamical
behaviour is determined by the location of the initial
point ϕX = 0 with respect to the nullclines and the separa-
trix. The separatrix defines the boundary between two dif-
ferent areas defining the dynamical outcome in phase
space. If the initial point of the trajectory lies within one
part (in the following A1) it will reach the nullcline Ż = 0
directly at the fixed point (ϕX > 0). If it lies in the other part
(A2) the trajectory will reach the nullcline before the fixed
point and follow its path towards the final state. In order
to obtain an analytical expression for the separatrix of
phase space, we examine any arbitrary point and its corre-
sponding vector field described by the system's ODEs (see
article). Each arbitrary point is defined by its two compo-
nents (Y, Z) in phase space, as is the final point ϕX > 0 = (Yf,
Zf). The relation between the horizontal distance Yf - Y and
the horizontal component of the field  and the corre-
sponding vertical elements determine the area. We
assume that each point (Y, Z) in one area satisfies the local
condition

whereas the opposite is true for each point in the other
area. The separatrix is defined by the set of points satisfy-
ing

Using the system's ODEs we obtain the following expres-
sion for the separatrix:

In order to test this expression we have performed numer-
ical simulations with random sets of parameters and mul-
tiple random initial points. This separatrix expression
defines properly the frontier between A1 and A2.

Relation between dynamics and geometrical elements
The relation between the geometrical elements S, ξ and ϕX

= 0 and the slope of the nullcline Ż = 0 upon input defines
the function of the FFL. The combinations are summa-
rized in tables (1) and (2).

Analysis of the relaxation dynamics after induction
Our method based on the analysis of nullcline's geometry
allows to determine the dynamics of the system upon
input as well as to determine the relaxation dynamics
when the external input disappears. Initially, in absence of
input the system remains stable in a fixed point deter-
mined by the crossing between nullclines in the phase
space (ϕX = 0). After input addition nullclines change pro-
viding a new stable fixed point (ϕX > 0). The system evolves
from the initial point to this new final state following a
trajectory in the phase space constrained to the specific
geometry of the nullclines upon input. If the external
input is removed the nullclines recover the initial geome-
try, and hence the system evolves towards the initial stable
fixed point. Here, the dynamics is constrained to the spe-
cific geometry of the nullclines under no input. However,
in both cases the same mathematical analysis can be
applied. For illustrative proposes a particular example is
considered in figure (9). Figure (9a) shows the evolution
from the initial state without input, determined by the
crossing between nullclines (blue nullclines), to the new
stable state upon input (brown nullcllines). The dynamics
is determined by the location of the separatrix (green line)
calculated upon input. In this example, the dynamics is a
pulser (P+ T +). If the input is removed, the system will
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return to the initial state. Figure (9b) shows the location
of the separatix (grey line) calculated for the system with-
out input, where the relaxation dynamics (green dashed
line) is a grader (G-). The conditions determining the
dynamics are different with (ξ > ϕX = 0 > S) and without
input (ϕX > 0 > S > ξ) providing different dynamics. The
same mathematical analysis has been applied in both
cases, only considering X > 0 or X = 0 to analyze induction
and relaxation dynamics respectively.

Analysis of the dynamics in nullclines with two crossings
In order to simplify or study, geometrical scenarios with
two crossings between nullclines have been not consid-
ered due to their low probability of emergence (see main
text). However, the mathematical analysis applied can be
easily extended to these scenarios with double crossings.
For illustrative proposes the possible dynamics of the cir-
cuit C1 with two crossing between its nullclines is ana-
lyzed. Figure (10) shows the four possible combinations
of nullclines with and without input. With the same geo-
metrical conditions determined by the value of the
parameters that determine the biological interactions of

the circuit, different dynamics can emerge depending on
the relative location of the initial and final points. The
phase space can be split into three different regions,
namely I, II and III. Regions I and III show the same rela-
tive position between initial and final point, i.e. ϕX = 0 <ϕX

> 0 (see figures (10a) and (10b)). In these scenarios,
according with table 1 only G+ dynamics can exist (inde-
pendently of the location of the separatrix). On the other
hand, in the region II there are two different possibilities,
namely ϕx = 0 <ϕx > 0 (figure (10c)) or ϕx = 0 > ϕx > 0 (figure
(10d)). In the first case, according with table 1 only P-(T+)
dynamics can emerge, whereas in the second case, the
unique possible dynamics is P-(T-). In summary, the
example analyzed with double crossing geometry shows
how the phase space can be divided in three independent
regions and the possible dynamics in each region can be
determined using the same analysis performed in phase
space with a single crossing between nullclines.

Backbone sequences and the associated dynamics
Within the backbone sequence, all geometrical require-
ments for the full description of the nullcline scenario and

Table 1: Relation between geometry of the nullclines and functionality

Sl. Relation Function Relation Function

+ S > ϕX = 0 > ξ P- ξ > S > ϕX = 0 G+

- S > ϕX = 0 > ξ G- ξ > S > ϕX = 0 G+ if Zf > Zi else impossible

+ ϕX = 0 > ξ > S P- ξ > ϕX = 0 > S G+

- ϕX = 0 > ξ > S G- ξ > ϕX = 0 > S P+

+ ϕX = 0 > S > ξ G- if Zf <Zi else impossible S > ξ > ϕX = 0 G+

- ϕX = 0 > S > ξ G- S > ξ > ϕX = 0 P+

Possible combinations of nullcline and geometrical elements for the evaluation of the FFL functionality considering αY > 1. 'Sl.' denotes the slope of 
the nullcline Ż = 0 upon input, Zf is the concentration of protein Z in its equilibrium ϕX > 0 and Zi its concentration at the initial point ϕX = 0.

Table 2: Relation between geometry of the nullclines and functionality

Sl. Relation Function Relation Function

+ S > ϕ X = 0 > ξ G- ξ > S > ϕX = 0 G+ if Zf  > Zi else impossible

- S > ϕX = 0 > ξ P- ξ > S > ϕX = 0 G+

+ ϕX = 0 > ξ > S G- ξ > ϕX = 0 > S P+

- ϕX = 0 > ξ > S P- ξ > ϕX = 0 > S G+

+ ϕX = 0 > S > ξ G- S > ξ > ϕX = 0 P+

- ϕX = 0 > S > ξ G- if Zf <Zi else impossible S > ξ > ϕX = 0 G+

Possible combinations of nullcline and geometrical elements for the evaluation of the FFL functionality considering αY < 1.
Page 13 of 18
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the resulting dynamics are listed. In the presented tables
(3) and (4) all possible sequences for C4 and I1 are
shown.

Kurtosis as a measure of FFL specialization
Our results indicated that, despite the topology of FFL
does not determine univocally its dynamics, it is responsi-
ble for the probability of generating a given dynamics.
Some topologies exhibit higher degrees of specialization,
i.e. certain dynamics are more likely than others. On the
other hand, there are topologies where the probabilities of
emergence of the different dynamics are more similar. In
order to quantify the degree of specialization we propose
to measure the kurtosis of the probability distributions for
each topology. Theoretically, the maximum degree of spe-

cialization would correspond to a motif able to imple-
ment only a single dynamic, i.e. its distribution of
probabilities would be single peaked, and hence display
maximum kurtosis. The maximum flexibility would corre-
spond to a system where all possible dynamics have the
same probability, i.e. a flat distribution of probabilities
and hence minimal kurtosis. Kurtosis is defined as the
fourth standardized moment [43],

where μ4 if the fourth moment about the mean, and σ is
the standard deviation. Here K0 is a reference value known
as excess kurtosis. In general K0 = 3 in order to make the

K K= −μ

σ
4
4 0 (16)

Schematic example of induction and relaxationdynamics.Figure 9
Schematic example of induction and relaxationdynamics. In (a) the system evolves from the initial stable state ϕX = 0 to 
the final state ϕX > 0 upon addition of an external input. In this case the geometrical constraints of the nullclines upon input 
(brown) allow for a pulser dynamics (P+T+). In (b) after input deletion the system evolves from ϕX > 0 to ϕX = 0. The relaxation 
dynamics is determined by the shape of the nullclines without input (blue). Here the dynamic is grader (G-). The same mathe-
matical analysis has been performed in both cases, only considering X > 0 or X = 0 to analyze induction and relaxation dynam-
ics respectively.
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Possible dynamics of C1 in a geometrical scenario with two crossing between nullclines.Figure 10
Possible dynamics of C1 in a geometrical scenario with two crossing between nullclines. The phase space can be 
divided in three different regions I, II and III delimited by the crossings between nullclines. Figures (a) and (b) have the same 
qualitative relations between parameters, i.e.. ϕX = 0 <ϕX > 0, and hence a single dynamics G+ can emerge. Figures (c) and (d) 
show the two possible scenarios ϕX = 0 <ϕX > 0 and ϕX = 0 > ϕX > 0, providing P-(T+) and P-(T-) dynamics respectively. Note that in 
(a) and (b) the location of ϕX = 0 determines the dynamics independently of the location of ϕX > 0. However, scenario (c) con-
straints the locations of ϕX > 0 to the region II. Finally, scenario (d) can be found with ϕX > 0 located in region II or III. The insets 
represent the corresponding time courses.
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Table 3: Backbone sequences for C4

βXY, 1 β XY, β Y Z0|X = 0, ZHA|X > 0 Z0|X > 0, ZHA|X = 0 Slope ϕX = 0, ϕX > 0 ϕX = 0, ξ Relation Function

> * * * + * * ξ > S > ϕX > 0 G+

> * < * - * * ξ > S > ϕX > 0 G+

> * < * - * * ξ > ϕX > 0 > S G+

> * < * - * * S > ξ > ϕX > 0 G+

∅ > > * * * * ξ > S > ϕX > 0 G+

∅ > > * * * * ξ > ϕX > 0 > S G+

∅ > > * * * * S > ξ > ϕX > 0 G+

* < * * * * < ξ > S > ϕX > 0 G+

* < * * * * < ξ > ϕX > 0 > S G+

* < * * * * < S > ξ > ϕX > 0 G+

* < * * * > * ϕX > 0 > S > ξ G-

> * * * + * * ξ > ϕX > 0 > S P+T+

> * * * + * * S > ξ > ϕX > 0 P+T+

* < * * * > * S > ϕX > 0 > ξ P-T-

* < * * * > * ϕX > 0 > ξ > S P-T-

* < * * * < > ϕX > 0 > S > ξ Impossible

* < * * ∅ < > ϕX > 0 > ξ > S P-T+

* < * * ∅ < > S > ϕX > 0 > ξ P-T+

All possible backbone sequences for C4 and its relation to the circuit's function.



BMC Systems Biology 2009, 3:84 http://www.biomedcentral.com/1752-0509/3/84

Page 17 of 18
(page number not for citation purposes)

Table 4: Backbone sequences for I1

βXY, 1 βXY, βY Z0|X = 0, ZHA|X > 0 Z0|X > 0, ZHA|X = 0 Slope ϕX = 0, ϕX > 0 ϕX = 0,ξ Relation Function

> * * * + * * ξ > S > ϕX > 0 G+

> * * * + * * ξ > ϕX > 0 > S G+

> * * * + * * S > ξ > ϕX > 0 G+

> * < * - * * ξ > S > ϕX > 0 G+

∅ > > * * < * ξ > S > ϕX > 0 G+

* < * * * < * ξ > S > ϕX > 0 G+

* < * * * * > S > ϕX > 0 > ξ G-

* < * * * * > ϕX > 0 > ξ > S G-

* < * * * * > ϕX > 0 > S > ξ G-

> * < * - * * ξ > ϕX > 0 > S P+T+

> * < * - * * S > ξ > ϕX > 0 P+T+

∅ > > * * < * ξ > ϕX > 0 > S P+T+

∅ > > * * < * S > ξ > ϕX > 0 P+T+

* < * * * < * ξ > ϕX > 0 > S P+T+

* < * * * < * S > ξ > ϕX > 0 P+T+

∅ > > * * > * ξ > S > ϕX > 0 Impossible

∅ > > * * > * ξ > ϕX > 0 > S P+T-

∅ > > * * > * S > ξ > ϕX > 0 P+T-

* < * * * > < ξ > S > ϕX > 0 Impossible

* < * * * > < ξ > ϕX > 0 > S P+T-

* < * * * > < S > ξ > ϕX > 0 P+T-

All possible backbone sequences for I1 and its relation to the circuit's function.
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kurtosis of the normal distribution equal to zero. This
allows obtaining positive kurtosis, i.e. distributions with
higher peakdeness than the normal distribution, or nega-
tive kurtosis flatter that the normal distribution. Without
lost of generality we can consider K0 = 0. In this context,
kurtosis is defined positive and the kurtosis values can be
directly compared: systems with higher kurtosis will have
higher degree of specialization
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