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Abstract

embryonic development.

development.

Background: Gene regulation is a key factor in gaining a full understanding of molecular biology. Cis-regulatory
modules (CRMs), consisting of multiple transcription factor binding sites, have been confirmed as the main
regulators in gene expression. In recent years, a novel regulator known as microRNA (miRNA) has been found to
play an important role in gene regulation. Meanwhile, transcription factor and microRNA co-regulation has been
widely identified. Thus, the relationships between CRMs and microRNAs have generated interest among biologists.

Results: We constructed new combinatorial regulatory modules based on CRMs and miRNAs. By analyzing their
effect on gene expression profiles, we found that genes targeted by both CRMs and miRNAs express in a
significantly similar way. Furthermore, we constructed a regulatory network composed of CRMs, miRNAs, and their
target genes. Investigating its structure, we found that the feed forward loop is a significant network motif, which
plays an important role in gene regulation. In addition, we further analyzed the effect of miRNAs in embryonic
cells, and we found that mir-154, as well as some other miRNAs, have significant co-regulation effect with CRMs in

Conclusions: Based on the co-regulation of CRMs and miRNAs, we constructed a novel combinatorial regulatory
network which was found to play an important role in gene regulation, particularly during embryonic

Background

Gene regulation is a key factor in gaining a full under-
standing of molecular biology. By studying gene regula-
tion, we uncover the mechanisms underlying gene
expression, and we learn more about such biological
processes as embryonic development and disease
pathogenesis.

Transcription factors (TFs) compose one crucial class
of regulator [1,2]. TFs exercise co-operation in their reg-
ulation by forming cis-regulatory modules (CRMs),
which consist of multiple TF-binding sites. It has been
established that most genes are controlled by CRMs,
and genes targeted by the same CRM have increased
similarity of expression patterns and functions [1,3,4].
As such, CRMs are the most important combinatorial
regulators in gene regulation.
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In the recent years, another class of regulator, micro-
RNAs (miRNA), has also been discovered. MiRNAs are a
novel class of non-coding small RNAs. They bind to the
3’-untranslated region (3’-UTR) of target transcripts and
repress the translation of mRNAs or directly degrade
them to regulate gene expression at the posttranscrip-
tional level [5]. Experimental analysis has established that
miRNAs have considerable effect on embryonic develop-
ment, cell growth, cell death and other biological pro-
cesses [6-13].

The combinatorial regulation of TFs and miRNAs has
been widely identified, and it plays a major role in a variety
of biological processes [6-8,12,14-16]. Because some TFs
regulate the formation of miRNAs and some miRNAs
affect the translation of TFs [8,12], TFs and miRNAs make
up a complex regulatory network. Previous studies have
investigated the structure of this network and have found
that a network motif termed feed-forward loop (FFL) is a
significant factor in stabilizing the gene regulation
mechanism [7,9]. In the context of FFL, TF and miRNA
exert effect on each other during their co-regulation.
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Specifically, FFLs have been found to play important roles
in many biological processes, such as tumor proliferation
and embryo development [12]. Experimental analysis has
detected that E2F1, a well known TF that controls the cell
cycle, interacts with miR-106/93/25, miR-17-92 and miR-
106a-92, while, at the same time, these miRNAs silence
key members of E2F1 target gene. Consequently, this FFL
balances the proliferation process and plays a crucial role
in proliferation [8,17].

Considering the importance of CRMs in gene regula-
tion, we expand previous findings by developing a new
combinatorial regulation paradigm which is formed by
CRMs and miRNAs. We then examined the expression
of genes co-regulated by CRMs and miRNAs. Mean-
while, we constructed and investigated the regulatory
network composed of CRMs and miRNAs to discover
the mechanism underlying their co-regulation and inter-
action. Furthermore, since miRNAs have been found to
play a key role in embryonic development [5,12], we
selected some miRNAs for detailed analysis of their
effect on embryonic development.

Results

We identified CRMs for mouse developmental genes
using a computational method named MOPAT [18],
and we assembled miRNAs and their target genes from
TargetScanMouse [19] (See Methods).

The effect of the combinatorial regulation of CRMs and
microRNAs on gene expressions

We constructed combinatorial regulatory modules for
CRMs and miRNAs. To characterize their co-regulated
genes, we examined the gene co-expression patterns
[2,7,18]. Mouse brain development microarray expres-
sion datasets were used for this analysis.

Previous studies have found that genes targeted by the
same CRM have significantly similar expression patterns
[18,20]. Such similarity is characterized by “coherence”,
which is defined as the mean of the Pearson coefficients
between all gene pairs in the gene set. Here we charac-
terized the CRM and miRNA combinatorial regulatory
gene set in a similar manner.

For every CRM and every miRNA, we constructed a
new gene set consisting of genes co-regulated by the
CRM and the miRNA and termed it as a CRM-miRNA
module. Note that gene sets with less than two genes
were eliminated. For a CRM-miRNA module, we calcu-
lated the Pearson correlations between all gene pairs.
The distribution of the correlations of all CRM-miRNA
modules is displayed in Figure 1. Compared with the
correlations between genes targeted by the same CRM
or miRNA, we found that CRM-miRNA co-regulated
genes have increased similarity of expression patterns
(Figure 1).
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Meanwhile, for each CRM-miRNA module, we took
the mean of the correlations between all gene pairs as
its coherence. Similarly, we obtained the coherences of
all CRMs and miRNAs. To compare their coherences,
we selected the corresponding CRM-miRNA modules
for each CRM and found the mean of their coherence
to be significantly higher than the CRM’s original coher-
ence. The mean coherences and original coherences of
all CRMs are displayed in Figure2A. The comparison
result of miRNA is similar (Figure 2B). In other words,
in both cases, the mean coherences of CRM-miRNA
modules are higher than the original coherence of either
the corresponding CRM or miRNA. To evaluate the sig-
nificance of the coherences, we applied randomization
tests to build the background distributions (See Meth-
ods). Note that for each new module, we built two kinds
of randomization sets, one randomly assigned
CRM-miRNA co-regulated genes from the CRM target
gene set (named as background 1), and the other ran-
domly assigned miRNA target genes and then selects
the co-regulated genes (named as background 2) (See
Methods). These two backgrounds focus on the compar-
ison of CRM-miRNA modules with their corresponding
CRMs and miRNAs, respectively. We applied the same
examinations on the background coherences, and the
mean coherences were shown in Figure 2. The results
demonstrate that the coherences of real CRM-miRNA
modules are higher than the random sets. Meanwhile,
we calculated the p values by repeating the tests 100
times (See Methods), and 123283 (3.05%) CRM-miRNA
modules were found to have significant p values (See
Additional File 1).

The results showed that CRM and miRNA co-
regulated genes have significantly similar expression
patterns. Thus, it follows that CRM-miRNA modules, as
a combinatorial construct, can provide more insight into
gene variation, inspiring us to further investigate the reg-
ulatory network formed by such modules.

Analysis of regulatory network

Based on the above findings, we further investigated the
inherent mechanism underlying CRM-miRNA modules.
Similar to previous studies [7-9], we constructed a gene
regulatory network consisting of CRMs, miRNAs, and
their target genes. Here a CRM was predicted to target
a miRNA if it had binding sites upstream of the pri-
miRNA. Meanwhile, a miRNA was considered to regu-
late a CRM if it targeted at least one TF in the CRM
(See Methods).

We further intensively investigated the structure of the
network. Ten combinatorial regulation patterns have
been discovered (Table 1). We measured their signifi-
cance by constructing 100 random networks and calcu-
lating a Z-score for each pattern (See Methods) [9].
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Figure 1 The comparison of the correlations. The distribution of the correlations of all gene pairs (black dotted line, mean: 0.2896930), gene
pairs targeted by the same CRM (blue dashed line, mean: 0.3984559), gene pairs targeted by the same miRNA (orange dashed line, mean:
0.4927972) and gene pairs targeted by the same CRM-miRNA module (red line, mean: 0.5555378).
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Figure 2 The comparison of the coherences. A): The distribution of the original coherences and mean coherences of all CRMs (blue, mean:
0.3827701 and red, mean: 0.5303067), as well as the coherence of CRM's background (black: 0.2896685) and CRM-miRNA's two backgrounds
(purple, mean: 0.3825744 and orange, mean: 0.4197639). B): The distribution of the original coherences and mean coherences of all miRNAs
(blue, mean: 0.4989906 and red, mean: 0.5589635), as well as the coherence of miRNA’s backgrounds (black: 0.2900599) and CRM-miRNA’s two
backgrounds (purple, mean: 04042625 and orange, mean: 0.4989906).
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Table 1 Ten patterns in the combinatorial regulatory
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The first five rows are the patterns with high Z-scores.
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There are five significant patterns in the regulatory net-
work (Table 1). They show that miRNAs and CRMs tend
to interact during their regulatory process. CRMs control
the regulation of miRNAs (Pattern 3 and Pattern 5), but
miRNAs also affect the regulation of CRMs (Pattern 2).
Meanwhile, CRMs and miRNAs interact in their co-
regulation of target genes (Pattern 1 and Pattern 4). The
last network motifs are typical FFL, which have been
found in a wide variety of biological networks. These net-
work patterns show that genes are generally affected by
multiple direct or indirect regulators, and the presence of
FFL acts to minimize excessive fluctuations in gene
expression, thus contributing to the stability of the whole
biological system and robustness against noise [8,17].

In addition, previous studies have reported that some
miRNAs locate in a gene’s intron [21]. Therefore, we
further examined host genes of miRNAs, and for a
majority of miRNAs, we found that CRMs regulated
both miRNA and host gene (See Methods). This
strongly suggests that a CRM may simultaneously regu-
late a gene and activate a miRNA in its intron. Since
this miRNA regulates its host gene and forms an FFL,
the whole biological process is stabilized.

Such network performances support for our previous
findings of gene co-expression and display the inherent
mechanisms underlying CRM-miRNA combinatorial
regulation.

Examples related to embryonic development

mir-154

We selected some miRNAs for a detailed analysis. Pre-
vious studies demonstrated that mir-154 enriches in
embryonic tissues and is related to embryonic develop-
ment [22]. Therefore, we focused on mir-154 for further
investigation.

The co-regulated gene sets formed by mir-154 and
CRMs have higher coherences (Figure 3A). This finding
demonstrates that genes targeted by CRMs and mir-154
have similar expression patterns, further confirming
that mir-154 plays an important role in embryonic
development.

We then selected the CRM consisting of M00277,
MO00720, M00977 for more intensive examination. Based
on clustering data (the distance between two genes was
defined as one minus their correlation), we found that
genes targeted by mir-154 were apparently classified in
the same subset (Figure 3B, marked in the red frame).
TCf3
There are four core TFs in embryonic cells: Sox2, Tcf3,
Oct4 and Nanog [12]. We further explored their combi-
natorial regulation with miRNAs. Since the results were
similar, we use Tcf3 as our example.
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Figure 3 Analysis of mir-154. A) The distribution of coherences corresponding to CRM (blue dashed line, mean: 0.2896425) and CRM-mir-154
module (red solid line, mean 0.5547383). B) The cluster of the genes regulated by the 15374-th module. Genes targeted by mir-154 were
annotated with “*mir-" before gene names.

We examined gene expressions in mouse embryo cells
before and after Tcf3 depletion [23]. The log ratio of
gene expression after Tcf3 depletion and before treat-
ment was used to measure the expression changing
level, and we modeled this level as a linear combination
of regulatory effects of Tcf3 and miRNAs [16]. A fea-
ture-selection procedure was performed (See Methods),
and we finally selected 88 miRNAs having significant
co-regulatory effect with Tcf3. Nine of them were veri-
fied to be targeted by the CRMs containing Tcf3 by our
previous prediction as well as ChIP-seq analysis [12].
They are mir-7, mir-17, mir-25, mir-33, mir-124, mir-
125, mir-128, mir-143 and mir-135. All these miRNAs
form FFLs with the CRMs containing Tcf3 (as in Pat-
tern 1 and Pattern 4; see Table 1). These findings pro-
vided us with further evidence that miRNA play an
important role in embryonic development.

Discussion and Conclusions
We have developed a new type of combinatorial regula-
tory module, which is formed by CRMs and miRNAs.
Based on our investigation of gene expressions using
this paradigm, we found that genes co-regulated by this
CRM-miRNA module have more similar expression pat-
terns than the genes regulated by either the correspond-
ing CRM or miRNA. It verified that miRNA could
buffering gene expression noise [24].

Further investigation led to the discovery of a gene
regulatory network consisting of several network motifs,
including FFL, which has been found to be essential in a

variety of gene networks. The FFLs of CRMs and miR-
NAs play an important role in many biological pro-
cesses, including embryonic development [8,12]. As a
result of our assessments, we have gained further insight
into the structure of CRM-miRNA combinatorial regula-
tion, as well as the gene regulatory network in which
these elements interact.

Moreover, since miRNAs were previously demon-
strated to affect embryonic development [8,17], we
selected some miRNAs related to embryonic develop-
ment for further analysis. The performance of mir-154
and other miRNAs gave us more insight into the effect
of CRM-miRNA co-regulation on embryonic develop-
ment. Meanwhile, we applied a linear model to charac-
terize in detail the effect of TF and miRNA. It provides
more evidence to show that CRMs and the miRNAs
have co-regulation.

Generally, our study sheds light on the importance of
CRM-miRNA combinatorial regulation, which we
demonstrated to be more powerful than either CRM or
miRNA alone in gene regulation. Furthermore, we
found that CRMs and miRNAs are likely to form FFL
inside their network structure, helping us to gain further
understanding of gene regulation.

Methods

Expression data

We selected seven gene expression datasets from the GEO
database [25]. They are time series datasets in the embryo-
nic development of seven different tissues in mouse,
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including liver development (GSE13149), eye development
(GSE13103), lung development (GSE11539), brain devel-
opment (GSE8091), cardiac development (GSE5671),
testis development (GSE6881) and ovary development
(GSE6882). We directly used their “series matrix” in GEO
to calculate the Pearson correlations between gene pairs.
Note that a gene may have several probesets. For a gene
pair, we took the maximal correlation of their probeset
pairs. Here we concentrated on the brain development
data.

In addition, we extracted experimental gene expres-
sion data of Tcf3 (GSE16375) [23]. These data depict
gene expressions before and after the silence of Tcf3 by
doxycycline treatment. We took the mean expressions
for different replicates.

Assign CRM and microRNA target genes

We used MOPAT[18], a motif pair tree method, to pre-
dict 144490 CRMs, consisting of 494 motifs for 5355
mouse development genes.

MiRNAs and their predicted target genes were
assembled from TargetScanMouse (release 5.1) [19].
Since miRNAs in the same miRNA family are similar in
regulation, all miRNAs were classified into miRNA
families using the annotation in miRBase [26]. In all, we
analyzed 135 miRNA families and 8811 target genes. For
simplicity, we shortened “miRNA family” to “miRNA” in
the article.

All gene symbols were converted to MGI Marker
Accession ID using the MGI database [27].

Evaluation of the significance of coherence

To assign the significance of the CRM-miRNA co-regu-
lated gene set, we performed a randomization test.
For each CRM-miRNA target gene set, we randomly
assigned its co-regulated genes from all CRM target
genes and kept the size of the gene set. Meanwhile, for
the randomization of CRMs and miRNAs, we randomly
assign their target genes from the whole gene set. Note
that for CRM-miRNA module, genes were not picked
up from the whole gene set since we wanted to exclude
the influence of CRM and focus exclusively on the effect
of miRNAs.

We repeated the test five times to form the back-
ground distribution. Moreover, we used 100 tests to cal-
culate the p-value, defined as the proportion of random
sets that had the same, or higher, coherence than the
real set. We have considered multiple testing problems
and have corrected the p values using FDR modification.

Meanwhile, to directly evaluate the effects of miR-
NAs, we generated some artificial miRNAs by ran-
domly assigning their target genes from the target
genes of all miRNAs. Here we kept the distribution
of the miRNAs’ target gene numbers [28]. This
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randomization test was performed five times to form
the background distribution.

Applying these two kinds of randomizations, we could
construct two backgrounds and evaluate the significance
of every CRM-miRNA module.

Construction of the combinatorial regulation network
CRM — miRNA

The pri-miRNAs and their location in the genome were
downloaded from miRBase [26]. Their upstream 5kb
sequences were extracted from Ensembl [29].

We first applied the same approach as MOPAT [18]
to search the TF binding sites in the pri-miRNA’s
upstream region. We extracted the position weight
matrices from TRANSFAC 9.2 [30] and calculated the
log-likelihood ratio scores on every site of the pri-
miRNA upstream sequence. For every motif, the site
with a score larger than the cutoff was predicted to be a
binding site. Here the cutoff was calculated as the
99.99% quartile of a random sequence.

A CRM was predicted to regulate the miRNA if its
containing motifs were all identified to have binding
sites in the pri-miRNA’s upstream sequence and these
binding sites were within 200bp.
miRNA — CRM
All mouse position weight matrixs in TRANSFAC were
mapped to the genes encoding the TFs that bind these
PWMs [8]. A miRNA was predicted to target a CRM if
at least one TF in the CRM had corresponding genes
targeted by the miRNA.

In all, we identified 695432 CRM — miRNA pairs and
5060 miRNA — CRM pairs.

Evaluation of the significance of patterns in the
regulation network

We constructed 100 random networks to measure the
significance of every regulatory pattern by swapping the
edges of the real network randomly. Thus, each random
network had the same number of CRMs, miRNAs and
genes with the actual network. We also kept the same
number of CRM-gene, miRNA-gene and CRM-miRNA
interaction pairs, respectively. For every pattern, a
z-score was calculated as the difference of its actual
occurrence and the average of its random occurrences,
normalized by the standard deviation of the random
occurrences. Patterns with high z-score were supposed
to be enriched in the regulatory network [9].

Host genes

We extracted sixteen miRNAs that have host genes
from miRBase [26]. After overlapping with our mouse
development gene of interest, there remained ten miR-
NAs, while nine of them were targeted by the same
CRMs with its host genes.
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Analysis of the experimental data of Tcf3

The relationship between gene expressions and the reg-
ulatory effects of Tcf3 and miRNAs can be formulated
as a linear model [16]:

1n

8r=Ct aTF,kaF,k + Z amir,,kbmiri,k +error (1)
i=1

gk is the log ratio of expression of the k-th gene after
Tcf3 depletion and before treatment; bzg; and bmm,k
are 1 or O to indicate whether the k-th gene is targeted
by Tcf3 or the i-th miRNA. The parameters a7g; and
Ayir. 1 sShow the regulatory effects of Tcf3 and the i-th
miRNA; in other words, they measure the expression
variation of genes targeted by Tcf3 and the i-th miRNA.

To select miRNAs in this model, we first used an
alternative model, considering Tcf3 and one miRNA at
one time, that is

8r=Ct aTF/kaF/k + amiri,kbmiri,k +error

All miRNAs were fitted to this model, and those with
significant p value were selected to fit the original
model (1). We used a stepwise linear regression of AIC
criteria to select miRNAs. For the selected miRNAs,
their target genes had significantly different expression
levels after Tcf3 depletion, indicating that these miRNAs
have significant interaction with Tcf3.

Additional material

Additional file 1: significant CRM-miRNA pairs and their p values.
This table contains the co-regulated CRM-miRNA pairs with p values less
than 0.05. P values are adjusted by FDR modifications.
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