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Regulatory network modelling of iron acquisition
by a fungal pathogen in contact with epithelial
cells
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Abstract

Background: Reverse engineering of gene regulatory networks can be used to predict regulatory interactions of
an organism faced with environmental changes, but can prove problematic, especially when focusing on
complicated multi-factorial processes. Candida albicans is a major human fungal pathogen. During the infection
process, this fungus is able to adapt to conditions of very low iron availability. Such adaptation is an important
virulence attribute of virtually all pathogenic microbes. Understanding the regulation of iron acquisition genes will
extend our knowledge of the complex regulatory changes during the infection process and might identify new
potential drug targets. Thus, there is a need for efficient modelling approaches predicting key regulatory events of
iron acquisition genes during the infection process.

Results: This study deals with the regulation of C. albicans iron uptake genes during adhesion to and invasion into
human oral epithelial cells. A reverse engineering strategy is presented, which is able to infer regulatory networks
on the basis of gene expression data, making use of relevant selection criteria such as sparseness and robustness.
An exhaustive use of available knowledge from different data sources improved the network prediction. The
predicted regulatory network proposes a number of new target genes for the transcriptional regulators Rim101,
Hap3, Sef1 and Tup1. Furthermore, the molecular mode of action for Tup1 is clarified. Finally, regulatory
interactions between the transcription factors themselves are proposed. This study presents a model describing
how C. albicans may regulate iron acquisition during contact with and invasion of human oral epithelial cells. There
is evidence that some of the proposed regulatory interactions might also occur during oral infection.

Conclusions: This study focuses on a typical problem in Systems Biology where an interesting biological
phenomenon is studied using a small number of available experimental data points. To overcome this limitation, a
special modelling strategy was used which identifies sparse and robust networks. The data is augmented by an
exhaustive search for additional data sources, helping to make proposals on regulatory interactions and to guide
the modelling approach. The proposed modelling strategy is capable of finding known regulatory interactions and
predicts a number of yet unknown biologically relevant regulatory interactions.

Background
One task in Systems Biology is to infer and model gene
regulatory networks. The ultimate aim is to identify the
underlying regulatory events of a system as a response
to external stimuli. Thus, the regulators, their target
genes and the mode of interaction need to be

determined. Network inference reverse engineers regula-
tory networks with the help of high-throughput data
and has been successfully applied in a number of studies
ranging from immune diseases [1,2], full genomic mod-
els of Escherichia coli [3] and Saccharomyces cerevisiae
[4,5] to models of pathogenic fungi [6]. Various
approaches have been proposed for this task such as
Bayesian Networks [7-9], models based on information
theory [3,10,11], regression based models [1,5,12], and
differential equation models [2,6,13-15]. It has been
shown that the integration of different data sources
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improves the result of the inference approach
[1,9,16,17]. Thus, several tools exploit different kinds of
data within their reverse engineering algorithm
[1,6,9,18]. Few regulatory models for the infection pro-
cess of human pathogenic bacteria have been suggested
[19-22], while there exists only one model dealing with
a human pathogenic fungus [6]. Modelling gene regula-
tory networks of pathogenic fungi is hampered by the
small number of annotated gene functions, the small
number of known gene regulatory interactions and the
fact that many transcription profiles focus on compli-
cated infection processes. In contrast to defined labora-
tory conditions, multiple environmental parameters (e.g.
pH, temperature, nutrients, CO2filevels) change during
infection. Each parameter leads to changes in the gene
expression profiles, making it difficult to conclude
which environmental change leads to which effect.
Furthermore, superposed and secondary effects are
likely. In this paper we will focus on one specific aspect
during the infection process and propose the first com-
putational model of the regulation of iron acquisition
when C. albicans is in contact with and invades into
oral epithelial cells.
C. albicans is a harmless commensal yeast living in

many warm blooded animals [23]. However, the fungus
can change its behaviour to an aggressive pathogen
within immunocompromised patients or in individuals
with disrupted homeostasis of the host microbial flora
[24]. Commonly, patients suffer from superficial mucu-
sal infections, but the fungus is also able to enter the
bloodstream and to cause systemic infections with high
mortality rates [25]. The number of infections has dra-
matically increased within the last decades, mainly
because of a growing number of susceptible individuals
(AIDS, organ transplantation, major surgery and che-
motherapy patients) [26,27]. Strikingly, C. albicans is
able to adapt to a wide range of environmental changes
such as pH, nutrient shift and temperature, and can
infect virtually every human organ [25]. During infec-
tion, the fungus is able to reversibly change its growth
form from an ovoid yeast growth form to elongated
pseudohyphal and hyphal growth forms. This so called
yeast-hypha transition has been shown to be an impor-
tant virulence trait because hyphae are able to actively
penetrate and destroy tissue [24]. Adherence, invasion
and destruction of different human tissue are important
virulence attributes of C. albicans. Other important
virulence factors are genes involved in the interaction
with cells of the immune system as well as genes
involved in nutrient acquisition, stress response, and
interaction with other host cells [24,28,29].
Iron is an essential mineral required as a cofactor for

several proteins, as well as for a number of biochemical
processes. However, within the human host, iron is

bound to storage proteins such as haemoglobin, ferritin,
transferrin, and lactoferrin. Consequently, there is
almost no free iron available [30]. Thus, the acquisition
of this mineral is an important virulence attribute of
most pathogens. The importance of an effective and
robust iron uptake system in C. albicans is indicated by
three facts: First, the C. albicans genome contains more
iron acquisition genes than that of the non-pathogenic
yeast Saccharomyces cerevisiae. Second, colonization, as
well as proliferation, are only possible if sufficient
amounts of this mineral are accessible [31]. Third,
mutations of certain genes involved in iron uptake
increase the sensitivity of the pathogen to antifungal
drugs [32,33] or reduce the virulence of the pathogen
[34].
C. albicans exhibits at least three different iron uptake

systems reflecting the possibility of acquiring iron under
very different environmental conditions (reviewed in
[31,35]). One possible iron source are siderophores,
small iron chelating compounds with a high affinity for
the mineral, secreted by microorganisms. Even though
there seem to be no genes coding for siderophore bio-
synthesis factors [36], C. albicans is able to use sidero-
phores produced by other microorganisms. One
transporter of ferrichrome siderophore uptake has been
identified [37,38]. Haemoglobin can also be exploited as
an iron source [39]. Both, a haemoglobin-receptor gene
family and a gene coding for a heme-oxygenase have
been identified [40,41]. To utilize iron from transferrin,
ferritin or the environment, C. albicans uses a high affi-
nity reductive pathway consisting of three steps. In the
first step insoluble extracellular ferric iron (Fe2+) is
reduced to its soluble ferrous form (Fe3+). The C. albi-
cans genome codes for 17 putative ferric reductases,
which are able to facilitate this reduction [35]. In the
second step, toxic ferrous iron is oxidised to ferric iron
via five potential multicopper oxidases. In the last step,
iron permeases form a complex with the multicopper
oxidases and transport ferric iron into the cell. Four
putative permease genes exist in the C. albicans genome
[35]. Given the fact that the fungal genome codes for a
set of similar proteins which are putatively able to per-
form each single step of iron uptake, it is of high inter-
est to study which proteins are used during invasion of
epithelial cells at which time.
In vitro studies have identified a number of genes and

regulators involved in the response of C. albicans to
limited iron [36]. Rim101 is a transcription factor
involved in alkaline pH response [42,43]. However, tran-
script profiling of RIM101 knockout mutants also
revealed a number of differentially expressed iron acqui-
sition genes [44]. Furthermore, the ferric reductase
genes FRP1 and FRE2 are directly regulated by interac-
tion with Rim101 [45,46]. Tup1 is a general
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transcriptional co-repressor which is involved in the reg-
ulation of reductive iron uptake [47]. Several iron trans-
port genes were differentially expressed upon deletion of
TUP1 [48]. However, Tup1 may not bind directly to
DNA and its mode of interaction remains unclear. Pelle-
tier and co-workers identified Sfu1 as a suppressor of
iron uptake which is able to specifically bind to DNA
[49]. Furthermore, they show direct interaction of S.
pombe Tup1 and C. albicans Sfu1fileading to the
hypothesis that Sfu1 is the DNA binding protein which
recruits the general co-repressor Tup1 to the promoters
of iron acquisition genes (as shown in Schizosaccharo-
myces pombe [50]). This idea is further referred to as
the “Sfu1-Tup1 hypothesis”. In a phenotype study of all
transcription factors of C. albicans , the regulator Sef1
was shown to be involved in controlling the expression
of iron acquisition genes [51]. However, the molecular
action of Sef1 still remains unclear. Baek et al. demon-
strated that CBF transcription factors are involved in
chelator mediated induction of FRP1 expression via spe-
cific DNA binding [46]. Although there exists some
knowledge about the regulation of iron acquisition
genes in vitro, almost nothing is known about their reg-
ulation when C. albicans is adhering to and penetrating
into epithelial cells.
In this study we propose the first computational

model of the regulation of iron acquisition genes in C.
albicans using high-throughput gene expression time
series data during contact with and invasion into human
oral epithelial cells [52]. Our modelling approach is
based on linear differential equations and utilizes selec-
tion criteria such as sparseness and robustness [53]. The
integration of different data sources has been shown to
improve the reverse engineering approach [1,9,54].
Hence, our model softly integrates three kinds of prior
knowledge: Transcription factor binding sites [46,49,55],
in vitro expression data under limited iron [36], as well
as analysis of transcription factor knockout mutants
[46-49]. The final model consists of a number of gene
regulatory relationships. Some of them are validated by
literature, while others reveal yet unknown biological
relevant interactions.

Results and Discussion
Differentially expressed genes during contact to and
invasion of oral epithelium
With the aim of modelling, candidate genes were filtered
from the set of differentially expressed and by using over-
represented GO categories. Data preprocessing identified
1382 genes which were differentially expressed during
experimental RHE infection at at least one point in time
using an adjusted p-value cut-off of 0.05. Gene ontology
(GO) processes enrichment analysis was used in order to
identify key biological processes most significantly

enriched with differentially expressed genes during
adherence to and invasion into human epithelial cells
(see additional file 1). Examples for significantly enriched
categories are “pathogenesis”, “fungal-type spore wall
assembly”, “adhesion to host”. This shows that the defini-
tion of differentially expressed genes is capable of identi-
fying biologically relevant genes, i.e. genes involved in
processes relevant to virulence. The GO category “iron
ion transport” was most significantly enriched with genes
differentially expressed during experimental RHE infec-
tion. Fifteen out of 29 genes annotated to this process
were differentially expressed. Even though most GO cate-
gory annotations are based on sequence similarity to the
distantly related baker’s yeast S. cerevisiae, this high num-
ber of differentially expressed iron acquisition genes sug-
gested that this process is important during interaction
with human oral epithelium.
The C. albicans genome codes for at least 17 putative

ferric reductases able to perform the first step of iron
uptake via the high affinity reductive pathway. The func-
tional annotations for only three of these corresponding
genes have been experimentally validated: CFL1, FRE10,
FRP1 [45,56,57]. During experimental RHE infection
nine genes putatively coding for ferric reductases were
differentially expressed. The dynamics of expression
levels of these genes varies significantly, suggesting that
the fungus uses different specific reductases under dif-
ferent conditions (see Figure 1 Part (a)). The functional
annotation of these nine proteins is based on sequence
similarity to S. cerevisiae. This study supposes for the
first time that those genes are used by C. albicans dur-
ing interaction with epithelial cells.
Of five genes potentially coding for ferric oxidases,

two were differentially expressed during experimental
RHE infection: FET33 and FET34, which were also up-
regulated under in vitro limited iron conditions [36].
The dynamics of expression levels of the two genes
were similar, although FET34 was slightly higher
expressed (Figure 1 Part (b)).
FTH1, a gene coding for a ferric permease, is up-regu-

lated early during the first hour of experimental RHE
infection (Figure 1 Part (b)).
There are three further differentially expressed genes

annotated to the GO category “iron transport": The first,
orf19.2178, codes for an ortholog of Mrs4 in S. cerevi-
siae. Interestingly, this protein is directly involved in
mitochondrial iron uptake under conditions when this
mineral is limited [58]. The second, orf19.6811, codes
for a protein which is similar to Ise2, a member of the
Fe/S cluster biosynthesis machinery of the mitochondrial
matrix in baker’s yeast [59]. The third gene, CCC1,
codes for a putative Fe2+/Mn2+ transporter which med-
iates vascular iron storage and is thus important to con-
trol the cytosolic iron level [60].
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During the adherence to and penetration into epithe-
lial cells, the fungus is faced with a number of environ-
mental changes. To adapt to new environments, C.
albicans dramatically alters its regulatory program. This
is demonstrated by a total number of 67 differentially
expressed genes annotated to the GO category “tran-
scription regulator activity”. A number of regulators
have been identified to control the expression of iron
acquisition genes (see Background). The genes RIM101,
HAP3, SEF1 and TUP1, coding for transcriptional regu-
lators, are differentially expressed during experimental
RHE infection (figure 1 Part (c)) and thus used as candi-
date genes within the modelling approach. Another reg-
ulator which has been shown to be involved in
suppressing iron transport genes is Sfu1 [49]. However,
SFU1 it is not differentially expressed during experimen-
tal RHE infection. Possible explanations for this fact
might be that the gene is transiently expressed, or the

transcription factor activity might be regulated at the
protein level. This study tests the “Sfu1 - Tup1 hypoth-
esis” (see Background, Methods). This means that the
molecular mode of Sfu1 is indirectly modelled (hidden
in the edges starting from Tup1).

Time course of iron limitation
The used tool for regulatory network inference is based
on differential equations and models the expression of a
gene at a specific timepoint as the weighted sum of the
expression of all other genes and an external stimulus
(perturbation function see Methods). In this study the
perturbation function models the decreasing amount of
iron the fungus is faced with during experimental infec-
tion. As it is unknown how the availability of iron for
C. albicans changes over time during the experimental
RHE infection, different types of perturbation profiles
describing the iron availability were tested. A decreasing

Figure 1 Measured, interpolated and simulated expression time courses. The figure shows gene expression time courses of iron acquisition
genes and their regulators. Dots, measured values; dashed lines, interpolated time courses; solid lines, time courses simulated by the inferred
regulatory model. (a) Nine reductase genes; (b) oxidase genes, permease genes and genes coding for inner membrane transporters; (c) genes
coding for regulators.
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amount of the mineral was used as the environmental
stimulus of the network model, reflected by the pertur-
bation function u(t) (see Methods). Network models
were predicted for fourteen different types of perturba-
tion functions and the model-error, as well as the data-
error were compared (see additional file 2). Best results
were achieved with an exponential decrease of iron dur-
ing experimental RHE infection. Furthermore, there was
a slight decrease of the data-error if the early availability
of iron was modelled with a decrease after a certain
delay. Optimal values were achieved by using a constant
iron concentration until 60 minutes followed by an
exponential decrease of iron (see Figure 2). The model-
error is also minimal for this perturbation function,
which therefore was used in the final model. The data-
error and the model-error increase again when using a
90 minutes delay. It seems that C. albicans is not
exposed to higher levels of iron within 24 hours post
infection, since a perturbation function with a growing
amount of iron generates a higher data and model
error.

Regulatory network of iron acquisition genes
A regulatory network model was inferred which is based
on differential equations and an exhaustive list of prior
knowledge based on other data than time series gene
expression data (see Methods). Figure 3 presents this
regulatory network model (see also additional file 3).
The model consists of fifteen differentially expressed

iron acquisition genes and four differentially expressed
regulators. The modelling approach found a sparse net-
work with 63 edges. The differential equation model is
still able to give a good fit to the measured time series
data (see Figure 1). The initial model fits to the time
series data with a data-error of 0.105 and to the prior
knowledge with a model-error of 0.330. To indicate
which edges of this model are robust to random fluctua-
tions, the time series data were perturbed and the mod-
elling approach was iterated 1000 times (see Methods).
Perturbing the time series data causes only a small
change of the quality of the inferred networks, which is
quantified by a mean data-error of 0.237 with a variance
of 0.007. Regulatory interactions which are robust
against perturbing the time series data are also robust
against changing parts of the prior knowledge. Thus, the
cross-validation of the prior knowledge (see Methods)
resulted in four interactions which were found more
than 50% in the random perturbed models but less than
50% in the cross-validation models. Six interactions not
predicted by the initial model were predicted more than
50% in all models predicted by the cross-validation of
prior knowledge and perturbation of time series. When
increasing the cut-off, which defines an edge to be
stable, the number of inferred edges decreases in a
nearly linear way (data not shown). The most stable
edges are those with the highest score in the prior
knowledge. Furthermore, regulatory influences from the
perturbation proove that they are very stable.

Figure 2 Perturbation function. The figure visualises the perturbation function used to model the limitation of iron during the infection
process. After a delay of 60 minutes the iron avaibility is modelled by an exponential loss.
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The proposed modelling approach is capable of iden-
tifying biological meaningful interactions, which is
illustrated by the rediscovery of already known tran-
scription factor target genes. For example, the inferred
regulation of CFL2 by Rim101 and FRE10 by Tup1 has
been shown with the help of in vitro EMSA and North-
ern Blots [46,47]. Furthermore, the model provides the
first evidence that these interactions take place during
experimental RHE infection.
A number of further interactions predicted by the

prior knowledge are found in the final model. There are
twelve interactions in the model which were predicted
by in vitro expression studies (source 2). This study
adds first evidence of these regulatory interactions tak-
ing place when C. albicans adheres to and invades into
epithelial cells. A total of 22 interactions predicted by
the occurrence of TFBS (source 3) can be found in the
model. Seven of these 22 putative interactions are addi-
tionally predicted by source 2 or source 1 while 15 are
exclusively predicted by source 3. Since there is no for-
mer evidence in the literature, this is the first time that
these genes are predicted to be target genes of the
respective transcription factors (see also table 1).
The inferred network model shows a hub like struc-

ture. Given a number of potential transcription factor -
target gene interactions proposed by the prior

knowledge, those interactions are preferred in the final
model. Hap3 regulates eleven target genes, Tup1 eight
and Rim101 regulates seven genes. This study gives the
first proposal of a target gene for the transcriptional reg-
ulator Sef1: FRE7 (orf19.7077). In most cases there are
two evidences for these regulations to happen during the
infection process. For example, the regulation of FTH1 by
Rim101 is supported by the gene expression time series
during RHE infection and the occurrence of the Rim101
binding site in the upstream region of FTH1. In these
cases the presented model predicts direct physical tran-
scription factor - target gene interaction. Even though they
have a small score in the prior knowledge (source 3), regu-
latory interactions of Hap3 prove very stable against ran-
dom perturbation of the time series data and cross-
validation of prior knowledge. In a network inferred with-
out any prior knowledge, five interactions of Hap3 are
consistent with those proposed in the final model. All pro-
posed target genes of Tup1, but not SEF1, have the Sfu1
binding site in their upstream region. This adds further
evidence to the “Sfu1-Tup1 hypothesis”.
The model also provides suggestions of how the tran-

scriptional regulators may be regulated. In most cases
an influence by the external stimulus (i.e. limited iron) is
predicted, which might indicate regulations at protein
level. However, Hap3 might be involved in the

Figure 3 Inferred regulatory network model. The inferred regulatory network model. Arrow, activating interaction; bar, repressing interaction.
Green edge, consistent with prior knowledge; blue edge, newly predicted edge. Edges resampled less than 50% times are neglected.
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transcriptional activation of RIM101, predicted by the
occurrence of the Hap3 binding site in the Rim101 pro-
moter and the time courses of both genes. Furthermore,
Hap3 and Rim101 seem to inhibit the expression of the
gene coding for the general repressor Tup1. In this way
Hap3 and Rim101 have an additional indirect positive
influence on the transcriptional rate of iron acquisition
genes by inhibiting their repressor. It is known that the
repression of hub-like nodes increase the stability of a
system [61]. Table 1 summarises all predicted and
inferred target genes of the transcriptional regulators in
this study.
Even though transcriptional regulator - target gene

interactions are preferred by using the prior knowledge,
the model also predicts indirect regulatory influences of
one gene to another. For example, the gene coding
for the putative mitochondrial transporter Mrs4
(orf19.2178) has a negative influence on the gene coding
for the reductase FRE4 (orf19.1844). This might happen
in cases where sufficient amount of iron is available and
the fungus pumps it into the mitochondria.
There are 16 edges predicted by the prior knowledge

which contradict the time series expression data or are
not found to be robust and are thus not present in the
proposed model. For example the regulation of FRE7
(orf19.1270) by Rim101 was predicted under in vitro
alkaline conditions but does not seem to occur during
experimental RHE infection. Furthermore, the modelling
approach identified a number of 31 regulatory events
which are not present in the prior knowledge. These are
16 self degradations, eight influences from the external
stimulus, and seven gene- gene influences.
The proposed regulatory network model consists of 19

differentially expressed genes during experimental oral
infection, which were chosen because they are involved
in the important process of iron acquisition. However,
there is a number of 1363 remaining differentially
expressed genes which are not covered by the model.
With the help of fuzzy c-means clustering all differen-
tially expressed genes were grouped into six significant

time profiles (see Methods). Each cluster profile is char-
acterised by having an extremum at one of the mea-
sured time points (additional file 4). For each profile,
one of the genes of the proposed regulatory model can
be considered as a profile-representative. In this way
regulatory influences inferred by our model can be
transferred to other pairs of genes within the respective
profiles. The profiles contain a number of genes with
so far unknown function. With the knowledge of
co-expression patterns and the proposed regulatory
influences in our model it is possible to infer putative
functions for these genes.
This study used expression time series data from an

experimental RHE infection. This experimental infection
covers some important aspects of the oral infection pro-
cess, such as the adherence to epithelial tissue, the
yeast-hypha transition, tissue penetration, pH shift and
limited iron. On the other hand, further important
aspects are missing, such as the interaction with
immune system cells and other microorganisms. The
proposed modeling approach focuses on the regulation
of iron acquisition genes. Some of the proposed regula-
tory interactions might also happen during oral infec-
tion. The model proposes for the first time that Rim101
directly activates FTH1 and FRE4 (orf19.1844) and indir-
ectly activates CFL2 and CFL5 via repressing the gene
coding for their repressor Tup1. These predictions are
supported by the occurrence of the respective TFBS in
the upstream regulatory regions and the time series
data. Those four genes and RIM101 are also up-regu-
lated at least two-fold in an expression data set of
patients suffering from oral candidiasis [52]. This
implies that those regulatory interactions might also
happen during real oral infections.
During experimental RHE infection, C. albicans is

faced with a rapidly changing environment. The final
gene expression pattern results from all these changing
environmental parameters. A perturbation function was
used, which models the limitation of iron. However, it
remains unclear if the final gene regulatory interactions

Table 1 Transcriptional regulators and their predicted target genes

Regulator
source

Prior 1/2/
3

found from prior 1/
2/3

newly predicted target genes

Hap3 0/0/15 0/0/10 CFL11, FTH1, SEF1, TUP1, HAP3, FRE7 (orf19.7077), FET33 FRE4 (orf19.1844), FET34, FRE6
(orf19.6138), RIM101

Rim101 2/4/7 2/1/6 FRE4 (orf19.1844), MRS4 (orf19.2178) TUP1, FTH1

Tup1 1/7/14 1/6/5 FRE3 (orf19.1270),TUP1,

Sef1 0/0/0 0/0/0 FRE7 (orf19.7077)

For each regulator the number of compiled prior knowledge edges, the number of inferred edges consistent with this prior knowledge, and newly predicted
target genes are shown. For description of the three prior knowledge sources see Methods. A target gene is scored as “newly predicted” if it was predicted by
the time series data without prior knowledge, or if it was predicted by prior knowledge based on the occurrence of TFBS (source 3) and was found to be
consistent with the time series data. Newly predicted target genes are ordered in respect to the stability of the regulatory interaction (number of re-sampling
during random perturbation of time series data and cross-validation of prior knowledge).
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are a result of iron limitation or other changing environ-
mental parameters. For instance, the transcription factor
Rim101 is also involved in alkaline pH response, i.e. an
environmental factor which also changes during the
infection process. In a follow-up experiment the expres-
sion profile of C. albicans in rich medium could be
compared to the expression profile in a medium without
iron. By performing in vitro iron limitation time series
expression experiments the data could be used to clarify
which of the proposed regulatory interactions in this
study are only due to limited iron. These interactions
could then be validated in further experiments. The pro-
posed model here consists of a number of influences
from the external perturbation whose molecular action
remains unclear. With the help of in vitro iron limita-
tion expression data it may be possible to identify so far
unknown regulators whose role in iron acquisition as
well as for virulence may be studied in the future.
Together with the proposed regulatory model in this
study, which focuses on an infection condition, novel
virulence factors may be identified.
A well known problem when using differential equation

models with a high number of parameters is over-fitting.
Equation 1 consists of a large number of parameters while
there are only five measured points in time. A model
which uses all parameters would clearly over-fit the mea-
sured data. To overcome this problem the proposed mod-
elling approach minimises the number of non-zero
parameters by using a search strategy. Furthermore, the
soft integration of prior knowledge guides the inference
approach to a knowledge-driven solution. Finally, by dis-
turbing the time series data and repeating the inference
approach, parameters which are robustly unequal to zero
were identified. Another way of coping with over-fitting is
cross-validation (e.g. leave one out). This strategy was not
used in this study because skipping parts of the rare mea-
sured data would disrupt the ratio between parameters
and data points even further. Another general limitation is
that differential equation models assume the system to be
in a steady state before the experiment. Since C. albicans
was grown on rich media before the actual experiment
was performed this assumption is valid here.

Conclusions
This study focuses on a typical problem in Systems Biol-
ogy where an interesting biological phenomenon is stu-
died by a small number of experimentally available data
points. To overcome this limitation a special modelling
strategy is applied: First of all, the modelling approach
searches for the most important features, variables and
structure able to model the measured kinetics. Second,
random perturbation of the input data is used to infer
robust regulatory interactions. Finally, different data
sources other than time series expression data were

used to overcome the data limitation. The present study
uses three heterogeneous data sources to compile an
exhaustive list of prior knowledge which is softly inte-
grated into the modelling approach and thus guides the
network prediction to a knowledge assisted solution.
With the help of this strategy a number of biologically
relevant gene regulatory interactions were predicted,
even in the case of a limited amount of data. The strat-
egy of using prior knowledge to overcome identification
problems arising from a small amount of data could be
used in many Systems Biology application.
This study focused on one particular process of

C. albicans during contact with and invasion into
human oral epithelial cells: the regulation of iron acqui-
sition genes. Initially it proposed fifteen iron acquisition
and four genes coding for regulators which C. albicans
activates during experimental RHE infection. Further-
more, a network model is proposed consisting of 63 reg-
ulatory relationships during experimental RHE infection
process. Some of them have already been found in in
other in vitro studies. This confirmation demonstrates
that the employed inference approach is capable of iden-
tifying biologically relevant interactions. A number of
further yet unknown interactions were predicted. Espe-
cially, a number of further target genes for transcription
factors involved in regulating iron acquisition genes
were predicted. The model predicted four new target
genes of Rim101. Additionally, three potential target
genes predicted by in vitro analysis of knockout mutants
were also regulated by Rim101 during experimental
RHE infection. The first target gene of Sef1 was pred-
cited: FRE7 (orf19.7077). Eleven target genes were newly
predicted to be regulated by Hap3. Further evidence was
found for the supporting the hypothesis that Sfu1 is the
DNA binding protein recruiting Tup1 to the promoters
of iron acquisition genes ("Sfu1 -Tup1 hypothesis”). One
gene was newly predicted to be regulated this way
(FRE3 (orf19.1270)). Five potential target genes of Tup1,
which were already predicted by expression analysis of
knockout mutants, were now predicted to be also regu-
lated during experimental RHE infection by the Sfu1 -
Tup1 complex. Very interestingly, potential regulations
of the transcription factors are proposed. Hap3 is
involved in the regulation of the gene coding for
Rim101 and Tup1. Rim101 and Hap3 repress TUP1
during RHE infection. In this way the two regulators
activate iron acquisition genes also indirectly by repres-
sing their transcriptional repressor. There is evidence
that some of the proposed regulatory interactions might
also happen during oral infection. The gene coding for
Rim101 and three (in)direct target genes (FTH1, FRE4
(orf19.1844), CFL2,) proposed by the model were also
up-regulated within expression data of patients suffering
from oral candidiasis.
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In follow-up experiments it will first be necessary to
determine which of the proposed regulatory interactions
are due to other changing parameters during infection
process than iron limitation. The remaining interactions
could then be experimentally validated. This would lead to
more detailed insights into the mechanisms of how patho-
gens regulate important processes, such as iron acquisi-
tion, during infection processes. These insights could be
transferred to other pathogenic organisms, especially clo-
sely related pathogenic fungi such as C. dubliniensis or
C. tropicalis. Moreover, with the help of clustering results,
it is also possible build hypotheses of regulatory influences
between genes with so far unknown function.

Methods
Data
Zakikhany et al. [52] performed genome wide transcript
profiling of C. albicans during experimental infection of
reconstituted human oral epithelium (RHE). Gene
expression was monitored at five points in time (1 h, 3
h, 6 h, 12 h, 24 h post infection) with two to four biolo-
gical replicates. Each array contained two replicated
spots for each gene. The relative mRNA expression of
each point in time was compared to the mRNA expres-
sion of C. albicans grown on YPD (rich) medium
(referred to as common reference). Additionally, Zaki-
khany et al. [52] performed expression studies of
C. albicans cells from eleven patients with oral candidia-
sis. GenePix files and raw imagefiles were downloaded
from http://www.galarfungail.org/data.htm.

Preprocessing and clustering
Data was preprocessed using the Limma package [62] of
the statistical language “R” [63]. Two arrays were removed
from further analysis because of low correlation of repli-
cated spots on these arrays (third replicate after 3 h, fourth
replicate after 24 h). “Lowess” ‘normalisation was used to
correct for spatial effects or cross-hybridisation on each
array. The logarithmic fold-change (logFC) comparing
expression values during infection with the common refer-
ence was calculated. “Quantile” normalisation was used to
ensure that log ratios have the same empirical distribution
across arrays which facilitates between array comparisons.
Empirical Bayes statistics [64] were applied to scan for sig-
nificantly differentially expressed genes at every point in
time making use of both replicated microarray experi-
ments and intra - array replicated spots [65]. The false dis-
covery rate was controlled with help of the “Benjamini and
Yekutieli” [66] correction method. An adjusted p-value
cutoff of 0.05 was used to define differentially expressed
genes. In case of patients data genes were defined to be
up-regulated if they were at least two-fold higher
expressed than the common reference. Gene expression
profiles of all differentially expressed genes during

experimental oral infection were clustered using fuzzy
c-means clustering [67]. The number of clusters was esti-
mated as previously described [2].

Over-represented Gene Ontology categories
Gene Ontology(GO) [68] category over-representation
was used to identify key biological processes most signif-
icantly enriched with differentially expressed genes dur-
ing experimental RHE infection. GO annotation data
were downloaded from the “Candida Genome Database”
[69]. A well known problem in studying GO category
over-representation is the fact that some general parent
categories are only over-represented because their more
specific children categories are significantly enriched
with differentially expressed genes. To overcome this
limitation we focused on the most specific over-repre-
sented GO categories using the “weight” algorithm of
the package “topGO” [70]. In short, this method uses
weights based on the score of neighbouring nodes in the
GO graph. To decide whether a parent category better
represents the set of differentially expressed genes than
its children categories the enrichment score of the par-
ent category is compared to that of the children cate-
gories in a bottom up manner. If the children have a
higher score their corresponding genes receive a smaller
weight in the parent category. The weights are finally
used in the statistic test. In this study Fisher’s exact test
was applied and a p-value cutoff of 0.05 was used.
Genes annotated to the most significantly enriched GO
process “iron ion transport” were used as candidate
genes for the modelling approach. The list of candidate
genes was augmented by genes encoding for differen-
tially expressed regulators which are known to be
involved in regulating iron acquisition genes: Hap3,
Rim101, Tup1 and Sef1 (see background).

Network prediction
The NetGenerator tool [53] was used to predict gene
regulatory networks. This tool has been successfully
applied to model gene regulatory networks based on
transcript profiling time series data of globally perturbed
organisms [6]. NetGenerator is based on differential
equations and models the expression of gene i(i = 1..n)
at time t as the weighted sum of the expression of all
other genes and an external stimulus (iron limitation) at
time t. Based on the given time series data, the tool cal-
culates the gene regulatory matrix W and the perturba-
tion vector B. The parameter wi, j (component of W)
represents a regulatory interaction between the two
genes i and j while the parameter bi (component of B)
represent an influence from the external stimulus given
by the function u(t) on gene i (see equation 1). Non-
zero parameters define the regulatory network. There-
fore, a positive parameter denotes an activation and a
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negative parameter denotes a repression. Regulatory
interactions inferred by this model do not necessarily
reflect direct physical interactions. In fact, the model
may also infer indirect regulatory influences mediated
by one or several molecular reactions.

x t w x t b u ti i j j i

j

n

( ) ( ) ( ),= +
=

∑
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One key property of gene regulatory networks is
structural sparseness which relates to the fact that there
are less edges in gene regulatory networks than expected
from a random network [71]. The NetGenerator tool is
specifically designed to infer sparse regulatory networks.
This is achieved by separating the optimisation of the
model structure from the optimisation of the para-
meters. Thus, the tool tries to maximise the number of
parameters equal to zero while still being able to fit to
the observed gene expression time courses. The model
structure is identified with the help of a heuristic search
strategy. For each potential model structure non-zero
parameters are optimised by standard mathematical
algorithms subjected to minimise the error function for
each time series given by the quadratic error to the
measured data (see equation 2).
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Searching for an optimal model structure is supported
by the integration of knowledge based on different
sources than gene expression time series. The structure
optimisation procedure is assisted by giving proposals
for the gene regulatory matrix WPrior and for the pertur-
bation vector BPrior. There are four types of proposed
regulatory interactions: (a)ctivation, (r)epression, (i)nter-
action, (n)o interaction. For an (i)nteraction it is not
known whether it is a repressing or an activating regula-
tion. This so called “prior knowledge”

( , { , , , }),w b a r i ni j
Prior

i
Priore is softly integrated into the

modelling approach, i.e. a regulatory interaction given
by the prior knowledge only remains in the final model
if it fits to the observed expression data. The confidence
of each putative interaction given by the prior knowl-
edge is given by the scores bW for the gene to gene
influence and scores bB for the stimulus- gene influence.
The analysis of the time series data and the prior knowl-
edge is performed at the same time in parallel. Mathe-
matically this is modelled by an additional summand in
the error term for each time series (see equation 3). The
first part of this error term is the same as in equation 2
and is used to optimise the model in respect to the

measured time series data. The second part optimises
the model in respect to the given prior knowledge. In
case of differences between the inferred model and the
prior knowledge but a good fit to the time series data
the high model-error can be balanced out by a small
data-error. The global parameter l weights the influence
of the model-error in equation 2.
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Prior knowledge
Several studies demonstrated that integrating several
data sources improves the reverse engineering approach
[1,9,54]. Since different data sources might be contradic-
tory, it is advantageous to softly integrate them during
the modelling procedure [54,72]. It is important to note
that interactions proposed by the prior knowledge alone
might not be sufficient to adapt to the measured time
series data. In this case the inference approach is also
allowed to add further regulatory influences not pro-
posed by the prior knowledge. The proposed inference
approach softly integrates 51 putative gene regulatory
influences extracted from different data sources (see
additional file 5). Three different sources are used to
compile prior knowledge for the prediction of gene reg-
ulatory networks:

Source 1: Analysis of transcriptional regulator
knockout mutants and direct experimental
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verification of physical transcriptional regulator -
target gene interactions (EMSA, RT-PCR, Northern
blot).
Source 2: Gene expression studies under limited
iron conditions and expression analysis of transcrip-
tional regulator knockout mutants.
Source 3: Occurrence of transcription factor binding
sites (TFBS) in the upstream intergenic regions of
iron acquisition genes.

The following information was used to compile prior
knowledge from source 1: Four differentially expressed
transcription factors have been shown to be directly
involved in the regulation of iron acquisition genes via
phenotype analysis of knockout mutants: Rim101
[45,46], Hap3 [46], Tup1 [47,49], and Sef1 [51]. For
these factors, an influence from the external stimulus
(limited iron) is assumed. With the help of electronic
mobility shift assays (EMSA), Beak et al. found that
CFL2 is regulated by Rim101 but not by Hap3 [46].
Furthermore, real time PCR was used to identify the
repression of orf19.7077 (FRE7) by Rim101 [73]. Finally,
the regulation of FRE10 (CFL95) by Tup1 was demon-
strated with the help of Northern blots [47]. Taken
together, three regulator - gene interactions and four sti-
mulus - gene influences were extracted from source 1.
Eleven regulator - gene interactions and five influences

from the external stimulus were predicted with the help
of source 2. Lan et al. compared relative gene expres-
sion of C. albicans under conditions where iron is lim-
ited with conditions where sufficient amount of the
mineral is available [36]. In this study, five genes were
significantly up-regulated under low iron conditions
which are also differentially expressed in the present
study: CFl2, FTH1, FET34, CFL5 and CFL4. For these
genes, a regulator influence by the external stimulus
(limited iron) is assumed. Microarray analysis compared
gene expressions of transcription factor knockout
mutants rim101Δ [44] and tup1Δ [48] to the respective
wild type under various in vitro conditions. A number
of genes are significantly differentially expressed in these
knockout mutants. For those genes a regulation by the
respective transcription factor is assumed as prior
knowledge. Sfu1 is a suppressor of iron uptake which
might recruit Tup1 to its target genes [49]. Since SFU1
is not differentially expressed during contact with oral
epithelial cells (see results), the “Sfu1-Tup1 hypothesis”
was tested by proposing genes which might be regulated
by Sfu1 to be target genes of Tup1. There are five genes
significantly up-regulated in both, a tup1Δ and a sfu1Δ
mutant [36,48] and one which is up-regulated only in a
SFU1 mutant. All six genes were proposed target genes
for Tup1 in source 2.

Transcription factors regulate their target genes by
specific DNA binding. Thus, knowledge of TFBS helps
to identify potential target genes regulated by direct
physical interaction with a transcription factor. Thus,
the occurrence of TFBS in the regulatory regions of iron
acquisition genes was used in data source 3.
TFBS are know for the transcriptional regulators

Rim101, Hap3 and Sfu1. Rim101 binds to the 5’-CCAA-
GAA-3’ of the ferric reductase gene FRP1 [45]. Hap3 is
a member of the CBF transcription factors which speci-
fically bind to 5’-CCAAT-3’ sites of their target genes
[46,74]. Sfu1 binds to the 5’-[A/T]GATAA-3’ of iron
acquisition genes and is believed to be the DNA binding
protein which recruits the general co-repressor Tup1
[49]. Genomic and flanking sequences of the differen-
tially expressed iron acquisition genes during experi-
mental RHE infection were downloaded [69]. The 1000
basepairs upstream (from the start codon) region, which
is not part of the open reading frame of another gene
(intergenic region), was taken into account. Each gene
which has at least one occurrence for the respective
binding site (or its complementary sequence) in its
intergenic upstream region is assumed to be regulated
by the respective transcription factor in the prior knowl-
edge. Genes which have the Sfu1 binding site in their
upstream region are assumed to be regulated by Tup1
in order to test the “Sfu1-Tup1 hypothesis”. Altogether,
36 putative regulatory interactions are predicted from
the data source 3.
Each different data source used as prior knowledge for

the inference procedure does not ultimately prove the
existence of this interaction. In fact, there is different
confidence for the different data sources. The reverse
engineering approach used in this study offers the
opportunity to use a score reflecting this confidence dif-
ferences. Data source 1 has the highest confidence and
thus receives a score of s1(i, j) = 0.5 comprising the
putative regulation of gene/external stimulus i to gene j.
It is important to note that mutants were tested under
different environmental conditions than ex vivo RHE
infection.
For data source 2, a score of s2(i, j) = 0.25 is used. In

addition to different environmental conditions, these
putative regulatory interactions could be based on indir-
ect effects, i.e. an up-regulation of a putative transcrip-
tion factor target gene may not be a direct effect of the
knockout mutant but could be triggered by a signal cas-
cade or pathway.
Given the short length of the known binding sites of

the transcriptional regulators it might happen to find
them in the upstream region by chance. For this reason,
prior knowledge based on the occurrence of specific
transcription factor binding sites in the upstream
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regions of iron acquisition genes (source 3) receives the
smallest score of s3(i, j) = 0.125.
The different data sources can predict the same puta-

tive regulatory interaction. In this case there are several
evidences of this prior knowledge. To consider this fact,
the scoring system is additive with a maximum of 1 (see
equation 4). The global parameter l weights the influ-
ence of the model-error in the error term of the model-
ling approach (see equation 2). The influence of this
global parameter on the quality of the model was stu-
died by sampling l values within [0..1]. Finally, l =
0.125 was chosen, where the unweighted model-error is
minimal and the data-error has an inflection point (see
additional file 6 and additional file 7).

s i j min s i j s i j s i j

s i j si j
W

i j
B

( , ) ( , ( , ) ( , ) ( , ))

( , ), (, ,

= + +

= =

1 1 2 3

  ii, )0
(4)

Where s(i, 0) represents score reflecting the influence
from the external stimulus.
Time course of iron limitation
The perturbation function u(t) (see equation 1)
describes the time course of the external stimulus. In
this study u(t) models the available amount of iron dur-
ing experimental RHE infection. The actual time course
of iron avaibility is not known. Although the modelling
approach is not able to predict the exact change of iron
availability C. albicans is faced with during infection
process, it is able to predict the mode of action for iron
limitation. For example the modelling approach can pre-
dict whether the iron availability decreases linearly or in
an exponential way. Fourteen different perturbation
functions u(t) describing different modes of action for
the iron limitation were used (see Additional file 2).
These functions model the kinetics of iron availability in
different ways; using for example a linear decrease, a
quadratic decrease, an exponential decrease. Further-
more, functions with a decrease starting after a certain
delay were tested. These functions model the fact that
there might still be a certain amount of iron at the
beginning of the experimental infection. Finally, a per-
turbation function with an increasing iron concentration
at later points in time was tested. This function simu-
lates the scenario in which C. albicans gains iron from
the host after some infection time. The model-error and
the data-error were compared for each perturbation
function (see supplementary file 2).
Robustness of predicted regulatory interactions
Another characterisation of gene regulatory networks is
structural robustness [75]. Generally, small changes in
mRNA concentrations do not alter the inferred regula-
tory interactions. For this reason the network inference
approach was augmented by randomly disturbing the

input time series expression profiles. For each time ser-
ies and each point in time, the relative mRNA concen-
trations were changed by adding noise sampled from a
Gaussian distribution with mean 0 and variance 0.05.
This was iterated 1000 times and the number of every
inferred edge was counted. Edges resampled more than
500 times (50%) are interpreted as being stable compris-
ing a robust network.
The proposed inference approach uses an exhaustive

list of prior knowledge. Each predicted gene regulatory
interaction might be simply a result of this prior knowl-
edge. To test whether this is the case a cross-validation
of the prior knowledge was performed. In detail, 10% of
the prior knowledge was randomly skipped and the Net-
Generator tool was applied to the time series data. This
was iterated 1000 times and regulatory interactions were
counted as being robust against changes in the prior
knowledge if they were found more than 500 times
(50%).

Additional material

Additional file 1: Over-represented Gene Ontology categories. List of
over-represented Gene Ontology categories as result from the “weight”
algorithm of the package “top-GO” [70]. Only the p-values of the
“weight” algorithm were taken into account.

Additional file 2: Data-error and Model-error for different
perturbation functions. This table shows information about the
different perturbation functions used in this study: The type of decrease
of iron for each function, as well as a delay of iron depletion and a gain
of iron is described. Data-error and model-error are shown for all
perturbation functions used in this study.

Additional file 3: Regulatory network. This file includes information
about the inferred regulatory network. Numberrand = Number of
networks which have this edge for perturbed time series data.
Numbercrosval = Number of networks which have this edge for cross-
validation of prior knowledge.

Additional file 4: Clustering result. Result of fuzzy c- means clustering.
All differentially expressed genes were grouped into six significant time
profiles characterised by having an extremum at one of the measured
time points (column 3). For each profile, one of the genes of the
proposed regulatory model (first 19 rows) can be considered as a profile-
representative. In this way regulatory influences inferred by our model
can be transferred to other pairs of genes within the respective profiles.

Additional file 5: Prior knowledge. This file includes all information
about prior knowledge used in this study.

Additional file 6: Unweighted Model-error for different values of l.
The influence of this global parameter on the quality of the model was
studied by sampling values within the range of [0,1] in steps of 0.025.
This graph shows the unweighted model-error. The chosen value 0.125 is
indicated in red.

Additional file 7: Data-error for different values of l. The influence of
this global parameter on the quality of the model was studied by
sampling values within the range of [0,1] in steps of 0.025. The chosen
value 0.125 is indicated in red.
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