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Abstract

Background: Evolutionary rates of proteins in a protein-protein interaction network are primarily governed by the
protein connectivity and/or expression level. A recent study revealed the importance of the features of the
interacting protein partners, viz, the coefficient of functionality and clustering coefficient in controlling the protein
evolutionary rates in a protein-protein interaction (PPI) network.

Results: By multivariate regression analysis we found that the three parameters: probability of complex formation,
expression level and degree of a protein independently guide the evolutionary rates of proteins in the PPl network.
The contribution of the complex forming property of a protein and its expression level led to nearly 43% of the
total variation as observed from the first principal component. We also found that for complex forming proteins in
the network, those which have partners sharing the same functional class evolve faster than those having partners

same/different functional classes.

belonging to different functional classes. The proteins in the dense parts of the network evolve faster than their
counterparts which are present in the sparse regions of the network. Taking into account the complex forming
ability, we found that all the complex forming proteins considered in this study evolve slower than the non-
complex forming proteins irrespective of their localization in the network or the affiliation of their partners to

Conclusions: We have shown here that the functionality and clustering coefficient correlated with the degree of
the protein in the protein-protein interaction network. We have identified the significant relationship of the
complex-forming property of proteins and their evolutionary rates even when they are classified according to the
features of their interacting partners. Our study implies that the evolutionarily constrained proteins are actually
members of a larger number of protein complexes and this justifies why they have enhanced expression levels.

Background

The rates of evolution of proteins depend significantly
on the constraints of the protein properties. It has
been reported that proteins with more interactions
evolve slower [1], not only because they are more
important to the organism, but a greater proportion of
the protein is directly involved in the organism’s func-
tion [2]. A study on global centrality (i.e., betweenness)
and protein evolution showed that proteins that are
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more central to the network evolve more slowly
regardless of their essentiality [3]. However, a recent
study showed that protein evolutionary age depends
more on local centrality (i.e., degree) than global cen-
trality [4]. Another important constraint in protein
evolution is the protein expression; highly expressed
proteins are more conserved than others proteins
[5-8]. However, controlling for covariates, Bloom and
Adami showed that spurious correlations could
be abolished in high throughput protein-protein inter-
action studies [9].

Most of the proteins do not carry out their functions
alone, but often form macromolecular complexes to
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play their functional roles [10]. Recent developments in
the analysis of protein complexes suggest that the inter-
nal subunit arrangement in complexes is crucial for
their more detailed functional understanding [11].
Recently, an evolutionary and structural characterization
of mammalian protein complex organization provided
evidence relating natural selection and the organization
of protein complexes [12]. Proteins in the evolutionary
network of yeast can also be constrained due to the
interactions mediated by stable and ordered regions in
the protein [13]. Likewise, another constraint on protein
evolution is its complex forming nature [14,15], proteins
involved in formation of stable complexes have much
more sequence identity with their orthologs than those
involved in the transient interactions [16]. Moreover,
using the protein interaction network, it was proved
that proteins having cohesive partners of PPIs are more
evolutionarily conserved than the other proteins [17].

Recently it was suggested that protein evolutionary
rate is related to the features of interacting partners in
a protein-protein interaction network [18], viz., same
or different functional (SF or DF) proteins - based on
coefficient of functionality and sparse or dense part
(SP or DP) proteins - based on the clustering coeffi-
cient [18].

In our study, we have analyzed the evolutionary dis-
tances in yeast proteins by taking into account the var-
ious evolutionary forces and including the features of
interacting partners in a protein-protein interaction net-
work based on coefficient of functionality and coefficient
of clustering. Our work have emphasized the impor-
tance of protein-complex forming propensity of the
proteins in addition to their connectivity in the protein-
protein interaction network as the key underlying force
guiding their evolutionary rates and necessitating the
increase in expression level for the DF and SP proteins.

Results and Discussion

Protein distance, protein connectivity, expression level
and complex number in the yeast protein-protein
interaction network

We estimated the rates of amino acid substitution
using the amino acid sequences of the orthologous
pairs of S. cerevisiae and S. paradoxus and thereby cal-
culated the protein distances (by Kimura’s method
1983 [19]). A number of parameters like protein
expression level, protein connectivity and complex
forming nature of a protein were previously shown to
affect the rate of protein evolution [20]. However,
there has been no evidence whether the above
mentioned factors independently determine the evolu-
tionary rate of a protein. We first determined the
non-parametric Spearman’s correlation of the above
mentioned three biological factors using the protein
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distance. All the three parameters correlate negatively
with the protein evolutionary rate in CORE and FULL
datasets (Table 1). In order to examine whether all the
three factors independently influence evolutionary rate
we did partial correlation analysis. In partial correla-
tion analysis, we focused on the correlation between
evolutionary rate and one of the aforementioned three
factors, thereby controlling the other two factors. We
observed that all the factors have significant partial
correlation with the protein evolutionary rates
(Table 1). However, in some cases partial correlation
analysis is not reliable to detect the independent influ-
ence of various factors [6,21]. We, therefore, per-
formed multivariate regression analysis [22] on both
the datasets. Multivariate regression analysis has been
employed by Plotkin and Fraser to justify the indepen-
dent contribution of multiple variables in governing
protein evolutionary rates in yeast [23]. Multivariate
regression method enabled us to study the influence of
all potential predictor variables at the same time and
can eliminate step by step those predictors that contri-
bute least to the regression model. Multivariate regres-
sion analysis confirmed that all the aforementationed
three factors independently influence evolutionary rate
of proteins in both the datasets (Table 2).

Principal Component Analysis (PCA) was then used to
assess the contribution of each variable. The dominant
eigen vectors (taken as equal to or greater than 1) that
emerge from this analysis can be interpreted as the
most important contributors guiding protein evolution.
The first principal component accounted for 43% and
44% of the total variance for CORE and FULL dataset
respectively. Its main contribution comes from the com-
plex number (CORE: = 0.77; FULL: ~ 0.78) and expres-
sion level (CORE: ~ 0.75; FULL: ~ 0.71) whereas the
contribution of the degree (CORE: ~ 0.40; FULL: = 0.47)
was low. Moreover, the first principal component gener-
ated by PCA is also significantly negatively correlated
(CORE: Spearman’s p = -0.439, P = 1.00 x 10°% FULL:
Spearman’s p = -0.415, P = 1.00 x 10°°) with protein
distance. Thus, our study puts forward a novel determi-
nant of evolutionary rates for yeast proteins - the com-
plex forming ability of proteins emerged as a significant
contributor of evolutionary rate variation followed by
expression level and protein connectivity.

In the later sections of the paper we deal with the role
of the features of the interacting partners in modulating
the evolutionary rates of proteins in the yeast protein-
protein interaction network since it has recently been
considered as an important force in protein evolution
[18]. However our result from PCA motivates us to re-
examine this result while taking into account the contri-
bution from the additional parameter - complex number
which is untraced so far.
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Table 1 Correlation and partial correlation analysis of four putative determinants of protein distance

Variable Correlation Partial correlation (controlling Partial correlation Partial correlation (controlling
(Spearman’s p) expression level) (controlling degree) complex number)
Expression - 0.582 (1.00 x 10°°) _ - 0271 (405 x 10 - 0245 (239 x 107%)
level
CORE  Degree - 0.166 (1.00 x 10°) -0.148 (1.86 x 1079 _ -0.146 3.73 x 1079
Complex - 0.276 (1.00 x 10°) -0.102 (1.28 x 107) -0.154 (321 x 10 _
number
Expression - 0.548 (1.00 x 10°°) _ - 0275 (405 x 1079 - 0250 (2.39 x 1078)
level
FULL  Degree  -0.199 (1.00 x 10 -0.143 (186 x 107 _ -0.133 373 x 107
Complex - 0.218 (1.00 x 109 - 0091 (128 x 107) -0.140 (3.21 x 1079 _
number

Values in the parenthesis indicate significance level.

Complex forming DF proteins evolve slower than SF
proteins

In general all biological processes require precise organi-
zation of molecules and complexes which are the funda-
mental units of macromolecular organization [24].
Recently it has also been said that the formation of pro-
teins into stable protein complexes plays a fundamental
role in the operation of the cell and the genes coding
for the protein pairs that participate in the same protein
complex are conserved [25]. We scan both our CORE
and FULL datasets to check the ratio of complex-form-
ing to non-complex-forming proteins in each dataset
and we found in CORE dataset the ratio is 0.82 whereas
in FULL dataset the ratio is 0.52 (two sided Fishers
exact test, P = 1.60 x 10*3). From this observation it is
clear that the CORE dataset is biased with a preponder-
ance of complex forming proteins. The emergence of
complex forming proteins as the main contributor of
evolutionary rate variation is again supported by the fact
that the proteins in FULL dataset (3335 proteins are
present in the dataset) evolve faster than the proteins
that are present in CORE dataset (1741 proteins are
present in the dataset) (Mann-Whitney U test, P =
1.50 x 10™).

Previously, Makino and Gojobori (2006) showed DF
proteins evolve slower than the SF proteins in yeast
PPIs network irrespective of connectivity. We also
observed the DF proteins evolve slower than SF proteins
in the CORE dataset, while in the FULL dataset no such
difference was found [Figure 1]. Since CORE dataset

Table 2 Multiple regression analysis between various
factors and evolutionary rate.

Factors P value
CORE FULL
Expression Level 90 x 107 18 x 1078
Connectivity 14 x10° 17 x 10"
Complex Number 10x 10* 29 % 107

contains the larger proportion of complex forming pro-
teins, we reanalyzed our observation by splitting both
our CORE and FULL datasets into two groups, viz.,
complex-forming and non-complex-forming proteins. In
our CORE dataset we found 524 out of 1094 SF proteins
and 259 out of 616 DF proteins and in FULL dataset
687 out of 1516 SF proteins and 427 out of 1528 DF
proteins can act as a subunit of protein complexes. We
did not find any significant difference of evolutionary
rates between SF and DF proteins in the non-complex
group in both the datasets, but complex forming SF pro-
teins evolve faster than the DF proteins in both the
CORE and FULL datasets [Figure 1]. This observation
suggests that the evolutionary rate difference between
SF and DF proteins is primarily attributed to the com-
plex forming proteins present in the PPIs network. Con-
textually, we wanted to explore the relationship between
the complex-forming ability of the DF and SF proteins
with their evolutionary rates. For this, we have counted
the number of complexes for each DF/SF protein in
which it can participate as a subunit and labeled this
number as the complex number for this protein. We
performed Spearman’s rank correlation analysis and
observed that the complex number correlates negatively
with the protein distance (CORE: p = -0.156, P = 1.10 x
107 FULL: p = -0.150, P = 1.00 x 10°) as well as with
the coefficient of functionality (CORE: p = -0.083, P =
2.00 x 10°% FULL: p = -0.171, P = 1.00 x 10°°). Thus,
we infer that the DF proteins are more likely to be part
of protein complexes which might be a decisive factor
in lowering their evolutionary rates.

Highly expressed proteins are known to be more con-
served than proteins expressed at low levels [5,6]. We
obtained comparable results as in the CORE dataset SF
proteins have lower expression levels (Mann-Whitney U
test, P = 4.00 x 107°) than the DF proteins, whereas no
significant differences (Mann-Whitney U test, P = 3.10
X 10’1) ware observed in the FULL dataset, similar to
the trend as observed for evolutionary rate differences
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Figure 1 Evolutionary rates of SF and DF proteins. The figure shows the average values of evolutionary rate of SF and DF proteins in CORE
and FULL datasets; C denotes for CORE, CC denotes for CORE Complex, CN denotes for CORE Non-complex, F denotes for FULL, FC denotes for

(Table 3). Moreover, the complex forming SF proteins
have significantly lower average expression level than
their DF counterparts in both CORE and FULL datasets
which is not observed for the non-complex-forming SF
and DF proteins (Table 3).

The classification of SF and DF proteins was done by
considering the functional class assignment of the pro-
teins and their partners in the PPIs. Interestingly, we
found a negative correlation between functional coeffi-
cient and protein connectivity both in CORE and FULL
datasets (CORE: Spearman’s p = -0.145, P = 1.00 x 10
FULL: Spearman’s p = -0.191, P = 1.00 x 10°°). This
correlation suggests that coefficient of functionality
decreases with increasing connectivity, i.e., the DF pro-
teins should have higher connections than SF proteins.
Accordingly, we observed that DF proteins have higher
connections than SF proteins in both CORE and FULL
datasets (Table 4). Thus the coefficient of functionality
is related to the protein connectivity in the overall PPI
network. The significant positive correlation (CORE:
Spearman’s p = 0.267, P = 1.00 x 10 FULL: Spear-
man’s p = 0.270, P = 1.00 x 10°°) between the complex
number and the expression level for the DF and SF pro-
teins signifies that the evolutionary rate of the DF

Table 3 Expression level of SF and DF proteins in both
CORE and FULL datasets

proteins is more constrained. This is perhaps due to
their greater ability to be a part of protein complexes.
Subsequently the increase in the expression levels for
the DF proteins is possibly due to their participation in
larger number of complexes. This is the interrelation-
ship between the features, viz., the expression level,
complex forming ability and the coefficient of function-
ality, that guided the difference in evolutionary rates of
DF and SF proteins.

Complex forming SP proteins evolve slower than DP
proteins

Clustering coefficient is the network’s small-scale prop-
erty, addressing the influence of a protein’s immediate
neighbors on its conservation rate [17]. It has also been
reported that proteins tightly clustered in a particular
part of the PPI network have more interactions among
themselves than with the proteins in the rest of the net-
work [26]. We calculated the protein distance of yeast
dense part (DP) as well as sparse part (SP) proteins. In
an earlier study, it has been shown that SP proteins
evolve slower than DP proteins [18]. In contrast with
this observation, our result shows no significant differ-
ences between the protein distance of DP and SP

Table 4 Connectivity of SF and DF proteins in both CORE
and FULL datasets

All Complex  Non-complex All Complex  Non-complex
SF 2.040 2582 1541 SF 3520 4645 2486
CORE DF 2976 4176 2,104 CORE DF 4458 5510 3695
Significant level 4.0 x 103 3.0 x 10 98 x 107 Significant level 54 x 10° 20x 102 28x 10"
SF 2024 2377 1732 SF 7.991 11.066 5444
FULL DF 2.866 5368 1.896 FULL DF 8805 14328 6.663
Significant level 3.1 x 10" 1.4 x 10 73 % 10" Significant level 1.7 x 107 44 x 10 31 %107
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Figure 2 Evolutionary rates of SP and DP proteins. The figure shows the average values of evolutionary rate of SP and DP proteins in CORE
and FULL datasets; C denotes for CORE, CC denotes for CORE Complex, CN denotes for CORE Non-complex, F denotes for FULL, FC denotes for

FULL Complex and FN denotes for FULL Non-complex.

proteins in both CORE and FULL datasets [Figure 2].
We also calculated the expression level of the DP and
SP proteins and our result indicated that there are no
significant differences in expression levels between DP
and SP proteins for both the datasets (Table 5). The
clustering coefficients are determined from the degree
distribution of the protein itself in the interaction net-
work (see Methods). We therefore wanted to ascertain
the relationship between the clustering coefficient and
the connectivity of the proteins in the network and
quite predictably there is a positive correlation between
these two parameters (CORE: p = 0.169, P = 1.00 x
10°% FULL: p = 0.445, P = 1.00 x 10°®) for the DP and
SP proteins taken together. This projects the quite
obvious fact that the DP proteins are those with high
clustering coefficients resulting from their higher con-
nectivity in the protein-protein interaction networks and
thus designated to be DP proteins as they are located in
the dense part of the protein interaction networks.

Still, in the previous section we have seen that the
evolutionary rate differences between the SF and DF
proteins can be attributed to their complex-forming
ability. So, we classified the DP and SP proteins into
complex forming and non-complex-forming groups. We
calculated the evolutionary rates of complex forming DP
and SP proteins [Figure 2]. From Figure 2, it is evident

Table 5 Expression level of SP and DP proteins in both
CORE and FULL datasets

that the average value of the protein distance is signifi-
cantly higher in complex forming DP proteins than
complex forming SP proteins in both the CORE and
FULL datasets (Mann-Whitney U test, CORE: P = 7.80
x 107°; FULL: P = 3.90 x 10°). It clearly shows that the
complex forming ability is an important factor for con-
trolling the evolutionary rate for the SP and DP proteins
since for non-complex forming SP and DP proteins, the
protein distances do not differ significantly. The com-
plex forming SP proteins are also highly expressed
and highly connected than their DP counterparts
(Tables 5, 6).

The number of protein complexes a protein partici-
pates in (i.e., complex number) has been calculated for
each DP and SP proteins. The numbers of DP and SP
proteins in the CORE dataset that participate in protein
complex formation are 289 and 316 respectively out of
483 DP and 692 SP proteins. On the other hand in the
FULL dataset 519 DP proteins and 569 SP proteins out
of the 916 DP and 1901 SP proteins respectively act as a
subunit of any protein-complex. In our study, the num-
ber of complexes of which the SP/DP protein is a subu-
nit varies inversely with their evolutionary rate [for
CORE: Spearman’s p (complex number, evolutionary
rate) = -0.169, P = 2.80 x 107 for FULL: Spearman’s p
(complex number, evolutionary rate) = -0.150, P = 1.00

Table 6 Connectivity of SP and DP proteins in both CORE
and FULL datasets

All Complex Non-complex All Complex  Non-complex
SP 2558 3545 1729 SP 5699 7.054 4561
CORE DP 1953 2.280 1466 CORE DP 4487 5035 3670
Significant level 90 x 10" 3.1 x 102 96 x 107 Significant level 66 x 107 3.4 x 107 94 x 10
SP 2587 4578 1736 SP 9011 14107 6.834
FULL DP 1.905 2022 1754 FULL DP 9977 11.166 8423
Significant level 59 x 102 3.1 x 107 16 x 10" Significant level 6.5 x 102° 44 x 10" 55x 1077
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x 10°] emphasizing the influence of complex-forming
ability in the evolution of SP and DP proteins. More-
over, the DP proteins participate in fewer complexes
than the SP proteins as evident from correlation analysis
[for CORE: Spearman’s p (complex number, clustering
coefficient) = -0.214, P = 1.00 x 10°% for FULL Spear-
man’s p (complex number, clustering coefficient) =
-0.119, P = 8.60 x 10™°]. We observed a significant posi-
tive correlation between expression levels and complex
numbers [complex number, expression: CORE = 0.241,
P = 1.00 x 10 FULL = 0.259, P = 1.00 x 107 for the
DP and SP proteins]. Thus, the complex-forming ability
is a significant constraint acting on the SP proteins in
order to lower their evolutionary rate and consequently
augmenting the expression level for themselves in com-
parison to the DP proteins.

Conclusions

Our work summarizes that, the complex-forming prop-
erty of the proteins as a possible significant factor in
modulating the evolutionary rate differences of the SP-
DP and DEF-SF proteins. In order to determine the effec-
tive role of complex-forming ability to control protein
evolutionary rates, we have pooled the SP/DP and SF/
DF proteins and detected that the evolutionary rate is
significantly lower for the complex-forming proteins
than the non-complex-forming proteins. The complex
and non-complex forming proteins also show a signifi-
cant difference in their degree and average expression
level (Table 7) even when the classification is not based
on the features of the interacting partners. In this study,
DF proteins and the SP proteins are observed to have
higher predisposition to be a part of protein complexes
than the SF and the DP proteins respectively. As a sum-
mary of our work, it can be stated that the expression
levels of the DF and SP proteins are significantly higher
than those of the SF and DP proteins in accordance
with their tendency to be part of a greater number of
complexes, based on the correlation analysis [pexpression
level, complex number = 0.267, P = 1.00 x 107 for CORE;
Pexpression level, complex number = 0.245, P = 1.00 x 10»6 for

Table 7 Comparison between complex and non-complex
proteins (taking all the SF, DF, DP and SP proteins)

Protein Expression  Connectivity
Distance Level
Complex 0.057 3.320 4.868
CORE  Non-complex 0.085 1.697 2.793
Significant 1.5 x 1028 26 x 103 1.7 x 103
level
Complex 0.060 3512 12.120
FULL  Non-complex 0.082 1.731 5.981
Significant 1.1 x 103! 1.3x 103  56x 10"

level
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FULL datasets] considering all the complex forming
proteins irrespective of coefficient of functionality or
clustering coefficient. Our study articulates the possible
role of the propensity of protein complex formation in
differentiating the evolutionary rates of DF-SF and SP-
DP proteins and provides reasons for their resultant dif-
ference in expression level.

Methods

Protein-protein interactions

We downloaded the protein-protein interaction data
from DIPs (Database of Interacting Proteins, http://dip.
doe-mbi.ucla.edu/. In this database the protein-protein
interactions were documented experimentally by gen-
ome wide two-hybrid screen, immunoprecipitation, affi-
nity binding and antibody blockage. Each binary
interaction was derived from the published source of
experimental data [27]. We used the CORE as well as
FULL protein-protein interaction dataset of S. cerevisiae
(baker’s yeast) (Scere20080708CR; Scere20080708) from
DIPs. In the CORE dataset the PPIs identified by high-
throughput methods and small-scale experiments, thus
the data in the CORE is highly reliable [28]. We found
4526 pair wise protein-protein interaction information
in CORE dataset and 17545 PPI interaction in FULL
dataset, from where we took only those interactions in
which both pair is from S. cerevisiae and this resulted in
a total of 4259 protein interactions in the CORE dataset
and 17199 interactions in the FULL dataset. Each pro-
tein in the datasets had three IDs, viz., DIP, RefSeq and
UniProtKB. We took UniProtKB IDs and excluded the
self protein-protein interaction data for simplicity. At
the end we finally had 2351 proteins in CORE and 4917
proteins in FULL dataset. After screening for the avail-
ability of expression data, 1832 proteins in CORE
and 3336 proteins in FULL dataset were used for the
preliminary data analyses.

Classification of interacting proteins based on their
coefficient of same functional class

To classify same functional (SF) and different functional
(DF) proteins in the PPIs networks we followed the clas-
sification rule as described by Makino et al. [18]. As for
an example, if the i™ protein in the PPI networks have
m PPI partners and in which #n partners belong to the
same functional class then we computed the coefficient
of functionality of the /™ protein as n/m. For this func-
tional classification, we used the Munich Information
Center for Protein Sequences (MIPS) database [29].
When a particular protein was assigned to more than
one functional classes in MIPS database, we computed
the coefficient of functionality for each functional class
to which the protein belonged and then designated the
protein to be belonging to that particular functional
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Table 8 Functional classification in the Munich
Information Centre for Protein Sequences Database

Functional Class

Metabolism

Energy

Cell cycle and DNA processing

Transcription

Protein synthesis

Protein fate (folding, modification, destination)

Protein with binding function or cofactor requirement (structural or
catalytic)

Regulation of metabolism and protein function

Cellular transport, Transport facilities and transport routes
Cellular communication/signal transduction mechanism
Cell rescue, defense and virulence

Interaction with the environment

Transposable elements, viral and plasmid proteins

Cell fate

Development

Biogenesis of cellular components

Cell type differentiation

class which showed the largest value of the coefficient of
functionality. We have taken into account all the 17
functional classes in the MIPS database (Table 8) unlike
[18] where only 10 functional classes ware used.

2154 proteins in CORE and 3964 proteins in FULL
database were assigned to at least one functional class
out of 2351 protein in the CORE and 4917 in the FULL
datasets. To identify SF and DF proteins in this data, we
computed the average over all the proteins in both
CORE and FULL datasets and then used the average
value (CORE: 0.75; FULL: 0.55) as a cutoff. If the coeffi-
cient of functionality of a protein is greater than or
equal to the average value, the protein is classified as
the SF proteins otherwise as the DF protein. Following
this we had 1377 SF and 777 DF proteins in CORE and
1950 SF and 2014 DF proteins in FULL dataset.

Classification of interacting proteins based on their
clustering coefficient

We also classified the proteins into sparse part (SP) and
dense part (DP) according to the clustering coefficient
in the PPIs networks. We used the Pajek software pack-
age [30] to calculate the clustering coefficient. If the ;™
protein had v connections (i.e., degree) and / was the
number of interactions among them, then clustering
coefficient of the protein was computed as 2//{v(v-1)}.
The same procedure was followed by the previous
authors for calculating the clustering coefficients [18].
The Pajek software calculates the clustering coefficient
of the proteins in the PPIs network independent of their
classification based on the coefficient of functionality.
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In this classification we took 1466 proteins in CORE
and 3788 proteins in FULL dataset having at least two
connections, since singly connected proteins have “0”
clustering coefficient, and it may create bias. To identify
SP and DP proteins in this data, we computed the aver-
age over all the proteins in both CORE and FULL data-
sets and then used the average value (CORE: 0.31;
FULL: 0.12) as a cutoff. We identified the protein as
Dense Part (DP) whose clustering coefficient was greater
than or equal to the average value, otherwise it was con-
sidered as Sparse Part (SP). We had a total of 591 DP
and 875 SP proteins in CORE and 1162 DP and 2626
SP proteins in FULL dataset.

When the cut-off for coefficient of functionality and
clustering coefficient were changed over a wide range of
values, our results still remain unchanged while detect-
ing influences of various factors in protein evolutionary
rate in this study.

Calculation of evolutionary distances

We used S. cerevisiae and S. paradoxus to calculate the
evolutionary distance between them as S. paradoxus is
the most closely related species to S. cerevisiae among
all organisms whose whole genome sequences were
currently available [31]. The protein sequences of S.
cerevisiae and S. paradoxus were downloaded from
Saccharomyces Genome Database (SGD) (for S. cerevi-
siae- http://downloads.yeastgenome.org/sequence/geno-
mic_sequence/orf_protein/ and for S. paradoxus- ftp://
genome-ftp.stanford.edu/pub/yeast/data_download/
sequence/). By using NCBI BLASTP program (version
2.2.17) [32,33], orthologs for the S. cerevisiae and S.
paradoxus proteins were identified by aligning the
amino acid sequences of the proteins from S. cerevisiae
with those of S. paradoxus fixing the expectation value
cut-off at 1.00 x 107, and at least 75% sequence simi-
larity between the two sequences with a minimum
alignment overlap of 80%. The gaps allowed in the
alignment were less than 3%. We verified our results
with the results of Kellis et al. [34] and our result were
almost similar to theirs. The dissimilar protein pairs
were not taken in our study. Pair-wise alignment were
performed using ClustalW (version 2.0) [35] for each
set of orthologous gene pair, and the rates of amino
acid substitution between the orthologous pair of gene
products were computed by Kimura’s method (1983)
[19], which is implemented in PHYLIP (version 3.68).
We had a total 4420 S. cerevisiae proteins having
orthologous pairs (Additional file 1). After computing
the functionality coefficient and clustering coefficient,
the numbers of proteins in the four categories were
1136 SF, 650 DF, 501 DP and 722 SP proteins in
CORE and 1593 SF, 1626 DF, 952 DP and 2023 SP
proteins in FULL dataset.


http://downloads.yeastgenome.org/sequence/genomic_sequence/orf_protein/
http://downloads.yeastgenome.org/sequence/genomic_sequence/orf_protein/
ftp://genome-ftp.stanford.edu/pub/yeast/data_download/sequence/
ftp://genome-ftp.stanford.edu/pub/yeast/data_download/sequence/
ftp://genome-ftp.stanford.edu/pub/yeast/data_download/sequence/
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Protein-complex information

The protein complex data were collected from Gavin et
al. [24]http://www.nature.com/nature/journal/v440/
n7084/suppinfo/nature04532.html. There were a total of
491 complexes. Among these 491 complexes 528 SF,
262 DF, 293 DP and 318 SP proteins from CORE and
687 SF, 427 DF, 293 DP and 318 SP proteins from
FULL dataset took part as subunits. We also calculated
the complex number for each protein, which is a mea-
surement of the number of protein complexes in which
the particular protein is present as a subunit.

Protein expression

The protein expression data were collected from Holstege
et al. [36]http://web.wi.mit.edu/young/pub/data/orf_tran-
scriptome.txt. In our PPI data set we had 1094 SF, 616 DF,
483 DP and 692 SP proteins in CORE and 1516 SF, 1528
DF, 916 DP and 1901 SP proteins in FULL dataset.

Software

We used SPSS (version 13.0) for all the statistical calcu-
lations. All network statistics (Degree and Clustering)
were calculated using Pajek software package [30].

Additional material

Additional file 1: Orthologous genes of S. cerevisiae and S.
paradoxus. List of orthologous genes of S. cerevisiae and S. paradoxus
and their protein distances measured by Kimura's method.
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