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Abstract

the cloud platform.

Background: In Silico Livers (ISLs) are works in progress. They are used to challenge multilevel, multi-attribute,
mechanistic hypotheses about the hepatic disposition of xenobiotics coupled with hepatic responses. To enhance
ISL-to-liver mappings, we added discrete time metabolism, biliary elimination, and bolus dosing features to a
previously validated ISL and initiated re-validated experiments that required scaling experiments to use more
simulated lobules than previously, more than could be achieved using the local cluster technology. Rather than
dramatically increasing the size of our local cluster we undertook the re-validation experiments using the Amazon
EC2 cloud platform. So doing required demonstrating the efficacy of scaling a simulation to use more cluster
nodes and assessing the scientific equivalence of local cluster validation experiments with those executed using

Results: The local cluster technology was duplicated in the Amazon EC2 cloud platform. Synthetic modeling
protocols were followed to identify a successful parameterization. Experiment sample sizes (number of simulated
lobules) on both platforms were 49, 70, 84, and 152 (cloud only). Experimental indistinguishability was
demonstrated for ISL outflow profiles of diltiazem using both platforms for experiments consisting of 84 or more
samples. The process was analogous to demonstration of results equivalency from two different wet-labs.

Conclusions: The results provide additional evidence that disposition simulations using ISLs can cover the
behavior space of liver experiments in distinct experimental contexts (there is in silico-to-wet-lab phenotype
similarity). The scientific value of experimenting with multiscale biomedical models has been limited to research
groups with access to computer clusters. The availability of cloud technology coupled with the evidence of
scientific equivalency has lowered the barrier and will greatly facilitate model sharing as well as provide
straightforward tools for scaling simulations to encompass greater detail with no extra investment in hardware.

Background

The scientific value of multilevel, multiscale, computa-
tional, biomedical models will be greatly enhanced by
making them broadly available and sufficiently manipul-
able to address a variety of scientific questions at rea-
sonable costs, regardless of the hardware at the
researcher’s disposal. The availability of cloud technol-
ogy opens the door to that eventuality. However, such
models are analogous to an entire, specialized, wet
laboratory. As with wet laboratories, insuring scientific
equivalency of duplicate experimental systems in differ-
ent laboratories is a necessary precondition for placing
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confidence in the results of experiments arising from
those laboratories. A goal of this project was to test the
scientific equivalence of experiments conducted using
multilevel, multiscale, In Silico Livers (ISLs) executed on
a local cluster with those executed in the Amazon EC2
cloud platform. Equivalence demonstrates that validation
results obtained on the local cluster still hold in the
cloud. Further scientific work on ISLs executing in the
cloud can build upon that work. By executing ISLs in
a cloud, we gain more computational power to develop
more detailed, larger scale, larger scope ISLs, while out-
sourcing systems administration and hardware mainte-
nance costs.

The ISL illustrated in Figure 1 is not intended to be a
finalized model having a fixed structure. It is designed
to facilitate exploration of plausible mechanistic
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Figure 1 ISL structure and components. Descriptions of
components and events are provided in the text.

explanations for observations related to xenobiotic dis-
position [1-4]. The validation aspect for these experi-
ments is the outflow profile from a single-pass rat liver
perfusion experiment [5]. However, concrete instances
of multiscale validation by adding finer grained aspects
have been reported [6,7]. An ISL is a biomimetic analo-
gue designed to help formulate and challenge mechanis-
tic hypotheses about the hepatic disposition of
xenobiotics in health and disease. It is an assembly of
abstracted components representing aspects of hepatic
form, space, and organization interacting with com-
pounds (a simulated compound; when referring to an
ISL feature or component that has a wet-lab counter-
part, we use small caps). It has its own unique pheno-
type, which is necessarily simpler than that of the entire
set of lobule mechanisms. Because of the stochastic nat-
ure of ISL simulations, each in silico experiment-con-
structed from several Monte Carlo (MC) lobule
samples-generates a slightly different outflow profile.
The modeling and simulation methods used [8,9],
described in Methods, are intended for representing
large-scale biological systems in silico. They require the
computational ability to represent any layer in a hier-
archical biological system well enough to falsify (or not)
its outputs against corresponding wet-lab observations,
and to extend the representation, at will, to any other
phenomena necessary to achieve falsification or valida-
tion. An ISL cannot be constrained by the use cases or
aspects by which it was originally constructed. It must
be arbitrarily extensible. It is usually impractical to
expect ISLs and similar models to execute in a sequen-
tial computing context, e.g., using a single CPU. That is
because the depth and scale of most biological systems
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leads to models that are computationally and analytically
insoluble. Inductively derived, equation-based models
are more amenable to execution on sequential machines
because of their high degree of abstraction from the par-
ticulars of the referent mechanisms. At the other end of
the computational spectrum, massively parallel machines
are also impractical because the solutions that can be
implemented are very tightly engineered to match exact-
ing specifications; hence a massively parallel solution is
specialized and limited in the extent to which it can
propagate [6,10]. In addition, as is evident in Figure 1,
the behavior of each lobule is tightly coupled to the
behavior of all lobule components. Hence, distribution
of the lobule sub-components over multiple, parallel
processors would likely result in a very high communi-
cation-to-computation ratio, making it inefficient for
that type of fine-grained parallelism. In contrast, the
salient interactions between lobules, for outflow profile
validation data, can be abstracted parsimoniously to
lobule input/output: at the portal vein tracts (triads) and
the central vein. It is a natural fit to run a single lobule
on a single cluster node. For other analogues, we can,
for example, envision running single cells on single clus-
ter nodes. Moreover, as demonstrated in [4], highly spe-
cific intra-lobule mechanisms can be studied in a very
concrete and particular way on a single cluster node.
Cluster type machines meet ISL parallelism needs fairly
well and have provided the ISL’s infrastructure [1-4].

The combination of the liver’s homogeneity at a
coarse grain and the heterogeneity that is evident at fine
grains makes it a good referent system for ISLs built
atop cluster parallelism within a cloud. There are three
model- and referent-independent reasons for exploring
using a cloud infrastructure for cluster style parallelism:
1) reduced systems administration costs, 2) model
expansion, and 3) model sharing. ISL uses provide two
additional motivations: 4) ISL experiments need many
lobule samples, and 5) micromechanistic details need to
be assessed.

Although significantly lower cost than biological mod-
eling projects relying on massively parallel machines,
those based on local clusters can still present a labora-
tory with relatively high administrative costs. There are
temperature, power, maintenance, and manpower con-
siderations. The resulting constraints limit the extent to
which methods suited to cluster computing can be pro-
pagated, repeated, and leveraged by others. Local con-
straints also place practical limits to expanding an
analogue’s scale and scope.

The advent of publicly accessible, on demand, plat-
form level, cloud computing infrastructures, like Ama-
zon’s EC2 raises the accessibility of large scale,
expandable, biological models so that anyone with a
broadband Internet connection can build virtual clusters
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and execute such models on demand. They also greatly
expand the diversity of in silico, biomimetic devices that
can be constructed. The EC2 platform is an interface to
an executive web service that allows the on-demand
instantiation and management of virtual computers run-
ning any of a suite of operating systems that Amazon
supports. It is distinguishable from other “cloud” tech-
nologies in that platform resources are customizable. As
an extreme contrast, Google Documents is also a cloud
technology. However, it only allows the user to create
particular types of documents and host them remotely
on pre-configured servers. At the other extreme, EC2
allows one to instantiate entire virtual machines, run-
ning Windows or Linux. There is no limitation on the
type of software you can run, unlike with Google Docu-
ments. The spectrum of cloud technologies is covered
in some depth in [11]. To date, business, collaboration,
and data processing dominate the use cases for cloud
infrastructures. Although desktop grids have contributed
to some scientific domains like molecular dynamics
[12,13], recruiting volunteers to allow an application to
execute on their computers constrains the researcher in
ways that on-demand services do not.

The third and possibly more powerful justification for
exploring cloud computing is the potential for sharing
models more easily. Often, a simulation is dependent on
a particular technology stack that is not widely available
or easily configured. With a platform level service like
the EC2, virtual machine instances containing the entire
technology stack can be shared. When researchers want
to examine more than just the published information,
they can instantiate a grid of virtual machines, design
and execute their own experiments, or simply repeat
those of the original laboratory. We can anticipate that,
as models and their uses grow and the computational
platforms upon which they run scale upward, issues of
reproducibility will grow. Methodological details of vir-
tual laboratory assembly and in silico experimental pro-
tocols will become as important for computational
scientists as they are for scientists experimenting in dif-
ferent wet-labs.

Because each out-flow profile exhibits high variation,
it takes averaging many lobule samples to approach the
smooth outflow profile exhibited by liver perfusion
experiments. A benefit of having an ever-larger number
of lobule samples when needed is that the lobular vari-
ety within a liver can be approached: an adult rat liver is
comprised of a few hundred lobules. Finally, when using
the local eight-node cluster (seven slaves and one mas-
ter), there is a trade-off between abstraction layer for
the fine-grained micromechanisms and MC sample size:
assessment of the micromechanistic details of the type
described in [4] requires larger sample sizes-more lobule
samples-to clearly identify event trends.
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ISLs are designed for systematic, iterative revision and
easy alteration to improve realism and enhance heuristic
value. Following revision, the new ISL must be re-para-
meterized and re-validated using the same criteria used
for its predecessor. Addition of new features must not
compromise any previously validated behaviors. Planned
ISL uses required adding to the most recent ISLs [4] a
biliary elimination and flow space, an improved metabo-
lism mechanism, and enabling an alternative method of
dose input. Those features were not needed by earlier
ISLs. We implemented an ISL that included those fea-
tures (Figure 1). Observations made during the initial
re-validation experiments indicated that we needed to
scale experiments to include larger numbers of MC
samples. That situation provided an immediate, conveni-
ent impetus to move ISL simulations to a Cloud. Results
documenting the benefits of such scaling are presented
herein. In order to migrate successfully to a cloud, we
must demonstrate experimental indistinguishability
(defined in Methods) between results from similar size
cloud and local cluster experiments. Results of such
experiments are presented for the re-validation experi-
ments for ISLs that included the preceding new features.

Methods

Middle-out and synthetic modeling and simulation
methods

ISLs use middle-out [8] and synthetic [9] modeling and
simulation methods. They are specifically intended for
representing large-scale biological systems in silico, and
are well suited for simulation executions using cloud
technology. Middle-out models are a compromise
between the long-standing dichotomy between bottom-
up and top-down models. Top-down models begin with
a high level construct, usually a phenomenon to be gen-
erated, and specify its constituents purely from the per-
spective set by that high level construct. For example,
the Navier-Stokes equations for fluid flow are a top-
down model because they describe, directly, the aggre-
gate fluid properties of the material being studied, and
do not delve down into describing the properties or
behavior of the molecules that generate the behavior.
Bottom-up models, in contrast, leave the high level
aggregate properties of the system unspecified and
directly describe the properties of the bottom-most,
atomic (devoid of structural information), constituents
of the system. For example, a bottom-up model of a
fluid would merely describe the molecules and their
local interactions without making any attempt to
describe the fluid, gas, or solid phenomena at the higher
level. Both top-down and bottom-up approaches to
modeling implicitly assign an aspect or perspective to
the system. That perspective is not necessarily an objec-
tive, independently correct perspective. There are layers
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above any top-down model and layers below any bot-
tom-up model. The modeler chooses where to “pin” the
base perspective of the model. Middle-out models
accept this a priori perspective and force the modeler to
make the model explicit about the aspect chosen as the
base. Extensions to the model are then explicitly allowed
to go “up” or “down”, depending on the requirements
set for the uses to which the model will be put. When
those layers need to be accessed, it will be easy to do so
when using a cloud cluster.

Another spectrum that can be used to describe models
and that influences choice of simulation framework is
that between inductive and synthetic modeling. Induc-
tive models are derived by abstracting generic properties
from many particular situations or objects. Synthetic
models, by contrast, are constructed or pieced together
from objects available to the modeler. A simple example
would be a semblance of an automobile assembled from
Lego pieces. These differences are elaborated in [9].

Inductively derived models are more amenable to
execution on sequential machines because of their high
degree of abstraction from the particulars of the referent
mechanisms; but the referent biological systems are
typically highly nonlinear and particular. A consequence
is that those inductive models are only applicable to
more generic contexts and are inapplicable to the speci-
fic contexts that will eventually be required to advance
pharmaceutical research and support clinical relevance.

ISLs are executed within a co-simulation [3] frame-
work alongside an equation-based, extended, convection
dispersion model [14] and an agent that interpolates
and outputs the referent wet-lab data. The ExperAgent
manages all three simulations. Running them in co-
simulation allows similarities in behavior to be com-
pared on the fly or after the execution terminates. Com-
parisons are made via a quantitative Similarity Measure
(SM) [1-4]. When ISL observations fail to achieve a pre-
specified SM, one or more ISL micromechanisms are
considered falsified and components or parameters must
be modified to generate a new set of micromechanistic
hypotheses. A failure to falsify means the mechanisms
as implemented represent a plausible hypothesis and we
say that ISL has achieved a degree of validation: it vali-
dates against the particular aspect quantified by that
SM.

Cluster architecture

The architecture is diagrammed in Figure 2. The local
cluster consists of eight Intel dual core Pentium 4 based
computers, one of which serves as the master node pro-
viding the Message Passing Interface (MPI) executive
that dispatches jobs to the other seven slave nodes. Each
node is connected to a gigabit switch over which it
receives commands and data from the master node. The
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Figure 2 Components of cluster and cloud architecture.
ExperAgent reads parameter data from the Data Management
Module and uses the Partition Manager to farm Monte Carlo
samples (one per lobule) out to N Slave nodes via the Message
Passing Interface. Each Slave node has a proxy copy of the
ExperAgent and Data Management Module, which writes run data to
the Network File System mounted disk drive. Once all samples are
finished, the ExperAgent sends all the raw observations to the
Statistics Module, which sends the derived observations back to the
ExperAgent. The ExperAgent then uses the Data Management
Module to write the derived observations to disk.

master node contains two network interface cards, one
of which provides access to the local area network and
Internet, and the other to the Gigabit backplane. The
Network File System provides file data and executable
to the slave nodes. Execution control and shared mem-
ory data are provided via the MPI. The cluster is a Grid
in the sense that all the nodes have installed the same
operating system, compilers, and libraries.

Each ISL is launched as an executive program on the
master node. Event sequences are diagrammed in Figure
3. The executive node instantiates the Experiment
Agent (ExperAgent). It partitions the simulation among
the slave nodes based on command line parameters and
the contents of parameter files. For the experiments
reported herein, one MC lobule sample is executed per
slave node and the results are collected and maintained
on the master node until all lobule executions finish.
However, the framework also supports a coarser paralle-
lism where whole experiments are executed on a single
node. The coarser mode is useful for parameter sweep-
ing and behavior space searching, restricted to experi-
ments with few MC samples.

Only the ExperAgent and its utility components exe-
cute on the master node. The lobule and all the modeling
components having wet-lab experiment counterparts,
execute on the slaves. Each lobule sample has a proxy for
the ExperAgent and the Data Management Module that
handle execution control and data I/O. It is important to
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Figure 3 Event sequence during cluster and cloud execution.
First, ExperAgent uses the Partition Manager to calculate which of M
samples go to which of N Slave nodes. It then invokes the first
sample on the first Slave node and continues until all Slaves are
occupied. When any one of the Slaves finishes (asynchronously), it
writes the run data for that sample and then signals the ExperAgent,
which shuts down that sample and spawns a new sample on that
Slave. This continues until all M samples are finished, at which point
the ExperAgent uses the Statistics Module to aggregate the data and
calculate the derived observations. ExperAgent then writes that data
to disk via the Data Management Module.

note that agency is orthogonal to the cluster architecture.
The other agents within an ISL (cells and Sinusoidal Seg-
ments, SSs) execute serially with interleaved discrete
event schedules using the Swarm (http://swarm.org)
scheduling engine.

Similarity Measures and co-simulation

As a lobule executes, the observations taken in compli-
ance with the co-simulation SM are sent to and logged
by the ExperAgent on the master node. Co-simulation
and the SM are described in detail in [1-4]. Briefly, the
co-simulation framework requires that any model be
executed in tandem with another, a mechanistically dif-
ferent but behaviorally similar model, where the mea-
surement protocol is identical for each co-simulation
model. For ISLs, we use two other models, a two com-
partment ODE model and one interpolated from wet-
lab experimental data. The SM provides a * coefficient
of variation band around a nominal profile derived from
the wet-lab data. The SM score is the percentage of
observations from the simulation that fall within that
band. Results of one independent wet-lab experiment
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are experimentally indistinguishable from another when
a prespecified degree of similarity is achieved. Yan et al.
[1,2] and Park et al. [3,4] specified SM scores (e.g., >
80%) that must be achieved to establish experimental
indistinguishability between results from independent
ISL experiments. When a lobule execution finishes, the
ExperAgent shuts it down and dispatches the next one.
When all samples are finished, the ExperAgent sends the
raw observations to the Statistics Module. It calculates
the derived measures that will be used to compare the
results for validation or falsification. In the experiments
reported herein, the Statistics Module merely averages
the results from individual lobule executions and sends
that to the Data Management Module to write to the
disk for offline analysis.

Replicating cluster architecture in the cloud

In order to demonstrate experimental indistinguishabil-
ity between cluster and cloud experiments, the experi-
mental apparatus must be replicated in the cloud.
Because an exact replication of the Grid and computa-
tion would be degenerate and uninteresting, decisions
had to be made about where the cloud architecture
would be allowed to differ from the cluster. Amazon’s
EC2 uses virtual machines running within a farm of
actual machines. This means that some or even all the
virtual machines, though unlikely, might be executing
on the same actual machine. Hence, it is impractical to
guarantee the same inter-node network as used on the
cluster. Likewise, even though the generic specification
of the virtual machines, like amount of memory and
compute capacity, are specifiable, as virtual machines,
their behavior will be somewhat dependent on the other
virtual machines with which they share the real hard-
ware. There are also constraints placed on virtual
machine specification by Amazon’s infrastructure. For
example, a 32-bit virtual machine has a maximum mem-
ory of 1.7 gigabytes, whereas the 32-bit machines used
in the cluster have 2 gigabytes of memory. As such, the
virtual machines differ from the local cluster machines
in almost every way at the hardware layer. Thirty-two
bit virtual machine images were used in the cloud to
limit precision and register size differences that might
be introduced. Networking is handled the same as in
the local cluster. However, as mentioned above, we can-
not be sure that the maximum potential data flow from
one virtual node to another is a Gigabit, given the allo-
cation of hardware by the EC2 system. The master node
acts as the network address translator, gateway, and fire-
wall to the slave nodes. On both the cluster and the
cloud, the simulation executive invokes MPI facilities
that query a file on the operating system listing all net-
work reachable nodes available. The script that starts
and sets up the slave instances automatically assembles
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this file. The machines listed could be anywhere on the
Internet. Nevertheless, these experiments were only run
using virtual instances in the EC2 cloud. Via MPI, the
ExperAgent is shared between the master and slave
nodes, executing only the appropriate code for master
or slave. The ExperAgent proxy on each slave makes live
observations for its lobule until that execution is termi-
nated. When all lobules have terminated, the remaining
ExperAgent on the master node aggregates the data.

The technology stack for the cloud exactly mimicked
that of the cluster. The operating system was Ubuntu
8.04.2, the compiler GNU C/C++/Objective-C 4.2.4, the
communications layer MPICH 1.2.7, and the simulation
toolkit was the Swarm Subversion trunk from 2009-02-
03. Additional file 1 contains instructions for setting up
an ISL using EC2. Additional file 2 contains the ISL
source code.

The local cluster maintains the state of its hard disk
every time it is shut down and restarted. An EC2
machine image, however, does not. The image is a snap-
shot of a running machine and when virtual machines
are instantiated from that image, the state of the hard
disk is as it was when the image was created. Hence,
although a running instance of an image maintains
changes made to the hard disk as long as that instance
is running, when it is terminated, all the changes made
since it was started are lost. That reality slightly changes
the methods for running the ISL in an EC2 cloud.

On the local cluster, if the mechanisms being tested
are already in the ISL, then all that is required to run a
new experiment is to start the cluster, write the new
parameters and/or input data, and execute the simula-
tion. Data written to the disk can be downloaded for
analysis immediately, or left on the hard disk for later
analysis. The only difference when executing in an EC2
is that the resulting data must be downloaded immedi-
ately or it will be lost.

When new or additional mechanisms are to be tested,
which was the case for this report, then on the cluster,
those changes are made to the ISL source code. Canoni-
cal “experiments” are executed as regression tests to ver-
ify that the changes work as expected, and the changes
are checked into the repository. Thereafter, the experi-
ment proceeds as before. In an EC2 instance, however,
because the instance comes up in the state with which
it was originally created, it will have no ISL testing cap-
abilities on its disk. If new mechanisms are to be tested,
the latest version of the simulation source code must be
checked out of the repository to the running virtual
machine instance each time a new instance is invoked.

The local cluster could not robustly handle experi-
ments of more than 84 MC lobule samples. So, although
the model scales to experiments requiring larger sample
sizes, to scale the local cluster, we would have to add
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more nodes. Because the cloud platform is easy to scale
simply by invoking more virtual machines, the 152 sam-
ple experiments were possible.

In Silico Liver structure and components

An ISL during execution maps to a mammalian liver
undergoing perfusion as in [14]. An ISL represents a
liver as a large, parallel collection of similar lobules, the
functional units of a liver. The earlier version, absent
BileCanal and the new metabolism mechanism, is
detailed in [2,3]. The following is an abridged descrip-
tion. Components mimic essential hepatic form and
function features. Flow networks are represented by an
interconnected, directed graph, the structure of which is
Monte Carlo determined for each lobule. Graph edges
specify flow connections between Sinusoidal Segment
(SS) placed at each node. There are multiple, different
flow paths from portal vein tracts (PV) to CV. Most
functions reside within SSs. A SS is a discretized, tube-
like structure comprised of a blood “Core” surrounded
by three identically sized 2D grids (Spaces A-C), which
together simulate a 3D structure. Two SS classes (Table
1) are specified to provide sufficient variety of com-
pound travel paths. Compounds are represented using
mobile objects that move through the lobule and inter-
act with encountered SS features. A typical compound
maps to many drug molecules. A compound’s behavior
is determined by the physicochemical properties of its
referent compound, along with the lobule and SS fea-
tures encountered. Multiple, different compounds can
percolate through SS features during the same experi-
ment. Objects called cells (two types: endothelial cells
and hepatocytes) map to an unspecified number of cells.
They function as containers for other objects. Different
colored grid locations in Figure 1 illustrate that the fea-
tures at any location can be unique. Cells contain a sto-
chastic, parameter-controlled number of binders in a
well-stirred space. Binders map to transporters,
enzymes, lysosomes, and other cellular material that
binds or sequesters drug molecules. A binder within an
endothelial cell only binds and later releases a com-
pound. Binders within hepatocytes are called enzymes
because they can bind compounds and later either
release or metabolize it. Adjacent to Space C is the Bile-
Canal (Space D). It is configured similar to the blood
“Core.” Objects placed in the BileCanal are collected in
the bile duct (BD).

Experiments

Park et al. [3] reported an ISL and parameterization that
validated against diltiazem outflow profiles from single
pass, perfused, normal rat livers. The same wet-lab data
serves as referent for the experiments reported herein.
The simulation methods and iterative refinement
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Table 1 Listed are the ISL parameters and the values used for this work

Parameter Value Description

StepsPerCycle 2 # of model steps in 1 simulation cycle

SSTypeRatio 0.550 Ratio of short, wide SS to long, narrow SS

DirSinCirc 24 Width of short, wide SS

DirSinLenAlpha 1.000 Gamma distribution shape parameter

DirSinLenBeta 0.085 Gamma distribution scale parameter

DirSinLenShift 0.000 Scalar shift parameter

TortSinCirc 10 Width of long, narrow SS

TortSinLenAlpha 8.000 Gamma distribution shape parameter

TortSinLenBeta 0.075 Gamma distribution scale parameter

TortSinLenShift -10.000 Scalar shift parameter

SinusoidTurbo 0.250 Ratio of forward to zero bias for compound random walk
CoreflowRate 1 # SS grid points per cycle compound moves in the Core and the bilecanal
BileCanalCirc 1 Thickness of the bilecanal in SS grid points

S2EJumpProb 0.850 Likelihood a compound will move from Space A to Space B
E2SJumpProb 0.150 Likelihood a compound will move from Space B to Space A
E2DJumpProb 0.850 Likelihood a compound will move from Space A to Space C
D2EJumpProb 0.150 Likelihood a compound will move from Space C to Space B
ECDensity 0.900 Fraction of Space B points filled with endothelial cells
HepDensity 0.900 Fraction of Space C points filled with hepatocytes
BindersPerCellMin/Max 125/125 Uniformly distributed # of binder objects in each cell
MetabolismProb 0.200 Likelihood a bound compound will be metabolized
SoluteBindingProb 0.750 Likelihood an intracellularcompound will be bound
SoluteBindingCycles 15 # of cycles a compound is bound

SoluteScale 1.0 Scaling from ISL to wet-lab dose fraction

MembraneCrossing No/Yes Whether compound crosses cell membranes

BileRatio 0%/50% Percent of compound that goes back into cell vs. bile
Dosage 5,000 Generate and insert this many compound objects
DosageCycle 2 Simulation cycle at which to inject the compound

protocol are also the same. However, for the experi-
ments reported herein, two mechanisms were added and
one mechanism modified. The former were discrete
time metabolism and the bile canaliculi (BileCanal) illu-
strated in Figure 1. Previous studies used a discrete
event model for metabolism where an enzyme tested a
pseudo-random number draw only when SoluteBinding-
Cycles had passed. Although this micromechanism can-
not be falsified against the available, coarse validation
data, it has been pointed out that it is overly discrete
and may produce abiotic artifacts. The experiments
reported herein used a discrete time model for metabo-
lism such that after binding, an enzyme determines if
metabolism has occurred (or not) every simulation cycle
up to and including the last before it releases the com-
pound. This micromechanism provides more variation
in the event history of the compound and more oppor-
tunity for metabolism. Consequently, these change
require re-parameterization and re-validation.

Previous studies did not include the creation of a
metabolite because having it was not necessary for vali-
dation; when a metabolic event occurred, the compound
was simply destroyed. However, it has been pointed out
that the omission of this micromechanism detracts from
the believability of the model. Because believability is
closely tied to falsification and validation, the addition
of this micromechanism adds heuristic value. The new
micromechanism constructs a new metabolite when an
enzyme successfully metabolizes a compound. A
pseudo-random number draw is tested against the
BileRatio parameter specific to the compound (diltiazem
in this case). The hepatocyte decides whether the meta-
bolite goes into the BileCanal or into the intracellular
space. The dynamics of the BileCanal are identical to
the Core. Once inside the BileCanal, solute steps for-
ward each simulation cycle the number of spaces desig-
nated by CoreFlowRate. When a metabolite in the
BileCanal reaches the outlet of a SS it moves to the



Ropella and Hunt BMC Systems Biology 2010, 4:168
http://www.biomedcentral.com/1752-0509/4/168

BileCanal inside the next SS. If the outlet goes to the
CV, the metabolite is moved, logged, and destroyed.
That process maps to metabolite in bile entering the
bile duct. The BileCanal is specified with a “circumfer-
ence” as if it, like Space A, had a two dimensional grid
wrapped around it. This geometry is used solely as a
constraint to estimate how many metabolites may flow
from a predecessor SS to a successor SS. It is not used
when metabolite enters the BileCanal or when all meta-
bolites are pushed forward within the data structure. So
doing provides a minimal model for the constraints on
bile flow and its output.

A manual search of the parameter space for a para-
meter vector that satisfies the SM produced the para-
meters in Table 1. Of particular importance are
BileCanalCirc, BileRatio, SoluteBindingCycles, Metabo-
lismProb, BindersPerCell, DosageParams, and the various
values for JumpProb. A value of 1 for BileCanalCirc
means that only a single compound can flow from a
predecessor SS to a successor SS in a single step. Note
that BileRatio is compound specific and is 0.5 for meta-
bolizable diltiazem but 0.0 for both sucrose and metabo-
lite; because sucrose does not enter cells and enzymes
cannot bind metabolites (unless configured to do so),
their BileRatio values are irrelevant. The DosageParam
values for these experiments are set so that dosage is an
impulse and all compounds are created and injected
into the PV in a single simulation cycle. It is also impor-
tant to note that the JumpProb values in Table 1 are
biased significantly outward so that the tendency is for
compound to move from Space A to Space C.

Manual searches were performed on the cluster using
only 28 MC samples, which produced outflow profiles
that were smooth enough for decision-making, but were
not smooth enough to satisfy the SM. When a 28-sam-
ple result showed promise, experiments having 49 or
more samples were undertaken to actually test the
hypothesis that the parameterized mechanisms will pro-
duce outflow profiles that achieve the SM. In the latter
experiments, the point was only secondarily to validate
against the wet-lab data given the new mechanisms. The
primary objective was to test the equivalence of the
cluster and EC2 platforms. In order to do so, the para-
meter vector would have to produce a pair of results
that validate in both the cluster and the EC2. If either
pair of profiles, from the cluster or cloud, failed to vali-
date, then there was a significant experimental distinc-
tion between the local cluster and EC2.

In principle the simulation could be configured to
produce identical outputs when run with identical
pseudo-random number seeds on both platforms. How-
ever, it is important to note that such identical experi-
ments should be explicitly avoided. Determinism is
critical for software engineering and verification, where
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the computational system is not the subject of experi-
mental exploration and hypothesis falsification. As laid
out in [9], in order to synthesize heuristically valuable
computational analogues that are useful for mechanism
discovery and falsification, the system must be suitable
for experimentation, just as in vitro systems are the
objects of experimentation for wet-lab studies. Further,
for simulations where the coupling is tight between the
context (or use-case) and the internal mechanisms, as it
is when identical deterministic results are expected of a
simulation, the model tends to be too abstract, induc-
tive, and very fragile to context [9]. The method of
repeating stochastic experiments where some elements
are tightly controlled and others are completely uncon-
trolled is more biomimetic and it mimics wet-lab meth-
ods more closely while enhancing scientific impact and
usefulness. For these reasons, the experiments reported
herein use the full stochasticity of the ISLs over and
above the underlying platform differences and place all
emphasis on experimental distinguishability or lack
thereof.

Results

Validation of an enhanced ISL

To demonstrate methodological scientific equivalence,
we must use the same model scaling and validation/fal-
sification method on both platforms. To improve rea-
lism and heuristic value, we altered the ISL phenotype
by making three changes: a biliary elimination and flow
space, an improved metabolism mechanism, and an
alternative method of dose input. Changes to in vitro
models can have unintended consequences. The same is
true with multiscale models like ISLs. Because the char-
acter of an ISL outflow profile is a consequence of net-
worked micromechanisms, change can alter previously
validated behaviors. Thus, new validation evidence is
required. The enhanced ISLs that were executed on the
local cluster showed a potentially abiotic behavior that
had two possible causes. 1) It was a consequence of
micromechanisms that were unintentionally altered by
the enhancements, or 2) it was an artifact of a small
lobule sample size. To test the latter, we needed the
option to scale the execution platform to handle a larger
number of lobule samples. Rather than buying more
hardware to add to the local cluster, we chose to repli-
cate the cluster architecture in the cloud.

Validation experiments: local and cloud clusters

Experiment results are shown for the local cluster in
Figure 4 and for the cloud cluster in Figure 5. The out-
flow profile for diltiazem is superimposed on the target
zone, which designates the SM band derived from wet-
lab data, as described above. As with the initial experi-
ments in [3], when SM > 80% the ISL and wet-lab
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Figure 4 Cluster execution results. Shown are results from two
ISL experiments on the eight-node, local cluster using 49, 70, 84,
and 152 lobules. The fraction of the diltiazem dose collected at CV
for each 0.5 s collection interval is plotted. A simulated profile
(green circles) is acceptable if SM > 0.8, i.e, > 80% of values fall
within the blue zone. An acceptable profile validates that ISL
mechanism; an unacceptable profile falsifies it. The center of the
zone corresponds to diltiazem blood levels, d [15]. The upper and
lower bounds of the target zone are d + o/u (coefficient of
variation). o/p = 0.334 was calculated as described previously [1].
Smaller black dots are finite differences d,, - d,;; they show the
extent to which the profile approaches an asymptote, amplifying
periodic components. (A) shows a long period, exhibited by a local
minimum at ~50 and a local maximum at ~80 s. (B) shows an
oscillation with a local minimum at ~55 and a local maximum at
~95 5, and has the smallest SM value. Increasing lobule samples
from 49 to 70 in (C) and (D) resulted in a less pronounced
oscillation, reduced variance, and improved SM values. Increasing
sample size to 84 in (E) and (F) achieved validation, yet there is still
evidence of an oscillation, which is more prominent in (E). The finite
difference profiles are better behaved than in (C) and (D). We
hypothesize that, as the number of samples increases toward the
number of lobules in a rat liver, the profile approaches an
asymptote smoothly and oscillations disappear. The number of
samples was chosen as integer factors of 7 to spread the samples
evenly over the 7 slave nodes. 84 samples were the maximum for
the local cluster before the memory footprint would cause machine
faults.

profiles are designated experimentally indistinguishable.
We specified that acceptable demonstration platform
equivalence would be when SM > 80% for two indepen-
dent sets of experiments on both cloud and local
cluster.

Outflow profiles for diltiazem, d, in normal livers [15]
provide the center for the SM band in Figures 2 and 3.
The width of the band is derived from the coefficient of
variation of the sucrose outflow profiles from [5]. The
upper and lower edges of the target zone are {d + coeffi-
cient of variation}. To show the smoothness and asymp-
toticity of the profiles, the finite differences {d, - d,.1}
are also plotted. The outflow profiles for the 49- and
70-sample experiments failed to satisfy the SM in two
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Figure 5 Cloud execution results. Shown are results from two ISL
experiments using 49, 70, 84, and 152 lobules executed in Amazon’s
EC2 cloud infrastructure. The values plotted are the same type as in
Fig. 4. The gold zone is identical to the blue zone in Fig. 4. As in
Fig. 4, in A-D we see evidence a long period oscillation in the
diltiazem outflow profiles. Again, however, the more samples per
experiment, the less pronounced the periodicity and the better-
behaved the finite differences profiles became: the smoothness of
the diltiazem profile increases with the number of samples. More
slave nodes could be instantiated to execute more samples per ISL
in the cloud. Twenty nodes, one master and 19 slaves, were used to
generate the 152-sample ISL simulations.

important ways: the presence of an apparent large per-
iod oscillation and high variance. The high variance can
be smoothed to show a much more well behaved profile;
but for the purposes of this cross validation exercise, the
raw data provide more insight into events occurring
during the simulation experiments.

The variance in wet-lab outflow profiles is typically
rather constant. Deviations about the trend line are typi-
cally random, and those observations are the basis for
SM target bands in Figures 4 and 5. However, the pat-
terns in Figures 5A, B and 5A, B are different: all four,
49-sample studies showed significant oscillations in var-
iance prior to about 60 seconds that appeared somewhat
abiotic. The apparent variance oscillations caused fluc-
tuations in the outflow profiles. One of the runs in clus-
ter and cloud (Figure 4B and Figure 5B) exhibited
strikingly large variances. The variance oscillations are
obvious in the finite difference scatter plot in Figure 5A.
The outflow peak is reinforced by the first peak of the
oscillation, making the leading edge of the profile seem
markedly false in comparison to the peak shape of the
validation band, which is sharper. The apparent oscilla-
tion in variance reaches minima at approximately 20,
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35, and 50 seconds in Figure 4A; it reaches minima at
approximately 30 and 50 seconds in Figure 5A.

Variance oscillations were still evident in the 70-
sample local cluster and cloud studies, but overall var-
iance decreased. Because of the ISL’s structure, as the
number of lobule samples increased, the variance
decreased and the asymptoticity increased. That
expected trend is evident in the finite difference plots.

Both pairs of 84-sample studies (Figures 4A, B and
Figure 5A, B) achieved validation. Although hints of the
variance oscillation remain in the 84-sample outflow
plots, they satisfied the SM. Further, the variance oscilla-
tion is faint or absent in the 152 sample experiments
executed in the cloud (Figure 5G, H).

Discussion
Arguably, the more important methodological impact of
validating these ISLs in both the local cluster and EC2
cloud platforms is on model sharing and computational
experiment repeatability amongst various laboratories
and collaborators. It is a simple matter to acquire and
read the source code for a simulation like the ISL. For
an organization with ample resources, the appropriate
systems administration, and programming skills, it is
straightforward to set up a serial computer platform on
which to execute an experiment. However, because syn-
thetic models like ISLs are very concrete and implement
fine grained, multilevel and multiscale networked
mechanisms, experiments on serial computers are infea-
sible. Similar models will face the same problem. Hence,
in order for a laboratory to repeat a given experiment
or, more importantly, engage in its own exploration of
the analogue, it must have access to a cluster and
enough privileged user access to configure the tool-
chain on that cluster. This obstacle is higher than it
seems, for it requires a well-organized laboratory and
the motivation and resources to do the work. In effect,
this obstacle contributes to the dominance of engineer-
ing oriented modeling and simulation (typically relying
on proprietary software), and limits scientific, explora-
tory modeling to a privileged elite with large budgets.
Although Amazon’s EC2 infrastructure costs some
money, the semi-automated methods used to instantiate
virtual machine images, terminate those instances, and
pay for the service with a credit card allow anyone to
construct and use their own cluster at minimal cost.
During the exploration phase of this work, an individual
49-sample experiment cost approximately $30, repre-
senting what a curious scientist might pay simply to
instantiate and run a single experiment. When com-
pared with the cost of building, purchasing, or maintain-
ing a cluster, or acquiring time on another laboratory’s
cluster and then arranging for it to be configured prop-
erly for these experiments, the EC2 costs seem quite
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low. However, this cost estimate is informal. Kondo
et al. [11] reported a detailed treatment of costs for the
EC2. Costs have also been reported for voluntary com-
puting grid platforms like BOINC [16].

Even though we attempt to replicate as much of the
environment as possible, our objective, detailed in Meth-
ods, was scientific repeatability, not data duplication.
Previous experiments [2-4] only required 49 samples to
show experimental indistinguishability, in part because
prolonged rather than bolus dosing was used. However,
some anomalous results from previous experiments had
shown periodicity [17]. Nevertheless, the 49- and 70-
sample experiments in both the cluster and cloud failed
to validate because of large variance oscillations. We
conjectured that perhaps because the diltiazem outflow
profile was relatively flat, the ISL parameterizations
needed to validate against it would show underlying
oscillations that are not evident in profiles that decline
more steeply. Something causes ISL outflow profile var-
iance to fluctuate. It could be: a) the parameters, code,
or input data differ between each experiment or b) the
discretized nature of each lobule is sufficiently unique
so that it takes a large lobule sample to produce an
acceptable approximation of a continuous liver outflow
profile. If it is a), then the apparent artifact would still
be evident after a large number of samples; it would not
be steadily washed out with additional samples. If it is
b), then having experiments comprised of enough sam-
ples will make the oscillations cancel each other. The
latter is what we observed; we needed at least 84 lobule
samples (Figs. 4 and 5) to achieve validation.

One way to conceptualize a discretized ISL during
operation is as a large set of oscillators. Each space
within an ISL acts, to some extent, like a timed storage
device. A compound comes into a space (e.g., Space C),
is effectively sequestered there for a number of cycles as
it moves about, and it then exits that space. It may or
may not be sequestered again later along its path to the
CV. Hence each compound goes through a series of
store-release processes, except that the store and release
events are stochastic. The delay SoluteBindingCycles,
however, is not stochastic. Each lobule execution starts
with 5,000 compounds pulsed into the PV. Each one
encounters a large array of “inductors” that can retain a
compound for an interval and then release it. When a
large number of compounds get caught, released,
caught, and released all at roughly the same intervals,
we see what looks like a stochastic oscillator with a ran-
dom signal riding atop a larger oscillation. Such a signal
is made more obvious by the impulse bolus and a small
number of compounds. The only elements of the model
interfering with the predictability of the combined oscil-
lation are: 1) the stochasticity surrounding when each
compound is bound and rebound and 2) that some
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compounds are metabolized and their product moved
into the BileCanal, and no longer contribute to the pro-
file. Hence, as the number of compounds increases, the
variance oscillations should disappear. Indeed, the high
variance that showed up in the 49-sample cluster run in
Figure 4B, disappeared when the number of samples
were increased to 70. Furthermore, the variance swings
diminished in each of the 70 then 84-sample studies on
both the local cluster and in the cloud. Finally, for the
152-sample studies in the cloud, the variance swings
have disappeared completely and the outflow profile
decays more smoothly. The similarity between the clus-
ter and cloud results for 84 and fewer MC lobules
demonstrates the equivalence of the models executing
on the two platforms. Further, confirming the low sam-
ple size conjecture with the 152-sample experiments
demonstrates the value of having available the scalable
cloud platform to extend the mechanism validation and
falsification methods beyond the capabilities of the local
cluster.

The results demonstrate experimental indistinguish-
ability of ISL outflow profiles from the local cluster and
Amazon EC2 cloud platforms for experiments consisting
of 84 or more lobule samples. The results also demon-
strated that mechanistic changes confined ISL behaviors
to a smaller, more constrained region of parameter
space. The modifications provide an even more concrete
and specific, falsifiable hypothesis about the referent
mechanisms. Making these changes and validating them
against the coarse aspect of outflow profiles have made
more specific the regions of the parameter and behavior
spaces that are biomimetic without losing the generality
of ISL parameterization.

Conclusion

The results contribute evidence of silico-to-wet-lab phe-
notype similarity, specifically that ISL behaviors can
cover some of the behavior space of referent liver
experiments. So doing allows for concrete representa-
tions of multilevel hepatic mechanisms in many distinct
experimental contexts, without degrading the ability to
parameterize an ISL so as to accurately represent a par-
ticular context. To date, the scientific benefits of experi-
menting with multiscale biomedical models has been
limited to small numbers of researchers with access to
computer clusters. Cloud technology coupled with the
evidence of scientific equivalency has lowered the bar-
rier and will greatly facilitate model sharing while pro-
viding straightforward tools for scaling simulations to
encompass greater detail with no extra investment in
hardware. The flexibility and dynamic expandability of a
platform cloud infrastructure is important for open-
ended, exploratory, mechanism-focused research.
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Additional material

Additional file 1: ISL Cloud Supplement. Instructions for Executing an
In Silico Liver (ISL) on EC2. Provided are detailed, step-by-step
instructions for setting up an ISL using EC2.

Additional file 2: isl-for-bmc. ISL Source Code and enabling
documents.
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