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Abstract

visualize and interpret them.

knowledge.

analysis techniques.

Background: Networks are widely recognized as key determinants of structure and function in systems that span
the biological, physical, and social sciences. They are static pictures of the interactions among the components of
complex systems. Often, much effort is required to identify networks as part of particular patterns as well as to

From a pure dynamical perspective, simulation represents a relevant way-out. Many simulator tools capitalized on
the "noisy” behavior of some systems and used formal models to represent cellular activities as temporal trajec-
tories. Statistical methods have been applied to a fairly large number of replicated trajectories in order to infer

A tool which both graphically manipulates reactive models and deals with sets of simulation time-course data by
aggregation, interpretation and statistical analysis is missing and could add value to simulators.

Results: We designed and implemented Snazer, the simulations and networks analyzer. Its goal is to aid the
processes of visualizing and manipulating reactive models, as well as to share and interpret time-course data
produced by stochastic simulators or by any other means.

Conclusions: Snazer is a solid prototype that integrates biological network and simulation time-course data

Background
Proteins and genes play fundamental roles in most
organic functions. They cooperate to keep the entire
organism’s machinery working and prevent breakdowns.
Globally, their social relationships give rise to minutely
organized networks, currently the target of meticulous
studies [1]. Genetic Regulatory Networks (GRNs) [2,3]
and Protein-to-Protein Interaction networks (PPIs) are
the most representative classes of biological networks.
GRNs represent collections of DNA segments which
functionally interact with each other as well as with the
chemicals that govern the transcription of genes into
RNA sequences. From another perspective, GRNs can
be seen as input-output machineries which produce an
output (i.e. the expression level of a gene) by a com-
bined application of basic functions to input stimuli.
PPIs are comprised of proteins that form chains in
which each protein reacts to a stimulus of its predeces-
sor to produce a signal directed to its successor. Reac-
tions in such chains are usually seen as directionally
oriented because often they are not reversible. A
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reaction chain acts as a connector of a triggering event
to a final physiological response and then sets up a
complex (and often cyclic) collaborative network.

Both kinds of networks have been collected into sev-
eral data banks spread throughout the WWW [4] and
modeled in a computerized fashion by means of some
unambiguous and artificial formalisms. The most com-
mon one makes use of coupled Ordinary Differential
Equations (ODEs) [5]. Alternatively, several other pro-
mising modeling techniques have been employed:
(including) Boolean networks [6], Petri nets [7], Bayesian
networks [8], graphical Gaussian models [9], Process
Calculi [10,11] and Automata Theory [12]. Standard lan-
guages, xml- (SBML [13], CellML [14]) or graphical-
(SBGN [15], BlenX4Bio [16]) based, have been further
proposed to allow knowledge sharing. All of them are
(roughly) connected to graph theory, since a common
simple principle holds: interacting agents (e.g. genes,
proteins, enzymes, etc.) are represented as the graph
vertices whereas interactions (e.g dimerization, phos-
phorylation, collision, etc.) constitute the graph edges.
Moreover, strength of connections (if any) is usually
modeled by weighing the edges (e.g. to quantitatively
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represent fluxes in metabolic networks). Protein-to-pro-
tein interaction networks, chemical structures, gene co-
expression and contact graphs for protein structures are
all examples of undirected graphs, whereas experimental
protocols and taxonomies of species and traditional reg-
ulatory networks are examples of directed graphs. Other
examples include: DNA, RNA or protein sequences (lin-
ear graphs), sequence fragment overlap graphs (interval
graphs) for shotgun sequence assembly, genetic maps
and multiple sequence alignments (partial orders). On
top of them, a myriad of graphical- and textual- based
tools has been developed with the aim to simultaneously
make the process of networks design increasingly more
intuitive and to speed up their functional description. In
Sec. 2, we itemize the most representative tools and give
some concise explanations of them.

Once a network is defined by its constituents and
interactions, it is common practice to simulate the net-
work by means of deterministic/stochastic solvers. The
deterministic solvers cope with interlocking sets of dif-
ferential or difference equations and require the specifi-
cation of some initial conditions. Its response (y) is
fixed, given the values of its input variables (x;), and
implies that var(y|x;) = 0. This property distinguishes
deterministic models from real-life experiments [17].
Stochastic solvers use pseudorandom numbers (treated
as if they were random numbers distributed uniformly
and indpendently) to produce different y values, starting
from the same initial parameters. Hence, the response y
is a random variable with var(y|x;) = g(x;), usually esti-
mated through replication and fed with different ran-
dom numbers. A user-defined accuracy level determines
how many simulation runs are needed [18]. A stochastic
trajectory or trace (corresponding to the output of a
simulation run) is a sequence of temporal observations
of the copy-number of the species in the state space.

Traces are curves generally made by double precision
(64-bit) floating-point numbers sampled over time. They
sketch the trend of some system variables that are chan-
ging because of a predefined set of mathematical rules.
Based on the continuous or discrete nature of such
rules, the traces format changes accordingly. Continuous
traces exhibit smooth trends of variables regularly
observed at continuous time-scales. The solution of an
ODE-based biological system gives the trend of the con-
centration of their variables within a desired time inter-
val. Therefore, variables change continuously according
to a mathematical function which solves the ODE'’s set.
Discrete traces only differ because of their non-homoge-
neous temporal sampling. They are evaluated at uneven
time instants that are calculated at run-time. Usually,
biological discrete systems deal with chemicals popula-
tions (in place of chemicals concentrations) and, conse-
quently, Markovian trajectories are made of streams of
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integer numbers. Sharing both kinds of simulation
results is, to a great extent, hindered by the use of a
variety of data formats by the existing simulation soft-
ware packages. In fact, most of them output traces deco-
rated by proprietary meta-information that contains
private, not human-readable simulator settings. Few
standard formats exist, but although some of them seem
to be very well-suited and complete, their general-pur-
pose nature makes them little versatile for our needs.
That is why Snazer has been equipped with an ad-hoc
and lightweight internal data format.

The rest of the paper is organized as follows: Sec. 2
describes all the features of our tool compared to those
of similar existing tools. Particularly, in Sec. 2.2 the
graph layout algorithms and the analysis features of Sna-
zer are presented, whereas in Sec. 2.3 we describe the
implemented statistics routines. In Sec. 2.4, we present
the internal data format together with the compression
policy employed to enhance the storing of data. In Sec.
3 we test Snazer on a real case-study with the aim of
highlighting features and strength points. Then, we per-
form some benchmark tests on its compression capabil-
ity and show the results. In Sec. 4 we conclude the
paper and present future works.

Implementation

Snazer is a software prototype whose aim is threefold: (i)
manipulating biological networks, (ii) providing
advanced statistical analysis routines for simulated traces
and (iii) improving the traces sharing and storing pro-
cesses. Snazer can also be considered as a viewer pack-
age of Beta Workbench (BWB) [19]. By parsing its
output files, Snazer imports two relevant pieces of infor-
mation inherently bound to the modeled systems: the
graphs of the simulated reactions and the simulated
traces. It encloses them in a compact XML data struc-
ture, designed to work as an interchange data source/
sink. Through this, networks and simulation data look
tightly coupled.

The overall architectural skeleton draws inspiration
from the Model-View-Controller software architectural
design pattern and is made up of two parts: the reaction
graph (Sec. 2.2) and the statistics (Sec. 2.3) modules,
that deal with visualization of the system interactions
and with calculation of statistics outcomes of simulated
traces, respectively (see fig. 1). Both modules share the
optimized floating object compliant with the Snazer
XML-schema previously mentioned and discussed in
Sec. 2.4 (cf. Additional Files 1).

2.1 State of the art

The rationale behind Snazer comes directly from the
scientific community, which needs to manage together
the biological models and their simulation results in a
coherent manner. Several tools exist that unilaterally
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tackle such need. Pajek [20] is a standalone application
for analysis and visualization of large networks having
ten to hundreds of thousands of vertices. It is a highly
interactive program and its main strength is the variety
of layout routines (circular, energy, eigenvalues) that
greatly facilitate exploration of patterns within large net-
works. It is equipped with several decomposition, con-
nectivity, pattern searching algorithms. Pajek can detect
clusters in a network, extract vertices that belong to the
same clusters and show them separately, shrink vertices
in clusters or show relationships among clusters. It
loads several proprietary input files and writes network
layouts as EPS, SVG, BMP files. Medusa [21] is a Java
application (standalone or applet). It provides 2D repre-
sentations of medium-sized networks, up to a few hun-
dred nodes and edges. It shows multi-edge connections
and is optimized for protein-protein interaction data.
Medusa supports weighted graphs and represents the
significance and importance of a connection by varying
line thickness. Graphs can be drawn by means of some
embedded spring-like layout algorithms and exported to
image or postscript files. Medusa is designed for acces-
sing protein interaction data from STRING[22].

Cytoscape [23] is a standalone Java application for the
visualization of large-scale molecular interaction net-
works (directed, undirected and weighted) and their
integration with gene expression profiles and other data.
It also allows the manipulation and comparison of mul-
tiple networks. The great quantity of available plug-ins
enriches Cytoscape with increasingly specialized analysis
modules. The tool supports a variety of format files,
including Gene Ontology (GO) [24], SBML[13] and
KEGG(25]. BioLayout Express®”[26] is another tool
written in Java for the visualization and analysis of net-
works derived from biological systems. It supports both
unweighted and weighted graphs together with edge
annotation of pairwise relationships. It mainly employs
the Fruchterman-Rheingold [27] layout algorithm for 2D
and 3D graph positioning and display and makes use of
a heavily optimized C-based Markov Clustering algo-
rithm for graph clustering. Its main goal is to offer dif-
ferent analytical approaches to microarray data analysis.
It supports different file formats: Cytoscape Sif files,
Reactome files [28], yEd GraphML files [29].

Osprey [30] visualizes complex interaction networks.
It represents not only interactions in a flexible and
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rapidly expandable graphical format, but also provides
options for functional comparisons between data sets.
Osprey uses the General Repository for Interaction
Datasets as a database (BioGRID) [31], from which the
user can rapidly build interaction networks. Networks
can be saved as tab-delimited text files for future manip-
ulation or exported as JPEG, PNG, and SVG. ProViz
[32] is a standalone open source application developed
for the visualization of protein-protein interaction net-
works. It provides facilities for navigating large graphs
and exploring biologically relevant features. It has a
plug-in library with dozens of layout algorithms. Basi-
cally, they belong to three families: force-based, hier-
archical and geometric layout (only circular). ProViz
adopts emerging standards such as GO and PSI-MI[33].
BiologicalNetworks [34] models whole cell biochemical
pathways and gene regulatory networks. It uses a specia-
lized graph visualization engine to represent biological
pathways, gene regulation networks and protein-protein
interaction maps for intuitive exploration and predic-
tion. The tool can handle a variety of tasks, including
graphic drawing and layout optimization, data filtering
and pathway expansion, and classification and prioritiza-
tion of proteins. BiologicalNetworks uses a proprietary
file format (BNX) that stores information pertaining to
the model and the corresponding simulation environ-
ment. It supports import and export of models from
SBML, SIF and GML file formats. Finally, Tulip [35] is
one of the forerunners of drawing packages for biologi-
cal networks. It allows the visualization, drawing and
editing of graphs up to a million elements. Such a visua-
lization system allows navigation through geometric
operations as well as extraction of subgraphs and
enhancement of the results obtained by filtering. Its
most interesting property is the underlying data struc-
ture used to inspect huge graph attributes. Tulip imple-
ments the well-known “flyweight” and “chain of
responsibility” patterns to access graphs through views.
The real advantage is enabling a real sharing of the ele-
ments between graphs with a good memory manage-
ment. All this software improve and obscure the first-
generation tools from which they have drawn inspira-
tion: Otter [36], a general-purpose network visualization
tool; Negopy [37], a discrete, linkage-based program for
the analysis of networks; KrackPlot [38], a network
visualization tool intended for social networks; Multi-
Net [39], a Windows-based computer program designed
for exploratory data analysis of social and other net-
works. Other tools exist that aim at providing advanced
statistics routines for biological traces. Traviando [40] is
a backend trace visualizer and analyzer. It interfaces the
XML output file of Mobius, a multi-paradigm multi-
solution framework for the performance and depend-
ability assessment of systems, to investigate the details
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of what happened in a simulation of a model. It verifies
that certain events happen in a trace, that particular
states are frequently reached or that certain conditions
hold throughout a simulation. It further analyzes the
cyclic behavior with graphics that show if states are
repeatedly visited or how the length of the trace evolves
if cycles are removed. Traviando also supports various
statistics on traces as well as the model checking of a
trace with respect to LTL formulas. SimWiz [41] is an
old but still interesting project. It is a collection of Java
tools that aims at visualizing data resulting from differ-
ent kinds of biochemical simulation processes. It
imports STODE[42] and COPASI[43] simulation output
files as well as the relative reaction graphs as SBML
files. Its main feature is animating the network graph
through the information coming from the simulated
traces. VANTED [44] loads and edits graphs, which
may represent biological pathways or functional hierar-
chies. It allows the mapping of experimental data sets
onto the graph elements and visualizes time series data
or data of different genotypes or environmental condi-
tions in the context of the underlying biological pro-
cesses. Built-in statistic functions allow a fast evaluation
of the data (e.g. t-Test or correlation analysis). Pop-
Tools [45] is a versatile add-in for Microsoft Excel that
facilitates analysis of matrix population models and
simulation of stochastic processes. Together with rou-
tines for iterating and resampling, this allows the calcu-
lation of bootstrap and other statistics for stochastic
processes. Routines that facilitate calculation of some
simple maximum likelihood and resampling statistics
are supported as well.

Snazer addresses many of these issues, but additionally
offers a solid framework that couples networks and traces
analysis frameworks. It provides the user with the possibi-
lity both of browsing, dissecting and analyzing the net-
works components and of performing statistics on the
inspected components. Snazer has been equipped with an
efficient compression system to make huge amount of
data manageable and treatable as well as to store and
share them. Compared to the existing tools, it covers most
of the network visualization layout routines. In addition, it
implements Temporal-Circuit (see Sec. 2.2), an original
algorithm to layout networks according to the information
coming from simulation. It is not as well equipped with
decomposition and connectivity algorithms as Pajek and
BioLayout Express®”, because we mainly focused on origi-
nal (e.g. ColorBlind filter and standard annotation inspec-
tion - see Sec. 2.2.2) rather than existing functionalities.
Snazer is cross-platform, being implemented in Java (like
Medusa, Cytoscape and BioLayout Express®”). It struc-
tures input data in XML files (as BiologicalNetworks does)
and makes use of an internal data structure to improve
data access (like Tulip). At the best of our knowledge,
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Snazer is the only tool that provides data compression
(Sec. 2.4). It supports some standard input data formats
(as Medusa, Cytoscape, BioLayout Express®”, ProViz and
BiologicalNetworks) to be fully compatible with all the
orbiting software packages. Moreover, Snazer offers some
new trace analysis routines that deeply differ from those
implemented in the presented softwares. In fact, VANTED
fills network nodes with information coming from biologi-
cal experiments (like microarray, proteomics, etc) to statis-
tically analyze them. But it does not provide any means to
analyze simulated traces. SimWiz, instead, makes use of
traces to animate the related networks, but it does not
provide any functionality in support of simulation. Tra-
viando analyzes individual traces by using classical model-
checking methods, but lacks of any support for group-
traces. PopTools, offers some statistical facilities for wet-
data (as VANTED) and stochastic processes, but disre-
gards any group-traces issue as well. Contrarily, Snazer
covers these lacks by offering new analysis algorithms cen-
tered on multi-traces analysis.

All these features are built-in in Snazer and make it a
unique tool.
2.2 The reaction graph perspective
The focus of network-level analysis in general is on
properties of networks as a whole. These may reflect, e.
g. typical or atypical traits relative to an application
domain or similarities occurring in networks of entirely
different origin. Both from a global and a local view,
quantitative analyses have been conducted on networks
to investigate these traits. Snazer provides the user with
some clever layout algorithms to firstly give a global
insight of a network, and with a centrality ranker index
to highlight vertex importance.
2.2.1 Layout analysis
Graph layout methods are core techniques for applica-
tions based on graph-like network diagrams. Since such
a perspective is becoming more and more pervasive, and
since Snazer visualizes part of the data sets as reaction
graphs, we equipped it with the fastest and most flexible
layout algorithms. Most of them belong to the force-
based (or force-directed) class of algorithms. They are
easy to use, since they do not require special knowledge
about the graph theory, and often their results look very
good. They mainly assign forces to networks as if the
nodes were electrically charged particles and the edges
were springs. Thus, layouts are arranged according to
real physical principles (e.g. Coulomb’s law, Hooke’s
law, etc). As a result, forces repetitively applied to nodes
push and pull them further apart in order to minimize
the overall energy of the networks. When an equilibrium
state is reached, the graph is drawn.

Such algorithms enjoy several strength-points: uniform
nodes distribution, symmetry, flexibility, simplicity, strong
theoretical foundations, but suffer from some drawbacks:
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high running time (equivalent to O(V ®)) and poor local
minima. Spring is the simplest force-based layout algo-
rithm. Basically, nodes try to get as far of each other as
possible, but edges pull nodes near each other, merely
according to their weights. The energy of the system is
minimized by iteratively arranging the nodes (fig. 2d). It
enjoys all the strength-points as well as it suffers from
all the drawbacks just mentioned.

In particular, the task of bringing under control the
problem of poor local minima raised the interest of
many scientists. Such issue is based on the fact that the
obtained minimum system energy could be considerably
worse than a global minimum. Since such issue becomes
more and more important as the number of vertices of
the graph increases and, hence, that the overall quality
of the drawing could result lower and lower, some
scientists focused on the initial layout sub-problem to
solve it. They conjectured that any outcome of any
force-based algorithms results to be strongly influenced
by the initial layout, that in most cases is randomly
generated.

The Kamada-Kawai (KKLayout) algorithm represents
the first attempt to solve this problem. It was designed
with the aim to quickly generate advantageous initial
configurations. Nodes are represented by steel rings and
the edges are springs between them. The attractive force
is analogous to the spring force and the repulsive one is
analogous to the electrical force. The energy minimiza-
tion in this algorithm is achieved by obtaining the deri-
vative of the force equations. At the minimum energy,
the derivatives of the force equations are zero. Since
these equations are not independent, they cannot be
independently brought to zero, and therefore, only the
node that has the maximum gradient value is moved.
This process is repeated until the total energy is mini-
mized (fig. 2a).

A combined application of KKLayout with the Fruch-
terman-Reingold (FRLayout) algorithm represents today
one of the most successful layout solutions. FRLayout
contributes in meaningfully placing the neighbored
nodes. It works with unweighted, undirected graphs,
where attractive forces occur between adjacent nodes
only, and repulsive forces occur between every pair of
nodes. The movement of nodes is also function of the
system temperature registered at each iteration. Gener-
ally, temperature decreases through successive iterations
while nodes occupy their place (fig. 2f).

Some alternative ways of approaching this problem lie
in searching more directly for the energy minimum,
either instead of or in conjunction with physical simula-
tion. Among such procedures, we consider a competitive
learning method: the ISOM layout (ISOMLayout), which
extends the Kohonen’s self-organizing map. It evenly fills
the space with vertices and lets them take place because
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of an heuristic function rather than of attracting forces.
The algorithm selects a random point in the graph area
and picks the closest vertex to that point. This vertex is
moved toward that point as well as all vertices con-
nected to that initial vertex by up to a set number of
edge steps. The amount by which the vertices are
moved decreases the greater the number of edges in the
shortest path between the current and initial vertices.
The initial number of edge steps is decreased during the
layout process so that the later steps form local clusters
of connected vertices (fig. 2c).

Unfortunately, such methodologies do not properly
work with huge networks, where problems like node-
node or node-edge clashes are often encountered. In
these cases, simple algorithms like the Circle layout are
employed with the aim to evenly space vertices on a
geometric (circular, in this case) trajectory, irrespective
of the network size. Circle attempts to minimize as
many overlapping vertices as it can, by placing vertices
next to each other that are adjacent in the graph. It is a
fast algorithm, essentially because it is not optimal. That
is, it does not resolve the problem of edge intersection,
but propose a more familiar way to visualize the net-
work. It does not undergo sequential arrangement since
it is a static layout (fig. 2b). All the described layouts are
general purpose and have been widely employed in het-
erogeneous scientific areas. We designed and implemen-
ted Temporal-Circuit, an original and ad-hoc layout
algorithm, aimed at drawing simulated biological net-
works. It locates network elements in an electric circuit.
Nodes and reactions take progressively place into tabu-
lar spots from left to right. In particular, the species
initially present into the system and the reactions which
involve them are drawn on the leftmost. Afterward, if
new species are created somewhere and somehow into
the system (e.g. because of some synthesis reactions),
they are depicted on the immediate right, together with
the reactions which implicate them. This process pro-
gressively continues until any new species is placed.
Therefore, the species that come last into the system
occupy the rightmost side (fig. 2e). Since such a layout
encodes and visualizes both the network and simulation
information, it works only if both the graph of reactions
and the simulated traces are provided by the user.

2.2.2 Quantitative analyses

The determination of important elements, group of ele-
ments or evident treats of networks is collectively
known as quantitative analysis [46]. Since the 1950s,
along with some global topological indices, many vertex
centrality indices were introduced. These were to quan-
tify an intuitive feeling that in most networks some ver-
tices and edges are more central than other. In practice,
they were to evaluate the ‘reachability’ of a vertex.
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Given any network, these measures rank the vertices
according to the number of neighbors or to the cost it
takes to reach all the other vertices from it. These cen-
tralities are directly based on the notion of distances
within a graph, or on the notion of neighborhood, as in
the case of the degree centrality. Degree, eccentricity, clo-
seness, centroid are only some among the most known
and simple existing centrality indices. On their basis,
several structural properties have been studied, e.g. the
graph center, defined as the set of all the vertices of
minimum eccentricity; the median graph, an undirected
graph in which any three vertices 4, b, and ¢ have a
unique median: a vertex m(a, b, c¢) that belongs to short-
est paths between any two of a, b, and c.

Based on the set of shortest path in a graph, some
other centrality indices are worth being mentioned:
stress centrality, that is based on the enumeration of
shortest paths; shortest-path betweenness centrality is a
kind of stress centrality that accounts for the fraction of
shortest paths between two nodes that contain a third
node.

Vitality measures have been further used to determine
the importance of vertices or edges in a graph. Given an
arbitrary real-valued function on a graph, a vitality mea-
sure quantifies the difference between the value on the
graph with or without the vertex or the edge. In particu-
lar, flow betweenness vitality is a measure for max-flow
networks which is similar to the shortest-path between-
ness, but that aims at measuring the degree that the
maximum flow depends on a particular vertex; closeness
vitality denotes instead how much the transport cost in
an all-to-all communication will increase if a vertex is
removed from the graph.

These and all the other existing local methods try to
answer to questions like: which are the most central
members of a network and which the most peripheral?
Which connections are crucial for the functioning of a
subnetwork?

Snazer contributes to answer to these questions by
providing a little set of interactive tools. Mainly, a degree
ranker is implemented with the aim to highlight central-
ity of nodes within graphs. Ranks are calculated accord-
ing to the corresponding nodes degree and, then, nodes
color tonalities are tuned accordingly: the more a node
is central, the darker will be its color tonality. Degree
centrality is meant as the number of links incident upon
a node (i.e., the number of ties that a node has). Degree
is often interpreted in terms of the immediate risk of
node for catching whatever is flowing through the net-
work (such as a virus, or some information). If the net-
work is directed (meaning that ties have direction), then
we usually define two separate measures of degree cen-
trality, namely indegree and outdegree. Indegree is a
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count of the number of ties directed to the node, and
outdegree is the number of ties that the node directs to
others. For positive relations such as friendship or
advice, we normally interpret indegree as a form of
popularity, and outdegree as gregariousness.
Mathematically, for a graph G with #n vertices, the
degree centrality Cp(v) for a vertex v is defined as:

Cp(v) = deg(v) | (n -1). 1)

Each graph drawn by Snazer is fully interactive. They
can be graphically modified by stretching, translating and
grouping nodes and can be saved as standard GraphML
files. Snazer provides users with the possibility to dis-
cover any information embedded into nodes and edges. If
encoded in a standard manner, nodes hold data source
information in the form of MIRIAM annotations [47]. By
them, any detail (official name and synonyms, root URI,
pattern of identifiers, documentation, etc.) refers to a cat-
alog of data types through URIs and to their physical
locations through URLs. On the contrary, edges carry
information about the nature of the reactions that they
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represent (e.g. monomolecular, bimolecular, degradation,
etc.). An example is reported in fig. 3.

Another important feature is the support for color-
blind users. Snazer takes care of the most common
color vision deficiencies (protanopy and deuteranopy)
that affect the 8% of the male and the 2% of the female
populations [48]. The set of the graph colors can be
tuned on-demand by means of our own procedure,
referred to as ColorBlind filter [48]. It provides users
with a sufficient color contrast between nodes and the
foreground/background, by changing the hue, saturation
and lightness values of each color in a proportional way.

In any case, nodes can be visited and highlighted by
the intuitive relationships of neighborhood, or by user
selection. Selected nodes can be sent to the analysis
module to be further analyzed.

2.3 Statistical perspective

Many features have been ascribed to simulation traces
over the years: (i) the trend component, namely the long
term underlying direction (an upward or downward ten-
dency) and rate of change; (ii) the irregular component
(or ‘noise’), namely the component that is left over
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when the other components of the series have been
accounted for; (iii) the autocorrelation, namely the rela-
tionship between members of a time series of observa-
tions and the same values at a fixed time interval later.
Some scientists make use of specialized algorithms to
look for these and others properties in sets of traces,
obtained by repetitive simulation of the same models. In
their most basic form, multiple traces analysis algo-
rithms treat all variables symmetrically without making
reference to the issue of dependence versus indepen-
dence and permit causality testing of all variables simul-
taneously. This is a major advantage of such algorithms
compared to the multivariate time series algorithms. On
the basis of these algorithms, we equipped Snazer with
7 analyzers, dealing with isolated as well as grouped
time series, each with its own specific parameters.

They all tackle the common problem of dealing with
differently sampled traces. This problem is essentially
due to the mathematics behind the generation of the
time vector. Indeed, whenever a Gillespie-inspired algo-
rithm for simulating a model is used, the time evolution
of a well-stirred set {Sy, ..., Sn} of biochemical species
reacting through M = 1 reaction channels (reactions the
hereafter) {R;, ..., Ry} depends on:

« the probability a;( x )dt that, given f((t) =X, one
reaction R; will occur in the next infinitesimal inter-
val [t, t + dt). N.b. ay( X ) is a function of the number
of possible active instances of reaction R;. Consider a
reaction R : S; — S, then a(¥) = cx;, where x; is
the number of active R in the current state ¥, and ¢
is a constant that depends on the physical character-
istics of Sy;

+ the change v;; of the number of molecules of the
specie S; produced or consumed by a reaction R;.

Given a,( x ), the evolution of a biochemical network is
described by the next reaction density function p(z, j| ¥,
t), which represents the probability, given X(t) = ¥, that
the next reaction in the system will occur in the infinite-
simal time interval [t + 7, ¢t + 7 + dt) and will be on
channel R;.

p(r,j 1 %,0) = ay(R)e o, )
M - -

where a, = 2]‘:1“ j(%) . By conditional probability, Eq.

2 can be rewritten as

p(e,j 1% t) =pi(z [ X, 0)p,(j| 7, X, 1) where

pi(r | %, 1) = ap(X)e @ (z > 0) (3)
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aj(x)
ap(X)

where 7 is a sample from an exponential random vari-
able with rate ao(x ), and the selected reaction j is inde-
pendently taken from a discrete random variable with
values in [1,M] and probabilities A By the Eq. 4
and Eq. 3, the next reaction and talseex}nstant of time
when it will fire are then chosen. In particular, the repe-
titive calculation of the Eq. 3 provides the time vector of
a simulation, whose sampling is strongly dependent
upon the initial seed of the generated stream of 7 values.
Thus, in the context of a MRiP simulation [49,50], dif-
ferent initial seeds are carefully chosen and used to
avoid the cross-correlation that would naturally exist
between any pair of traces. However, although this does
not represent a problem from a graphical point of view,
traces with different sizes and different time scales
would result difficultly comparable from an analytical
perspective. E.g., in the case of two traces with different
samplings (as in fig. 4), a slightly warping effect might
be noticed at a certain point in their time scales. This
means that it might happen that some corresponding
points might be plotted on shifted temporal locations
and, hence, that even the simplest analysis task might
fail on them.

Our analysis routines overcome this issue. They all are
equipped with an embedded pre-processing functionality
that prepares traces for analysis. It takes a set of traces
and applies an alignment procedure called binning
[51-54], which has a twofold effect. It re-samples traces
and meaningfully reduces their sizes. Binning is one of

pa(jlz % 1) = / )

O

time

v

Q

T time
3¢ e e B o =

Figure 4 Often stochastic traces obtained by MRIP calculations
exhibit different sizes and warped time vectors. Alignment
procedures, like binning, are widely used to re-sample traces and
align the corresponding values.
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the most used pre-processing technique in the area of
signal analysis. It groups adjacent points into bins and
elects a representative member for each group. In parti-
cular, it takes a subset of N points from a generic signal,
represented by the couples [(vit1), (V2,82) ... (Varta)], and
substitutes them with an unique point (v* t), whose
value v* is an aggregate function of the N original values
(e.g. their sum), and the time ¢ is usually chosen among
the original times (e.g. as the median time, or the time
corresponding to the maximum value). Such basic
operations are conducted by scanning all the signal
through a sort of sliding window (of fixed width) chosen
by the user (Here, it should be noted from fig. 4, a con-
stant window could contain a variable number of points
along a signal).

This technique has been successfully used in the area
of Mass Spectrometry time course analysis, where the
time warping problem equally exists.

2.3.1 Analysis routines
« Series allows the application of a plethora of statis-
tical calculations to traces. It elaborates an output
data point for each timestamp present in any of the
input traces and produces a time series as output,
one for each selected statistical routine and for each
selected chemical. The available statistical calcula-
tions are: mean, root mean square, variance, stan-
dard deviation, standard error, geometric mean,
harmonic mean, skew and kurtosis.
« The first hitting analyzer works like series. How-
ever, it samples traces only whenever a (user-
defined) boolean condition becomes true. Indeed, for
each run, it searches for the first timestamp where
the condition is satisfied and performs the requested
statistics on the selected species. Finally, it outputs
the result as points on 2D charts, where time runs
on the X axis.
« Pointwise is a uniform analyzer which differs from
series only because it performs whatever chosen sta-
tistics at regular, user-defined, intervals.
+ The steady state analyzer is applied to systems
characterized by initial transient behaviors. Under
the assumption that the chance of entering whatever
possible state of the system after a transient period
is time-independent, this analyzer chooses a random
timestamp (after the transient time) from each run,
and performs there the requested statistics.
+ The cumulative analyzer calculates the maximum,
minimum and mean (as the integral of a trace
divided by the total time) values for each selected
species within all the time intervals that verify a pre-
defined boolean condition. In other words, it gives
the possibility of performing statistics only within
some limited slices of traces.
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« The time analyzer measures the duration of the
time intervals that verify a user-defined condition.
We call “front” the timestamp when a condition
becomes true (or vice-versa). Fronts can ascend or
descend, whenever the related conditions flip from
false to true (and vice-versa). Thus, this analyzer
performs statistics between any two consecutive
fronts. Other than the usual statistics, it can further
perform time-duration and time-sum calculations.

+ The raw data analyzer displays data on the 2D
chart, as they are.

Snazer gives the user the possibility to alternatively
display results in the chart panel at run-time or to
export them in SVG file format.

2.4 Data boxing

As quickly introduced above, Snazer makes use of an
internal data representation. Before choosing it as our
favorite data structure, we examined the three major
alternatives:

+ HDF (Hierarchical Data Format [55]) is designed
to assist users in the storage and manipulation of
scientific data across diverse operating systems and
machines. It is generally employed for managing
very large (and complex) data sets with very fast
access requirements. Its main aim is to standardize
the format and descriptions of many types of com-
monly used data sets (such as computerized images
and scientific data). It allows self description of data
and accommodation for symbolic, numerical and
graphical information. It is platform independent.

« NetCDF (Network Common Data Form [56]) is a
data format made for managing array-oriented scien-
tific data. As HDF, it is a standard, platform-inde-
pendent format which allows self description of data
and efficient information retrieving. It makes use of
HDF to enhance managing of much larger files and
multiple unlimited dimensions.

+ SBRML (Systems Biology Result Markup Language
[57]) is a proposal for a new markup language
whose aim is to give structure to the results of typi-
cal operations performed on SBML models. SBRML
captures and describes operations, type of operations
and the algorithms used to perform such operations.
It is currently structured on three levels: (i) ontology
terms, (ii) software, algorithm and result information
and (iii) content of the result.

Unfortunately, all three data formats did not properly
suite our aims. The first two are very general-purpose
and too complex for us. In fact, we only need to effi-
ciently store/retrieve time course data and
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simultaneously keep them linked with the corresponding
biological models. SBRML could work, but because it is
still a proposal and it lacks of guidelines, it has never
been adopted on concrete case-studies. Consequently,
we discarded it as well.

2.4.1 The internal data format

The internal data format is a trade-off between simpli-
city and functionality. It is ad-hoc made and it has not
been meant to compete with the existing data formats.
It makes the dialogue between both the visualization
and the analysis modules possible. It is an intermediate
and XML-encoded data structure (cf. Additional File 1).
To be coherent with the content of both modules, it is
logically structured in two tightly coupled sub-parts.
The former takes inspiration from SBML in both inher-
iting and specializing some of its constructs. Thus, since
Snazer agrees on the same policies of annotation and
identification, the SBase and SId elements are inherited
as-they-are. Furthermore, whichever biological system is
specified by a model entity and by a list of reactions,
each containing a list of reactants, of products and of
their chemical kinetics rates. Differently from SBML,
each reaction is categorized by a type tag. Reactants and
products reference three types of chemicals: entities,
complexes and variables. The first two types allow
representation of structured elementary or complex
reactive chemicals. Variables are destructured elements
which express scalar measurements (mass, temperature,
density, volume, etc.) evolving over time.

The remaining part of the schema captures the infor-
mation concerning the simulated traces and time. In
particular, a (de)structured chemicals is here referenced
and annotated by means of the fstart attribute, which
specifies the time when it enters into the system, and of
the structure attribute, which records its internal beha-
vior (if any). Finally, streams of simulated timesteps are
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compressed and recorded together with the information
about the first, last simulated timesteps and the overall
number of timesteps. Traces are equally sampled over
time.

2.4.2 The compression policy

Compression is one of Snazer’s strength points. Traces
of both integer (entities or complexes population
changes) and decimal (variables changes) numbers
streams are compressed by applying a pipeline of
semantic and structural compressors. The simple
semantic compressor takes in input a stream of num-
bers and outputs a stream of tuples (value, persistence
'+ increment*), where value is the placeholder for any
number of the input stream, persistence counts the
simulated instants of time where value stays constant
and increment stands for a list of (relative) changes from
value, for each number of the input stream subsequent
to value. A new tuple is produced whenever one of the
numbers of the input stream stays constant. The overall
stream of tuples flows into a structural compressor
where it is further compressed by the gzip algorithm. As
a result, an ultra-optimized binary stream is produced.
With the final aim to write it to file, it is transformed
into a printable (MIME) Base64 string (see fig. 5).

Results

We successfully used Snazer to analyze many real case-
studies (some of them are enclosed in the Additional
File 2). Here we make use of a couple of them to show
some of its functionalities. They are the cell cycle [58]
and the circadian clock [59] mammalian models. The
former is a complex network of biochemical phenomena
that controls the duplication of cells. Such process is
macroscopically subdivided into four phases which cycli-
cally alternate because of some cyclin-dependent protein
kinases (CDKs). When bound to specific cyclin partners,

/

Compression pipeline —\

Integer/decimal text Structured binary text
: . Baseb64
Semantic Compression | mmmmp -
- encoaing
(gzip)
Time course Semantic Basebd

(0,0,0,1,2,3,3... (0,3+1+1+1,2...) (eNplm25xvb...)

- J

Figure 5 (From left to right) A flow of integer or decimal numbers is given in input. A stream of textual tuples is generated by a semantic
compressor. Then, it flows in input to a structural compressor based on the gzip algorithm which further compresses and transforms the textual
stream into a binary one. It is finally encoded into a printable Base64 stream of characters to be recorded into a XML file.
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CDKs promote cellular progression along the cellular
life-cycle. The latter model reproduces periodic critical
triggering signals in charge to control the cellular size
during the cell cycle. Merged together, they give raise to
a very interesting model [60].

By applying the Kamada-Kawai layout algorithm (cf.
Sec. 2.2 and see fig. 6), the modular feature of this net-
work looks very evident. A fair chunk of it shows the
cell cycle part (on the left side). The other accounts for
the circadian clock part. Both are not explicitly linked,
but they are dependent because of the influencing activ-
ity of the S_TF clock component on S_Weel. The used
layout algorithm manages to catch this aspect. Once
drawn the network, we estimate the importance of the
nodes by running a degree ranker. As a result, it changes
the nodes color tonalities as follows: the lower the nodes
hue, the lower their importance within the network.
Finally, we list all the reactions which S_CP2 (the
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rightmost orange component in the figure) is involved
in. By just a click on it, its neighbor nodes and their
connecting edges get highlighted (i.e. their borders
become thicker) and selected. The selected nodes can be
further analyzed or passed to the statistics panel.

The statistics panel turns on whenever at least one
trace (with chemicals labels matching the network
nodes labels) is imported. We used three different soft-
ware packages to perform multiple simulations of the
model: BWB [19], Cyto-Sim [61] and COPASI [43].

Initially, we import their traces and adopt the time
analyzer. This is usually used whenever the user wants
to count the number of oscillation periods (of the con-
centration or population size) of a species, or to esti-
mate the regularity of the cycles, or to measure the
duration of the time intervals when a species is over/
under a threshold. One can specify an (even complex)
condition to be satisfied by one or more species. For

-
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each species, one can specify the front type (cf. Sec. 2.3)
and the x-axis point where to print the results. Since by
means of the raw data analyzer we have verified in
advance that S_TF oscillates around the value 600, we
are able to quantify the duration of its period by mea-
suring the time intervals between two consecutive values
600 (e.g. ascending fronts). In fig. 7a, the number of
detected periods and their durations are shown in red.
Instead, the duration of any interval between two conse-
cutive ascending and descending fronts is shown in blue
and green. In this case, we measure the time interval
during which S_WEE1 and S_CP are below the specified
threshold.

Another example lies in calculating a particular statis-
tics (e.g. mean and standard deviation) exactly and only
when a condition becomes verified (we make use of the
variance bars to highlight the stochastic difference
among all the simulated traces, see fig. 8). To this aim,
we use the first hitting analyzer and we define a two-
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values condition that imposes that a molecule quantity
(S_CP) is less than another (S_TF). Hence, by applying
the analyzer, one of the mentioned statistics is com-
puted on the selected species whenever the condition
becomes verified (fig. 7b).

3.1 Benchmark tests

We performed some benchmark tests about the Snazer’s
ability to compress input data. We also tested the mem-
ory allocation due to the XML-encapsulation process.
Results are shown in Table 1. We simulated some biolo-
gical models and saved their traces as CSV files. Subse-
quently, we inflated them using our compression
pipeline and saved them in XML format.

The compression routine results to be more effective
the larger the model and the data set. In particular, it
works fine on stochastic and integer traces, essentially
because any sequential and stochastic framework sche-
dules always only one reaction to occur at a time, while
all the others stay unchanged. Thus, since reactions
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occur because of their own propensity functions, some
will fire more frequently than others and, hence, models
with many reactions will generate some frequently chan-
ging traces and some rarely changing traces. Moreover,
the probability for a reaction to stay unchanged gener-
ally increases with the number of the reactions, irrespec-
tive of its propensity function.

The semantic compressor defined in Sec. 2.4 works
fine when reactions do not change frequently, since all
the consecutive stationary values are embodied by just
one persistence value. Moreover, the best case occurs
when traces are made of integer numbers. In that case,
the increment part of the tuple will be always made up
of a few figures (stochastic frameworks based on SSA
deal with molecular reactions which involve few species)
and the resulting compressed string will be the shortest.
Contrarily, traces of decimal numbers would see the

increment value always made of as many figures as the
numbers precision.

Therefore, the resulting compressed string will be
longer than one of the same length, but made of inte-
gers. Generally, we detected a slight increase in terms of
memory usage due to the fixed overhead introduced by
the XML structure. However, the larger the data set, the
more negligible its overhead. This is shown in fig. 9b,
where we depicted the ratio between the (fixed) memory
allocated to perform the boxing process and the physical
input file sizes. The curve goes significantly down with
the increasing of the input file sizes.

Conclusions

We implemented Snazer to help visualize biological net-
works and to handle and store their simulation traces.
In particular, Snazer has been equipped with two main

Table 1
Xml-incapsulation routine benchmarks

Name BWB XML (compression %) Allocated memory
CC(1) 55619 7.974 (85.66%) 398.248
UAT(1) 68.276 20.486 (70.00%) 403.136
CC@) 102.870 19.875 (80.68%) 503.344
UAT(2) 106.271 21.100 (80.15%) 480448
MAPKc 577962 50.618 (91.24%) 1721616
Bycc(1) 909.064 172.266 (81.05%) 2.038.944
Gpc-RS 8.293.036 190.131 (97.71%) 21.790.768
Bycc(2) 130.821.452 3.735.872 (97.14%) 241.635.920
Bycc(3) 136.219.582 3.913.680 (97.13%) 191.823.072
Bycc(4) 148.322.373 4.318.744 (97.09%) 192.881.840

Data set names have been shortened in: CC (Circadian Clock) [59], UAT (Unpacked antagonistic toggle switch in budding yeast cell cycle) [62], MAPKc (MAPK

cascade), Gpc-RS (G-protein-coupled receptor signaling) [63] and Bycc (Budding yeast cell cycle) [64]. Measurements are expressed in KByte. We list the names of
the models in the first column. The second one identifies the traces files size generated by BWB. The third one holds the sizes of the corresponding compressed
XML files (in percentage). The last one lists the quantity of memory allocated (in KBytes) for the compression and conversion routines from BWB to XML formats.
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Figure 9 a) Benchmark tests of Snazer's ability to compress simulated traces (see also Table 1), b) Ratio between the memory
allocated because of the fixed overhead of the internal XML format and the effective size of each model.

categories of tools. The visualization tools are in charge
of drawing graphs according to some well-known as
well as new layout algorithms. The new Circuit layout
has been presented in this context. Furthermore, some
quantitative analyses routines have been implemented to
allow the user to investigate some common traits of the
biological graphs as (e.g.) node centrality and node
importance. On the other hand, Snazer has been sup-
plied with a set of statistics routines with the aim to
analyze the time course files obtained by simulation.
Finally, Snazer relies on a very efficient compression
routine that allows for comfortable storing and sharing
of the simulation results. We plan to extend Snazer with
further capabilities, such as remote database interfacing
for data collection, more sophisticated graph centrality
calculations and analysis routines (e.g. Fast Fourier

Transform). We finally aim at increasing compatibility
with other standard languages (e.g. CellML) and I/O
data formats.

Availability and requirements

Project name: Snazer; Project home page: https://www.
cosbi.eu/index.php/research/prototypes/snazer; Operat-
ing system(s): Platform independent; Programming lan-
guage: Java; Other requirements: Java 1.6 or higher,
libSBML 3.3.1 or higher; Upon acceptance of the CoSBi-
SSLA license, Snazer is freely available for non commer-
cial purposes.

Additional file 1: Snazer XML schema. The XSD file and two
explicative JPG and HTML files. (snazer.zip)
Click here for file
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[ http://www.biomedcentral.com/content/supplementary/1752-0509-4-1-
S1zip]

Additional file 2: Example models. Some example models. (examples.
zip)

Click here for file

[ http//www.biomedcentral.com/content/supplementary/1752-0509-4-1-
S2zip]
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