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Abstract
Background: Fission yeast Schizosaccharomyces pombe and budding yeast Saccharomyces cerevisiae
are among the original model organisms in the study of the cell-division cycle. Unlike budding yeast,
no large-scale regulatory network has been constructed for fission yeast. It has only been partially
characterized. As a result, important regulatory cascades in budding yeast have no known or
complete counterpart in fission yeast.

Results: By integrating genome-wide data from multiple time course cell cycle microarray
experiments we reconstructed a gene regulatory network. Based on the network, we discovered
in addition to previously known regulatory hubs in M phase, a new putative regulatory hub in the
form of the HMG box transcription factor SPBC19G7.04. Further, we inferred periodic activities of
several less known transcription factors over the course of the cell cycle, identified over 500
putative regulatory targets and detected many new phase-specific and conserved cis-regulatory
motifs. In particular, we show that SPBC19G7.04 has highly significant periodic activity that peaks in
early M phase, which is coordinated with the late G2 activity of the forkhead transcription factor
fkh2. Finally, using an enhanced Bayesian algorithm to co-cluster the expression data, we obtained
31 clusters of co-regulated genes 1) which constitute regulatory modules from different phases of
the cell cycle, 2) whose phase order is coherent across the 10 time course experiments, and 3)
which lead to identification of phase-specific control elements at both the transcriptional and post-
transcriptional levels in S. pombe. In particular, the ribosome biogenesis clusters expressed in G2
phase reveal new, highly conserved RNA motifs.

Conclusion: Using a systems-level analysis of the phase-specific nature of the S. pombe cell cycle
gene regulation, we have provided new testable evidence for post-transcriptional regulation in the
G2 phase of the fission yeast cell cycle. Based on this comprehensive gene regulatory network, we
demonstrated how one can generate and investigate plausible hypotheses on fission yeast cell cycle
regulation which can potentially be explored experimentally.
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Background
Fission yeast Schizosaccharomyces pombe and budding yeast
Saccharomyces cerevisiae are among the original model
organisms in the study of the cell-division cycle [1]. In
particular, our understanding of the cell cycle of S. cerevi-
siae was greatly enhanced over the last decade owing to
several genome-wide expression studies [2]. Based on
such high-throughput studies, detailed regulatory net-
works for budding yeast were reconstructed on genome-
wide scale and complexity, e.g., [3,4]. Yet, unlike S. cerevi-
siae, no comprehensive cell cycle regulatory network is
known for S. pombe. It has only been partially character-
ized [2]. As a result, important regulatory cascades in bud-
ding yeast have no known or complete counterpart in
fission yeast.

Past comparisons of networks, which revealed both con-
served and divergent control elements for similar modules
across different yeasts species [5], highlighted the impor-
tance for constructing a large-scale regulatory network for
fission yeast. Recently, three independent microarray
studies have generated genome-wide time course gene
expression data for the cell cycle of S. pombe [6-8] making
it currently the organism with the largest cell cycle tran-
scriptome. A subsequent meta-analysis [9] of ten experi-
ments from the three studies was a first step towards
aligning the data sets but no major attempt to reconstruct
a S. pombe regulatory network has been made. Using one
of the gene expression time course studies of the S. pombe
cell cycle, Nachman and Regev [10] used a Biochemical
Regulatory Network Inference (BRNI) method to identify
transcriptional- and motif-based modules comprising
some of the known and novel regulatory networks that
control the fission yeast cell cycle. However, the limited
gene expression data set representing a single form of cell
cycle synchronization (elutriation), the noise inherent in
the small data set and phase-specific differences between
genes and transcription factors (TFs) all pose real chal-
lenges to the discovery of a comprehensive and reliable
regulatory network.

In this study, we reconstructed a global gene regulatory
network along with a comprehensive parts-list of co-regu-
lated genes and significant regulators to allow system-
level modularization of the interconnected processes
involved in the S. pombe cell cycle. We adopted two algo-
rithmic strategies for constructing the parts-list: 1) using
the estimates of time period and phase angles from a non-
linear model, we computed phase-specific time-lagged
correlations between TF-gene pairs to infer the activities of
a large set of regulators and 2) partitioning a large pool of
genes into clusters that are not only co-expressed in many
of the ten time course experiments but are also co-regu-
lated in the ten TF deletion and over expression experi-
ments. These two workflows converged to produce a

phase-specific network of regulatory modules. Finally we
dissected the network to identify cis-elements that may
indicate putative mechanisms for phase-specific transcrip-
tional and post-transcriptional regulation of the fission
yeast cell cycle.

For the researcher, the modularization of the S. pombe cell
cycle by our gene and module networks allows for inves-
tigation of various phase-specific hypotheses on fission
yeast cell cycle regulation. Due to the lack of strong evi-
dence of transcriptional regulation in the G2 phase of the
S. pombe cell cycle, as compared with S. cerevisiae, it was
speculated that post-transcriptional regulation might be
more active in fission yeast [2]. Indeed among the
enhanced clusters of ribosome biogenesis genes that
express during the G2 phase in S. pombe, we identified
new, highly significant and distinctive RNA motifs in their
3' UTR sequences, thus lending support to that hypothe-
sis. We provided evidence for transcript decay of these
genes with the help of statistical analysis of their time
course profiles and data from previous experiments.
Thereby, we also demonstrated how our parts-list could
be systematically mined for generating interesting experi-
mentally testable hypotheses.

Results
New modules and regulators at M and G1 phases
Using a curated collection of 125 TFs in S. pombe with
known or predicted protein domains [11], we computed
phase-specific time-lagged correlation of expression pro-
files of all TF-gene pairs. The statistically significant
(within each experiment) and consistent (across multiple
experiments) correlations helped us identify a TF that is
active within a phase-specific regulatory context as well as
its targets therein. Specifically, a TF's activity (or TFA) is its
weighted average effect as a regulator on the downstream
targets at a given time point. Using Network Component
Analysis (NCA) [12] we inferred strongly periodic TFAs
for 36 TFs (listed in Table 1) with respect to 531 target
genes (Additional file 1) during different phases of the cell
cycle (Figure 1). Indeed the activity profile (Additional file
2) for almost every TF (in the form log10 (TFA) time
courses) had a single, dominant periodic component as
determined by the Average Periodogram method and the
p-value from the related g-statistic [13] (Table 1, Figure 2).
The Average Periodogram for each of the time courses
plotted in Figure 2 is used to detect the presence of a dom-
inant frequency of cell cycle oscillation. Almost every TF
shows a single principal oscillation frequency in mutual
agreement with the one cycle period. This is indicative of
their regulation by common regulatory processes in a
strongly periodic manner. While we identified most of the
TFs that are GO annotated for cell cycle regulation, many
new candidates were also inferred (e.g. an early M phase
HMG box TF SPBC19G7.04).
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Table 1: Details about the 36 transcription factors with significant inferred activities.

Cluster # TF coding gene Periodic Activity P-value Protein domain

Prr1 5.70E-15 HSF-type DNA-binding

26 SPAC19B12.11c 1.77E-15 Zinc finger, C2H2 type

22 Tbf1 2.27E-06 Myb-like DNA-binding domain

7 SPBC28F2.11 8.20E-07 HMG (high mobility group) box

21 SPAC57A10.09c 2.86E-12 HMG (high mobility group) box

12 Pcr1* 3.83E-26 Basic region leucine zipper/bZIP

17 Gaf1 3.91E-23 GATA zinc finger

22 Orc4 1.85E-25 HMG-I and HMG-Y, DNA-binding/AT-hook

SPAC10F6.08c 2.66E-06 HMG (high mobility group) box

SPBC83.17 1.75E-03 Helix-turn-helix

14 SPCC320.03 1.96E-04 Fungal Zn(2)-Cys(6) binuclear cluster domain

SPAPB1A11.04c 1.35E-05 Fungal Zn(2)-Cys(6) binuclear cluster domain

4 Bdp1 4.27E-16 Myb-like DNA-binding domain

30 Ace2* 3.23E-16 Zinc finger, C2H2 type

11 Cnp3 2.04E-14 HMG-I and HMG-Y, DNA-binding/AT-hook

31 SPBC19G7.04 3.06E-10 HMG (high mobility group) box

31 Fkh2* 7.76E-09 Fork head domain

Ste11 4.97E-10 HMG (high mobility group) box

23 Phx1 1.04E-08 Homeobox domain

7 Rep2* 1.96E-05 Zinc finger, C2H2 type

22 SPBC530.05 6.90E-04 Fungal Zn(2)-Cys(6) binuclear cluster domain

SPBC15D4.02* 1.82E-03 Fungal Zn(2)-Cys(6) binuclear cluster domain

21 Php5 4.11E-14 Histone-like TF (CBF/NF-Y)

12 Atf1* 9.07E-17 Basic region leucine zipper/bZIP

SPBC21B10.13c 3.34E-07 Homeobox domain

31 Ams2* 1.41E-04 GATA zinc finger

5 Mug152 2.08E-09 Myb-like DNA-binding domain

22 SPAC1B1.01 5.28E-06 Zinc finger, C2H2 type
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Based on the regulatory matrix of the 36 TFs and their
downstream targets in multiple experiments, we recon-
structed a gene regulatory network (Additional file 3),
which could be mined for inferring phase-specific mod-
ules and sub-networks. For instance, a majority of the 36
TFs were found to regulate one or more modules in the M
and G1 phases (Figure 3A and see Additional file 4). In

addition, specific gene-level regulatory links may be stud-
ied by dissecting the global network. For instance, a sub-
network of early M phase clusters (Figure 3B) revealed a
new regulatory hub in the form of the HMG box TF
SPBC19G7.04 (denoted by an arrow in Figure 3B),
besides such well-known hubs as the key TF ace2 and the
polo kinase plo1.

Clusters of co-regulated genes lead to new phase-specific 
control elements
As a basis of our large-scale regulatory network, we sought
out to construct a parts-list (as defined in [14]) of statisti-
cally significant cell cycle components such as a large
number of co-regulated gene clusters and their putative
regulators. To increase statistical power for detection of
new or subtle modes of regulation, we enhanced a Baye-
sian algorithm [15] with new strategies to co-cluster differ-
ent types of experiments and identify co-regulated genes.
The revised algorithm accommodates heterogeneous data
types by modeling (individually) each of the ten cell cycle
time course experiments and the ten TF deletion or over-
expression experiments with suitable basis functions.
With the help of effective priors to model the periodically
expressed profiles apart from the monotonic trends, the
algorithm produced an optimal clustering of 2000 fission
yeast genes into 31 disjoint clusters (Figure 4, and Addi-
tional file 5 Figure S1). Details regarding the 31 clusters of
co-expressed genes are summarized in Table 2. A complete
list of the 2000 genes categorized by the cluster numbers
is in Additional file 6. We also determined the regulatory
signature of every cluster (Additional file 5 Figure S2). An
example of a periodic cluster containing 49 genes
expressed in M phase is shown in Figure 5.

The co-regulated genes within the clusters were character-
ized and validated. Gene Ontology (GO) analysis

11 SPBC1683.13c 1.17E-13 Fungal Zn(2)-Cys(6) binuclear cluster domain

16 Hsr1 1.62E-08 Zinc finger, C2H2 type

SPBC19C7.10 1.55E-04 APSES domain

9 Eta2 3.29E-07 Myb-like DNA-binding domain

24 Sfc2 4.47E-05 Zinc finger, C2H2 type

12 Rsv2 6.46E-03 Zinc finger, C2H2 type

26 SPCC550.15c 3.60E-08 Zinc finger, C2H2 type

SPAC3C7.04 2.84E-15 Fungal Zn(2)-Cys(6) binuclear cluster domain

*Denotes a TF that is annotated as cell cycle relevant in Gene Ontology (GO).

Table 1: Details about the 36 transcription factors with significant inferred activities. (Continued)

Transcription factor activities over the course of cell cycleFigure 1
Transcription factor activities over the course of cell 
cycle. Inferred activities of the 36 selected TFs, clustered 
with respect to similarity of activities based on Peng Cdc25. 
The cell cycle phases are indicated. TFs fkh2 and 
SPBC19G7.04 are highlighted with a rectangle.
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revealed that many of the genes within the clusters were
represented by known functional categories from differ-
ent stages of the cell cycle (Table 2). Testing of circular
uniformity of peak phase angles of genes in each cluster

determined that 29 out of 31 clusters were cell cycle
phase-specific. Circular-circular Regression (CCR) [16]
showed that during cell cycle progression, the phase
ordering of the 31 clusters exhibited significant (P =

Statistical significance of the transcription factor activitiesFigure 2
Statistical significance of the transcription factor activities. Most of the strongly periodic activity profiles (log10(TFA)) 
of the 36 selected TFs have a single dominant frequency of oscillation. The x-axis marks the different Fourier frequencies and 
the y-axis represents the Average Periodogram [13]. Clearly the dominant Fourier frequency, marked by a spike, is very prom-
inent in every TF, and is indicative of its strongly periodic profile. Further, the similarity among the locations of the spikes 
across all 36 TFs shows their regulation by common cell cycle processes. Also see Table 1 for the related p-values that meas-
ure the periodicity of each profile.
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Dissecting M and G1 phase subnetworksFigure 3
Dissecting M and G1 phase subnetworks. A) A network of M and G1 phase gene modules are shown, sorted by mean 
phase. If a TF is found to be a regulator for a module then it is depicted with a purple square. Potential regulation of M phase 
modules by SPBC19G7.04 is pointed out with an arrow. B) Early M phase gene regulatory network in which TFs are shown in 
ellipses, and the rest of the genes in boxes. The colors of the nodes are according to their peak phase, where more reddish 
colors represent phases that are later in M and thereafter, while more orange and yellow hues depict earlier (late G2 and G2/
M) phases. The regulatory hub for the early M phase TF SPBC19G7.04 is marked with an arrow.

A) 
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Table 2: Details about the 31 clusters of co-expressed genes.

Cluster # Siz
e

Mean phase (degrees) p-value for phase 
uniformity

Significant motif Dominant Gene Ontology 
category

9 76 6 4.54E-01 transmembrane transporter activity

5 52 17 7.81E-08 cellular metabolic process, cellular 
component organization and 
biogenesis

14 42 42 6.41E-04 Mcb1 nucleotide binding, substrate-
specific transporter activity

21 80 49 2.07E-17 G.TTGT [TG] [AG] oxidoreductase activity

29 9 53 6.84E-12 Histone CACCACC histones

15 41 55 1.49E-18 GTTGGC [AT]GT ion binding

10 12 95 3.54E-02 cellular metabolic process, protein 
binding, stress response

12 96 102 3.52E-04 transmembrane transporter activity

20 78 103 1.27E-07 CAAGTT transport, establishment of 
localization

18 34 108 1.89E-16 cellular metabolic process, nitrogen 
compound metabolic process

17 61 112 4.52E-12 cellular metabolic process, cofactor 
binding

16 49 135 1.57E-25 GTT.GCT nitrogen compound metabolic 
process

27 45 139 1.76E-02 transmembrane transporter activity

28 8 150 8.00E-07

19 24 174 9.65E-15 GTGACTG [CT]T 
TAGGGTAGGG

cellular metabolic process, 
structural constituent of ribosome

22 47 175 5.38E-02 CGTTAGTTTT regulation of metabolic process

23 118 175 1.03E-06

26 83 188 1.90E-39 AGTTTG cellular component organization and 
biogenesis

11 43 194 9.52E-04 GTCGGTTTCC transmembrane transporter activity

24 103 195 3.52E-18 cellular metabolic process, ion 
binding

25 59 211 4.09E-02 [GT]TAAACA ribosome biogenesis and assembly

3 70 255 1.06E-07 TGTTTAC cell cycle, chromosome segregation

13 60 258 9.74E-05 cell cycle
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0.037) coherence across the ten time course experiments.
Significant (P < 10-9) and non-redundant putative bind-
ing sites, many of which were conserved across different
fission yeasts, were detected for most of the clusters (Table
2). Several new and interesting motifs were observed (e.g.
TGTAWGC in Cluster 4) beside some that were previously
known (e.g. the forkhead FKH motif TTGTTTAC).

Post-transcriptional regulation of ribosome biogenesis 
genes
Post-transcriptional regulation plays a key role in the con-
trol of gene expression in terms of processing, transport,
localization, quality control and turnover of mRNA tran-
scripts. Therefore, systematic identification of targets for
such regulation is of fundamental importance to the
investigation of multi-layered gene regulation [14,15]. In
the present study, we identified new, highly conserved
motifs in the 3' UTR sequences of 65 co-regulated genes
from clusters 25 and 26 that are involved mostly in ribos-
ome biogenesis in S. pombe (Figure 6A; the genes are listed
in Table 3). Two single-stranded motifs U [UG]UU [CG]G
and GGG [AU] in 3' UTR [17] were highly statistically sig-
nificant (P < 10-47 and 10-67 respectively) with strong posi-
tional bias within the range of the first 300 nucleotides. In
the most significant occurrence of the resulting RNA motif
(as in SPBC26H8.08c), they appeared overlapped as UUC-
UUCGGGUUUUAA with a small loop structure, denoted
by (see Figure 6A). See Additional file 7 for associated like-
lihood scores. Dominant GO categories of biological
process and cellular component for the proteins encoded
by the genes containing the motifs include RNA process-

ing (P < 10-39) and nucleus-nucleolus (P < 10-52) respec-
tively (the gene products are described in Table 3).

The transcriptome and the proteome have long been com-
pared to gain insights on RNA turnover [18-20]. Thus, to
explore the present hypothesis, we analyzed comparative
transcriptomic and proteomic measurement data of S.
pombe gene expression from a previous high-throughput
study [21]. Genes with low correlation between their tran-
scriptomic and proteomic levels could be substantially
regulated by post-transcriptional mechanisms [22]. Both
types of measurements were available in the above data
for 22 of the 65 genes that had the motifs, and for 30 of
the remaining genes (in clusters 25 and 26) that did not.
We first computed the percentile scores separately for each
measurement to be able to compare them on the same
scale (Figure 6B). As shown in the lower left (blue) quad-
rant, the few genes with the motifs and low transcript lev-
els are correlated with their protein product expression.
Given this data set, perhaps it may be reasonable to
assume that the mRNA abundance in the cells is sufficient
for carrying out various biological processes during the
cell cycle. However, the correlation between the transcrip-
tomic and proteomic levels for the genes with high expres-
sion and containing the motifs was lower (P = 0.07 not
significant for H0:ρ = 0 at level 0.05) than those without
them (significant correlation with P = 0.004). Indeed
most of the genes carrying the motifs and having above-
average transcript level (percentile score > 0.5) have a
steadily low protein level (percentile score < 0.5; see red
quadrant in Figure 6B) potentially indicative of transcript

1 155 259 2.21E-11 FKH cell cycle, stress response, cellular 
metabolic process, protein binding, 
response to endogenous stimulus

2 131 276 3.34E-13 FKH TCTTCT cell cycle

4 101 286 1.07E-06 FKH TGTAAGC cell cycle, cellular component 
organization and biogenesis

8 41 328 1.74E-02 ACCATTG FKH primary metabolic process, ion 
binding, regulation of biological 
quality

6 140 343 1.39E-03 T [GC]GTG [TG]T cellular component organization and 
biogenesis

31 49 344 1.47E-33 FKH cell division, cytokinetic process

30 22 357 6.56E-05 Dbl10 Ace2 cell cycle, regulation of metabolic 
process

7 71 359 6.15E-13 Ace2 cell cycle, cell communication

Motifs similar to known motifs are given by the name published in the literature (ACCACA ~ Mcb1, CCCTTACCC ~ Histone, TTGTTTAC ~ 
FKH, CGTGTCGCGT ~ Dbl10, ACCAGCC ~ Ace2). Newly discovered motifs are given by their consensus sequence.

Table 2: Details about the 31 clusters of co-expressed genes. (Continued)
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decay or short half-life. Conversely, the majority of genes
without the motifs had a protein level consistent with
their transcript level (blue quadrants). Similarly, high cor-
relation (ρ = 0.66) was observed for cell cycle genes in
general highlighting further the discrepancy between the
transcriptomic and proteomic levels of many of the genes
that contained the motifs [21]. Given the generally high
values of AUG Context Adaptation Index (mean = 0.56,
s.d. = 0.15) and ribosome occupancy (mean = 81%, s.d. =
4.3%) of these genes [23], the discrepancy may be more
likely due to post-transcriptional regulation than to lack
of translational efficiency.

We believe that the shapes of the time-course profiles of
genes containing the RNA motifs can provide useful infor-
mation regarding the pattern of their decay in G2-phase.
We used standard statistical measures such as skewness
and kurtosis of a time course [24] to describe the decay
characteristics. The skew and excess kurtosis statistics

measure respectively, the asymmetry and the peakedness
of a profile that could shed light on the temporal pattern
of its decay. For instance, while a left skewed profile
(given by a negative value of skew) may represent an early
peaking gene, a heavy right-tailed profile (given by a pos-
itive excess kurtosis) denotes slow decay rate. Therefore,
we first computed the skew of each of the above 65 pro-
files restricted to the first full duration of the G2 phase,
and then the kurtosis by focusing on the right tail (see
Table 3). We noted that most of the genes are expressed in
early- to mid-G2 phase, i.e. with left or negative skew, as
is consistent with the ribosome biogenesis expression pre-
viously observed [6]. Clearly, most profiles had a sharp
decline as G2 progresses, which are captured by the nega-
tive excess kurtosis of their right tails.

Discussion
In the study of the systems biology of a unicellular organ-
ism such as fission yeast, the importance of the intercon-

Co-expressed gene clusters with regulatory signaturesFigure 4
Co-expressed gene clusters with regulatory signatures. Data from ten cell cycle time course experiments were inte-
grated with ten regulatory TF knockout and overexpression experiments to produce 31 clusters. Columns are clusters of 2000 
fission yeast genes and each row an experiment. One cycle long time courses are shown depicting the cyclic (high-and-low) 
expression for every cluster. (Color code: red-high, green-low, white-missing expression.)
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A representative co-expressed gene cluster identified with the revised co-clustering algorithmFigure 5
A representative co-expressed gene cluster identified with the revised co-clustering algorithm. Cell cycle time 
courses of 49 genes belonging to cluster 31 in mid-M phase are shown.
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Table 3: Genes from clusters 25 and 26 carrying the 3'UTR RNA motifs (the list is ordered exactly as depicted in Figure 6A).

Gene Cluster Gene Product P-value of expression Skew Kurtosis

SPAC1565.05 25 Ribosomal protein L29 2.90E-03 -0.348 -1.555

SPAC16E8.06c 25 RNA-binding protein Nop12 3.89E-04 -0.524 -0.532

SPAC18B11.06 25 U3 snoRNP-associated protein Lcp5 1.18E-05 0.315 -0.893

SPAC222.06 25 nuclear HMG-like acidic protein Mak16 2.29E-05 0.827 -0.185

SPAC22E12.13c 25 60S ribosomal protein L24-3 (L30) 7.69E-05 -0.314 -1.715

SPAC22E12.18 25 Uncharacterized protein C22E12.18 2.99E-03 -0.256 -1.451

SPAC22F3.08c 25 ATP-dependent RNA helicase Rok1 2.26E-02 0.747 0.049

SPAC22F8.09 25 rRNA processing protein Rrp16 3.16E-04 0.509 0.150

SPAC26A3.06 25 methyltransferase 7.17E-03 0.237 -1.379

SPAC2E1P5.05 25 U3 snoRNP-associated protein Rrp9 9.06E-04 -0.554 -1.587

SPAC3G9.15c 25 rRNA processing protein Fcf2 1.15E-02 -0.064 -1.423

SPAC4F8.04 25 Brix domain protein Rpf1 2.64E-03 0.028 -0.944

SPAC56F8.09 25 rRNA methyltransferase Rrp8 1.91E-04 -0.299 -1.422

SPAC57A7.06 25 U3 snoRNP protein Utp14 6.01E-05 0.174 -1.597

SPAC664.08c 25 traub family protein 1.52E-07 -0.239 -1.455

SPAC683.02c 25 zf-CCHC type zinc finger protein 1.10E-06 0.686 0.119

SPAC823.08c 25 ATP-dependent RNA helicase Rrp3 1.51E-03 -0.050 -1.231

SPAC890.05 25 ribosome biogenesis protein 1.17E-05 0.482 -0.181

SPAC926.08c 25 Brix domain protein Rpf2 6.14E-08 -0.114 -1.409

SPBC11G11.03 25 ribosome assembly protein 6.15E-04 -0.241 -1.781

SPBC13G1.09 25 bystin-family protein 1.04E-07 0.170 -0.725

SPBC14C8.14c 25 DNA polymerase phi 6.61E-02 -0.290 -1.667

SPBC1604.09c 25 exoribonuclease Rex4 5.43E-04 0.605 0.702

SPBC1711.04 25 methylenetetrahydrofolate reductase 6.71E-01 0.397 -1.564

SPBC1718.03 25 DNA-directed RNA polymerase I complex subunit Ker1 7.68E-06 -0.048 -1.673

SPBC1734.01c 25 pre-rRNA processing protein Esf1 4.48E-02 -0.095 -1.293

SPBC19F5.05c 25 pescadillo-family BRCT domain protein 4.23E-05 -0.448 -1.747

SPBC215.06c 25 human LYHRT homolog 1.53E-05 0.088 -1.519

SPBC24C6.02 25 ATP-dependent RNA helicase Spb4 7.51E-05 0.292 -0.529

SPBC26H8.08c 25 GTPase Grn1 3.79E-05 -0.450 -1.602
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SPBC28E12.05 25 U3 snoRNP-associated protein Esf2 2.75E-01 0.511 -0.565

SPBC2D10.19c 25 pre-60S shuttlingfactor 1.23E-04 -0.268 -1.346

SPBC2G5.03 25 cytosolic thiouridylase subunit Ctu1 6.83E-05 0.770 -0.344

SPBC31E1.06 25 GTP binding protein Bms1 5.75E-04 0.206 -0.677

SPBC336.02 25 18S rRNA dimethylase 2.47E-03

SPBC409.15 25 rRNA processing protein Tsr2 2.51E-02 -0.071 -1.343

SPBP8B7.10c 25 U3 snoRNP-associated protein Utp16 5.91E-02 -0.215 -1.578

SPCC18.12c 25 rRNA processing protein 4.43E-03 0.305 -1.143

SPCC24B10.18 25 human Leydig cell tumor 10 kDa protein homolog 3.23E-04 0.539 -0.725

SPCC550.15c 25 ribosome biogenesis protein 1.70E-02 -0.495 -1.676

SPCP1E11.11 25 Puf family RNA-binding protein 3.26E-04 -0.565 -1.238

SPAC1527.03 26 RNA-binding protein 2.14E-04 -0.239 -1.786

SPAC15A10.04c 26 EF-1 alpha binding zinc finger protein Zpr1 1.02E-04 -0.336 -1.436

SPAC1687.11 26 rRNA methyltransferase Spb1 1.06E-04 0.275 -1.080

SPAC23H4.15 26 ribosome biogenesis protein Tsr1 4.81E-04 -0.333 -1.788

SPAC30C2.02 26 deoxyhypusine hydroxylase 3.06E-04 -0.347 -1.621

SPAC31A2.07c 26 ATP-dependent RNA helicase Dbp10 5.04E-02 -0.138 -1.519

SPAC4F8.12c 26 U5 snRNP complex subunit Spp42 6.80E-01 -0.440 -1.721

SPAC6F12.16c 26 ATP-dependent RNA helicase, TRAMP complex subunit Mtr4 2.66E-04 -0.266 -1.411

SPAPB1A10.06c 26 ATP-dependent RNA helicase Dhr1 1.29E-05 -0.048 -1.539

SPBC16E9.10c 26 AAA family ATPase Rix7 6.65E-04 -0.258 -1.735

SPBC16H5.08c 26 ribosome biogenesis ATPase, Arb family ABCF2-like 1.59E-02 -0.044 -1.634

SPBC17D1.06 26 ATP-dependent RNA helicase Dbp3 1.36E-06

SPBC244.02c 26 U3 snoRNP-associated protein Utp6 2.54E-03 -0.368 -1.599

SPBC4C3.05c 26 DNA-directed RNA polymerase I complex large subunit Nuc1 4.79E-04 -0.103 -1.079

SPBC4F6.07c 26 ATP-dependent RNA helicase Mak5 2.21E-02 0.191 -1.272

SPBC4F6.13c 26 WD repeat/BOP1NT protein 1.11E-03 -0.526 -1.413

SPBC651.01c 26 GTP binding protein Nog1 4.48E-09

SPBC776.08c 26 Nrap (snoRNA binding) 5.23E-06 -0.424 -1.720

SPBP22H7.02c 26 RNA-binding protein Mrd1 2.43E-06 -0.179 -1.690

SPCC1183.07 26 U3 snoRNP-associated protein Rrp5 9.57E-07 -0.142 -1.475

SPCC1827.01c 26 DUF1253 family protein 1.58E-03 -0.126 -1.760

Table 3: Genes from clusters 25 and 26 carrying the 3'UTR RNA motifs (the list is ordered exactly as depicted in Figure 6A). (Continued)
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nected cell cycle processes cannot be over-emphasized.
However, the processes could be studied both in terms of
their connectedness to each other as well as their cell cycle
phase-specificity. To encompass both the global and the
local aspects of the underlying gene regulatory network
for S. pombe, we took a 3-step approach. First, using
genome-wide expression data from multiple experiments,
we reconstructed a gene regulatory network based on 531
downstream target genes of 36 transcription factors that
were identified to have strongly periodic activity during
the cell cycle (Table 1, Figures 1 and 2). Second, we cou-
pled TF mutant data from ten microarray studies with
time course expression data from ten cell cycle experi-
ments with the help of an enhanced Bayesian co-cluster-
ing algorithm. The co-regulated and phase-specific gene
modules (Figure 4) led to the identification of many new
conserved cis-regulatory elements (Table 2 and Figure 6A).
Third, we dissected some parts of the above network to
identify cell cycle phase-specific control elements to show
how the gene regulatory network and the parts-list could
be used for generating hypothesis about S. pombe cell cycle
regulation.

Using new computational strategies and a large gene pool,
we constructed a comprehensive parts-list of key regula-
tory genes, many interesting TFs and binding motifs, and
phase-specific modules that offer insights on different
aspects of the fission yeast cell cycle regulatory program
(see Figure 6 for example). Beyond a core of 500 strongly
cell cycle regulated genes in S. pombe [25], based on
observed transcript oscillation, it has been noted that the
number of genes that might be regulated by the cell cycle,
due to reasons that are adaptive or otherwise, could be as
many as 2000, approximately two-thirds of which may be
weakly regulated [6]. Indeed if we observe the ranking of
all genes by the variance of their peak phases across ten
independent experiments as determined by Marguerat et
al. [9], then the top 2000 genes show surprisingly low var-
iance. Thus, to identify a comprehensive set of co-regu-
lated genes that are potentially cell cycle-related, we
clustered expression data for a pool of 2000 genes in S.
pombe having highly consistent cell cycle phase character-
istics (see Additional file 8 for the list of the 2000 genes).
As described in the Results section, the depth of the pool
enabled us to detect new, unexplored modes of transcrip-
tional and post-transcriptional gene regulation in S.
pombe.

In contrast with previous studies [26], the larger pool size
in the present study posed a computational challenge to
conventional clustering, which was compounded by the
relatively large number of time course and non-time
course regulatory experiments. Without the regulatory sig-
natures, solely time course clustering of such a large
number of genes produced noisy clusters (data not
shown). However, common clustering algorithms that do
not distinguish between heterogeneous types of data are
more likely to identify primarily the genes with the most
consistent periodic profiles across experiments, while
identifying the remaining majority of genes as "noisy"
and clustering them arbitrarily. To address this, we
enhanced the power of detection of an earlier Bayesian co-
clustering algorithm [15] with the capacity to produce
clusters of genes that are co-expressed in many, but not
necessarily all of the experiments. Using a mixture of
regressions based on the cluster-experiment error vari-
ances (see Methods and Additional file 5 Figure S3), the
strategy of formalizing the notion of a clustering consen-
sus among independent experiments made our algorithm
robust against inter-study variation. As a result, unlike ear-
lier studies that did not use high-throughput data and
focused on small-scale networks of biochemical interac-
tions in the S. pombe cell cycle ([27,28], our approach
based on the comprehensive parts-list offers both broad
and specific insights.

An ideal window for exploring an interesting phase-spe-
cific sub-network is the early M phase, which is the onset
of intense regulatory activity involved in mitosis. The reg-
ulation by multiple forkhead TFs of different pathways
leading to mitosis is well-studied [2,29-31]. Indeed in our
NCA, fkh2 displays strong late G2 activity (Figure 1).
Recently, Nachman and Regev [10], using a Biochemical
Regulatory Network Inference (BRNI) approach, have
shown that cell-division specific genes ace2 and fkh2 act
together in a combinatorial regulation way and that fkh2
and sep1 are involved in a negative feedback loop that may
control regulatory activity at the G2/M phase of the fission
yeast cell cycle. Interestingly, fkh2 also shows high coordi-
nation with SPBC19G7.04 (Figure 1 and Additional file 5
Figure S4), a HMG box TF that is periodically expressed (P
< 10-33) at the onset of M phase [9,32]. Assuming that TFs
with similar TFA profiles might function together [12], it
is interesting to check for possible regulatory associations
among these factors targeting the M phase-specific clus-

SPCC320.08 26 membrane transporter 5.16E-05 -0.166 -1.538

SPCC330.09 26 rRNA processing protein Enp2 9.94E-04 0.128 -0.810

SPCC737.08 26 midasin 2.82E-02 -0.309 -1.437

Table 3: Genes from clusters 25 and 26 carrying the 3'UTR RNA motifs (the list is ordered exactly as depicted in Figure 6A). (Continued)
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Post-transcriptional regulation of ribosome biogenesisFigure 6
Post-transcriptional regulation of ribosome biogenesis. A) Genes from the clusters for ribosome biogenesis and 
related protein assembly and cellular component organization containing statistically significant and conserved RNA motifs in 
their 3' UTR first 300 bases. The two motifs (see logos) have positional and directional bias and sometimes appear as a com-
bined motif. The genes are listed in the displayed ordering in Table 3. The predicted structure of the motif with the highest 
likelihood score is also shown. B) Post-transcriptional cis-regulation at these motifs is tested against previously published 
experimental data [21]. The red points mark the transcriptomic versus proteomic levels of the genes with the motifs while the 
blue points depict that for genes from the same clusters without the motifs.
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ters. For instance, a large number of the promoters for
genes in cluster 4 (an early mitotic cluster), contained two
strong motifs (TGTTTTAC and TGTAWGC) with best
matches for binding sites of the forkhead domain (FoxF2,
P < 10-10) and HMG box (HMG-1, P < 0.001) respectively.
Many of these promoters actually contain both types of
binding sites, and in opposing-strand orientation, poten-
tially indicative of combinatorial regulation (Additional
file 5 Figure S5). While HMG-box TFs are known to asso-
ciate with forkhead TFs for ribosome biogenesis in S. cer-
evisiae [33], their dual role with respect to chromatin,
which is partly structural and partly regulatory, might be
particularly favorable for the intensely active regulation at
the onset of mitosis. For instance, besides acting as a con-
ventional TF, some HMG-box TFs can also induce changes
in the DNA structure that enhance binding of other TFs
[34]. On the other hand, a forkhead TF that binds to con-
densed chromatin during mitosis could use chromatin-
remodeling for regulation [35]. In S. cerevisiae, fkh2 not
only regulates the G2/M specific clb2 (cyclin B) cluster
[36], it also represses clb2 with the help of a chromatin-
remodeling ATPase that re-positions nucleosomes in the
clb2 promoter [37].

Intriguingly, no systematic study of HMG-box TFs in fis-
sion yeast is known although it is the only TF family that
has (60%) more regulatory members present in S. pombe
than in S. cerevisiae [11]. As a regulatory hub in our pre-
dicted early M phase network, SPBC19G7.04 is linked
with well-known periodically expressed mitosis and cell
division proteins such as klp6 and klp8 (kinesin microtu-
bule motor proteins required for chromosome segrega-
tion), some of which also contained both forkhead and
HMG-1 motifs in their upstream regulatory sequences
(data not shown) and are potential candidates of associ-
ated regulation.

While pointing out the gap in S. pombe regulatory cascade
as compared to S. cerevisiae, it was suggested that post-
transcriptional regulation might play a major role in the
much longer G2 phase of S. pombe [8]. With the help of
our large gene pool, we focused on two early-to-mid G2
clusters (25 and 26) containing weakly expressed ribos-
ome biogenesis genes. Ribosome biogenesis possibly
involves both transcriptional and post-transcriptional
steps of gene expression regulation [38], with diverse con-
trol elements in budding and fission yeasts [5]. In S. cere-
visiae, genes encoding factors involved in ribosomal RNA
(rRNA) synthesis and ribosome assembly were among
those having the least stable transcripts [39]. Given that
orthologous genes could have similar turnover across spe-
cies [40], it is possible that mRNA stability plays an
important, if not critical, role in the multi-layered regula-
tion of ribosome biogenesis genes in S. pombe [23].

Transcript stability is often regulated by specific interac-
tions between cis-elements in the 3' untranslated region
(UTR) of mRNAs and hundreds of different RNA binding
proteins (RBPs) in the cell [41,42]. Using some of the
recently developed resources which specifically search for
RNA motifs that may be recognized by different RBPs
[17,43,44], we identified highly conserved sequence and
structure based RNA motifs in the 3' UTR sequences of 65
ribosome biogenesis genes. Interestingly, these RNA
motifs were not significant in the S. cerevisiae orthologs of
the 65 genes (the only 3' UTR motif reported for nucleolar
proteins in the catalog by [43] is GAA.UAUUCA, a distinct
motif). Neither were the motifs significant in other gene
clusters in S. pombe such as the M phase cluster 31. It is
therefore possible that the motifs we identified are bound
by proteins that perform highly distinctive (species-, loca-
tion- and phase-specific) post-transcriptional regulation.

Statistical analysis of the time course profiles of the 65
ribosome biogenesis genes containing the motifs indi-
cated low RNA turnover. Despite the general pattern of
their expression -- peaking early in G2 followed by fast
decay by mid G2, there were exceptions (Figure 6B and
[20]) -- and hence the reported motifs may not have a uni-
formly destabilizing effect. Therefore, we suspect that with
more detailed experiments, further regulatory classifica-
tion is possible. For instance, several genes containing the
RNA motifs (such as lcp5, rrp5, rrp9, utp14, esf2, utp6,
utp16) encode small nucleolar U3 RNP (ribonucleopro-
tein) associated proteins that form parts of a complex
involved in rRNA processing and ribosome biogenesis
[45]. Indeed post-transcriptional regulation of such a spe-
cific functional class has been observed recently [46].
Thus, it is possible that motifs such as those reported
above could act as control elements not only for regulat-
ing the level, but also the quality of RNA as needed for
ribosome biogenesis and other processes in S. pombe.

Finally, we understand that like any computational deri-
vation, our gene and module networks are based on mod-
eling assumptions which may not fully capture the
complexity of the multi-layered regulatory program of the
S. pombe cell cycle. While they are based on different types
of data from many experiments, the networks could still
be enhanced by future studies from various "omic"
approaches. For instance, detailed ChIP-on-chip studies,
which have greatly enhanced our understanding of the
local protein-DNA interactions in S. cerevisiae, could pro-
vide similar support to our networks.

Conclusion
Our fission yeast regulatory network can form the starting
point for a variety of inquires. Together with different sup-
porting genome-wide data for the organism such as its
sequence [47], proteome [21], localization [48], expres-
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sion intermediates [23], interactome [49], orthology [50],
etc., it offers the scope for a wide range of analysis. In par-
ticular, as shown above, the underlying parts-list can be
mined for insights on different phase-specific regulatory
mechanisms involved in the cell cycle. It also provides a
basis for generation of plausible hypotheses for experi-
mental investigation. In this direction, we provided new
testable evidence for the hypothesis [8] of post-transcrip-
tional regulation of the G2 phase in S. pombe in the form
of new RNA motifs for the ribosome biogenesis genes. As
future work, we are interested to pursue some of the above
results experimentally.

Methods
Data
The ten time course microarray experiments on fission
yeast cell cycle used in the present study were based on
two synchronization methods -- elutriation (Elu) and
Cdc25 block-release (Cdc25) -- and referred to as Peng
Cdc25 and Peng Elu; Oliva Elut1 & 2 and Oliva Cdc25;
Rustici Cdc25 1 & 2 and Elu 1, 2 & 3. See the previously
published work [6-8] for more details. The ten regulatory
knockout, overexpression or stress experiments, referred
to as Sep1, Sep1p, Nuc2, N-starvation, Cdc25, Cdc22,
Cdc10, Cdc10-4hr, Ace2, Ace2p, are also previously
described [6,8]. The data were normalized by the original
experimenters. Therefore, no normalization was per-
formed in this investigation. However, missing values
were imputed using the kNNImpute algorithm with the
default parameter settings [51]. For post-transcriptional
regulation analysis, we used high-throughput proteomic
and transcriptomic data for S. pombe from [21], and also
the mRNA stability study by [23]. Data on ribosomal
occupancy and Codon Adaptation Index were also
obtained from [23]. Sequence data for fission yeast
Schizosaccharomyces japonicus was obtained from the Fun-
gal Genomes website of Broad Institute of MIT and Har-
vard University.

Data analysis strategy
Our data analysis strategy to identify components in the
fission yeast regulatory network consists of two parallel
workflows. The first is Bayesian co-clustering [15] of the
cell cycle and the regulatory gene expression data sets for
2000 periodic genes (see Additional file 5) followed by
circular-circular regression (CCR) [16]. For the median
profile of each cluster, a random periods model (RPM)
[52] was fit. CCR methodology was applied on the esti-
mated phases of all the median profiles across ten experi-
ments to determine the phase coherence of the clusters
over the experiments. The details of the clustering algo-
rithm are fully described in Additional file 5. The second
workflow used estimated period parameters from the
RPM to obtain significant TF-gene pairwise time lagged
correlations as priors for Network Component Analysis
(NCA) [12]. Using Peng Cdc25 and Peng Elu data sepa-

rately, we inferred significant TF activities (TFAs) of 36 TFs
during the cell cycle and identified their potential targets
(see Additional files 2 and 9 respectively). The activity of
a TF is determined by the effect (suitable log-linear
decomposition of the gene expression matrix according to
the proposed network connectivity) of the TF on its down-
stream targets as a function of time. The Gene Regulatory
Network Inference (GRNInfer) software [53] with default
parameter settings (λ = 0.0 and threshold = 1 × 10-3 con-
trolled the sparseness and the complexity of the network
respectively) was used to reconstruct the "consistent"
interactions of the 36 TFs with significant activities and
the 531 regulatory targets of the TFs based on the five
smaller Rustici time course experiments (Elu 1&2 and
Cdc25 1, 2&3). The contribution of each experiment to
the reconstruction of the gene network was weighted by
the average signal to noise ratio from the RPM (Additional
file 5 Table S1). Consistent interactions are the connec-
tions of network nodes that are reproduced reliably in
each of the five experiments (see Additional file 3 for the
network). Listed below are the details of the models, algo-
rithms and statistics used for the correlation analysis.

Bayesian co-clustering methodology
In this section, we are not introducing new methodology
but pointing out extensions to an earlier algorithm
described elsewhere [15,54]. We enhanced the algorithm
with strategies to co-cluster data from different types of
high-throughput experiments. This was achieved by using
suitable basis functions to model the individual data
types. In particular, we combined time course cell cycle
expression data with TF mutant data to identify co-regu-
lated modules. Further, we used a mixture of regressions
based on the cluster-experiment error variances to formal-
ize clustering consensus among independent experi-
ments. This allowed the algorithm to produce clusters of
genes that are co-expressed in many, but not necessarily
all of the experiments thus increasing statistical power and
robustness against inter-study variation. For the sake of
completeness and reproducibility, we described the meth-
odological details and the steps of the algorithm in Addi-
tional file 5.

TF-gene pairwise time-lagged correlation analysis
We started with a curated list of 125 known transcription
factors in S. pombe with identified protein domains [11].
Each TF expression time course was transformed with a
sigmoid function:

where xi is relative expression at the ith time point for a

given TF,  is the mean of the TF expression profile over
all time points and s sis the standard deviation [55]
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assuming that the transformation sufficiently models the
activation of a gene by a TF in a nonlinear (sigmodial)
fashion.

The time lag correlation between the jth TF's and gth gene's
time course expression profiles over the first full time
period of the cell cycle experiment (which is least affected
by loss of phase synchronization, and allows a lag
between the activation of the TF and the peak phase of the
gene) was computed using Spearman's rank correlation.

Let φg denote the estimated phase angle of gene and let T

(in minutes) denote the estimated cell cycle period of a
particular experiment [52]. Then the phase angle for a

gene or TF in minutes is given by . The TF-gene

specific time lag (phase separation) is computed as

For jth TF with intensity values f(xi), i = 1,2,..., m + 1, and a

gene g with expression values yg = (yg1, yg2,..., ygN) the most

significant Spearman's rank correlation coefficient rjg is

determined between f(xi), i = 1,2,..., m + 1 and the sub-vec-

tor of the full time course of the gene g

,

where m is index of the time point corresponding to the
first full period of the cell-cycle for the gth gene over values
of the offset k, an integer in the "inclusive" range {-3,...3},
to account for uncertainty in the determination of the true
lag. The significance of each rjg is determined with a two-

sided p-value based on 100,000 random permutations
corresponding to the null hypothesis that the TF-gene pair
is uncorrelated.

Further criteria were applied to filter out spurious and
non-significant TF-gene correlations. First, genes with
known peak expression at phase transition points in the
cell cycle in S. pombe (such as protein-serine/threonine
kinase hsk1 required for S phase initiation) were used as
demarcations to assess the phase separation between the
expression of a TF and the response of a gene. A pair is fil-
tered if its phase separation interval contained demarca-
tion genes from multiple transition points or exceeded
120 degrees. If so, the p-value of that correlation was
assigned to 1. This phase-specificity imposed a biological
constraint on the TF-gene pairs, limiting the extent of a
TF's regulatory influence based on its phase information.
Second, within each of the ten experiments the p-value for
every pair was subjected to multiple hypotheses testing

with a q-value threshold of 0.05. Only a TF-gene pair with
significant correlations (each of q < 0.05, and having the
same sign) in at least a third of the nine experiments was
qualified for NCA based on data from the tenth. Assuming
a Binomial distribution model, the probability that a TF-
gene correlation was significant in k ≥ 3 of the n = 9 exper-
iments by chance alone is 0.0023. The Peng Cdc25 and
Elu data sets were individually held out of the correlation
analysis and reserved for separate runs of NCA.

Phase Coherence among multiple experiments

In this section we are not introducing any new methodol-
ogy but describing previously published work [16] for
completeness sake for reader's convenience so that the
paper is self contained. For any given experiment, the
phase angle corresponding to cell cycle genes are points
on a circle which intrinsically satisfy an (un)known order
amongst themselves due to their biological functions.
However, due to variability in the underlying data, it is
possible that the order of the estimated phase angles of
the cell cycle genes may not be same across experiments.
If order of the phase angles are preserved across a pair of
experiments, then clearly one can align the phase angles
of the two experiments by simply rotating the one of the
circles and then moving the points within the circle until
the two circles are as close to each other as possible. This
can be accomplished using circular regression [56]. If
there are k cell cycle experiments then one can perform k
pairs of circular regressions to align all the circles. Using
this principle a methodology was developed [16] with
which we could evaluate if a given collection of gene clus-
ters shows phase coherence in multiple independent cell-
cycle experiments. It is said to be coherent if the ordering
of the estimated median phase angles of the clusters
across experiments is preserved up to circle-circle regres-
sions. That is, by performing a series of circle-circle regres-
sions, it should be possible to "align" the clusters' phases.
A p-value was derived for performing the test using a pre-
viously described method [16]. In our analysis of the
median values from the clusters of the time course data,
one cluster was not represented in the two Peng experi-
ments and therefore was excluded from CCR.

Network Component Analysis and other programs
To infer transcription factor activities (TFAs), we used the
Network Component Analysis (NCA) program [12]. The
activity of a TF is the effect (suitable linear combination of
the gene expression according to the proposed network
connectivity) of the regulator on the downstream targets
it controls at a given time point. Since the NCA algorithm
allows prior knowledge of the regulation between the ith

gene and jth TF to be input as a connectivity matrix, we
used only the significant TF-gene correlations from the
time lag correlation analysis for this purpose and as fol-
lows:
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where +1 is activation, -1 is inhibition and 0 no interac-
tion. The Peng Cdc25 and Elu time course experiments
were individually used as the gene expression data input
to NCA. Briefly, NCA models gene expression as a func-
tion of TFA and the corresponding control strengths (CS)
of a transcription factor target interaction. In log-log form
the model is written in matrix notation as:

where Eij = log(gi(tj)/gi(to), gi(tj) is the expression of i-th
gene evaluated at time tj, A is the regulatory network of
control strengths where Aij denotes the control strength of
transcription factor j on gene i (Aij = CSij), Pij = log(TFAi
(tj)/TFAi (t0)) with TFAi (tj) being the i-th transcription fac-
tor activity evaluated at time tj, and Γ represents the noise
from the DNA microarray experiment. The dimensions of
E, A and P are (N × M), (N × L) and (L × M), respectively,
where N is the number of genes in the network, M is the
number of data points or experiments conducted, and L is
the number of transcription factors used in the analysis.
TFAi (tj) and CSij are estimated using the regulation (indi-
cator) matrix (equation 3), the gene expression data and
the Expectation-Maximization (EM) algorithm with an
epsilon = 1 × 10-6 for conversion. Using the Peng Cdc25
data 39 TFs with TFAs on 784 were obtained and using the
Peng Elu data 47 TFs with TFAs on 894 targets were
obtained. The intersection of the results from the two
NCAs led to the identification of 36 TFs with TFAs (Addi-
tional files 2 and 9) on 531 regulatory targets.

The R package CircStats was used to compute circular sta-
tistics of the peak phases of genes in every cluster. By cou-
pling gene-wise phase information for 10 experiments
with the meta-analyzed list of all genes it was observed
that approximately 1,900 genes could be rejected (after
FDR adjustment) at significance level 0.05 for the null
hypothesis that a gene's phases are uniformly distributed
across 10 experiments. The same count increased to more
than 2,100 genes when the experiment in which a gene
deviated most from its median phase was excluded [57].
Hence we chose the top 2,000 genes in the above list (we
computed the circular variance of their phases) for our
clustering purposes (for gene list see Additional file 8). A
p-value threshold of 0.01 was used for the test of circular
uniformity to identify diffuse clusters.

For binding site analysis, BioProspector [58] was used to
discover conserved DNA motifs in the upstream regula-

tory regions of co-expressed clusters. Only the two most
significant motifs per cluster, both with p-value less than
10-9, were output. No motif was output for a diffuse clus-
ter. A motif clustering program was used to filter the
redundant motifs [59] as well as to recognize the previ-
ously known motifs [6,8]. The following databases were
used: protein-protein interactions obtained from BioG-
RID [49], p-values for periodicity and regulation of
expression profiles from Cyclebase.org [32], candidate
binding sites from JASPAR [60], and upstream sequences
from GeneDB [61]. The DNA motifs were searched against
JASPAR with STAMP [62] and plotted with MotifViz [63].
The RNA motifs were identified with FIRE and RNApromo
[17,44]. Sample skew and sample excess kurtosis of time
courses were computed with the R package FinTS. The
skew was computed for the first full range of G2 phase in
Peng Cdc25 time courses spanning 150-270 min., and the
kurtosis for the sub-range 190-270 min. to focus on the
right tail. Data on AUG Context Adaptation Index and
ribosome occupancy were obtained from [23]. The p-
value of gene expression (Table 3) is due to the gene-spe-
cific P(reg) entry in Cyclebase.org [32]. The periodicity
and dominant Fourier frequency for the log10(TFA) pro-
files were determined with Fisher's g-statistic (Table 1)
and the Average Periodogram (Figure 2) using GeneCycle
[13]. The module network (Additional file 4) was com-
puted using four Cdc25 and four Elu data (Oliva Elu 1&2
not used) with Genomica [64]. Gene Ontology based
associations were computed with Genecodis [65].
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