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Abstract

Background: Global profiling of in vivo protein-DNA interactions using ChIP-based technologies has evolved
rapidly in recent years. Although many genome-wide studies have identified thousands of ERa binding sites and
have revealed the associated transcription factor (TF) partners, such as AP1, FOXA1 and CEBP, little is known about
ERa associated hierarchical transcriptional regulatory networks.

Results: In this study, we applied computational approaches to analyze three public available ChIP-based datasets:
ChIP-seq, ChIP-PET and ChIP-chip, and to investigate the hierarchical regulatory network for ERa and ERa partner
TFs regulation in estrogen-dependent breast cancer MCF7 cells. 16 common TFs and two common new TF
partners (RORA and PITX2) were found among ChIP-seq, ChIP-chip and ChIP-PET datasets. The regulatory networks
were constructed by scanning the ChIP-peak region with TF specific position weight matrix (PWM). A permutation
test was performed to test the reliability of each connection of the network. We then used DREM software to
perform gene ontology function analysis on the common genes. We found that FOS, PITX2, RORA and FOXA1
were involved in the up-regulated genes.
We also conducted the ERa and Pol-II ChIP-seq experiments in tamoxifen resistance MCF7 cells (denoted as MCF7-
T in this study) and compared the difference between MCF7 and MCF7-T cells. The result showed very little over-
lap between these two cells in terms of targeted genes (21.2% of common genes) and targeted TFs (25% of
common TFs). The significant dissimilarity may indicate totally different transcriptional regulatory mechanisms
between these two cancer cells.

Conclusions: Our study uncovers new estrogen-mediated regulatory networks by mining three ChIP-based data in
MCF7 cells and ChIP-seq data in MCF7-T cells. We compared the different ChIP-based technologies as well as
different breast cancer cells. Our computational analytical approach may guide biologists to further study the
underlying mechanisms in breast cancer cells or other human diseases.

Background
Global level profiling of in vivo protein-DNA interac-
tions using ChIP-based technologies has evolved rapidly
in recent years, from hybridization with spotted or tiling
microarray (ChIP-chip) [1-4], to SAGE-like tags (ChIP-
SAGE) [5] or pair-end tag sequencing (ChIP-PET) [6],
to current massively parallel sequencing (ChIP-seq)
[7-10].

Estrogen-mediated gene regulation is such a challen-
ging question that it may require powerful genome-wide
profiling tools like ChIP-based technologies. In breast
cancer cells, ERa can mediate genomic transcription
regulation with nuclear initiated steroid signalling and
non-genomic activation of various protein kinase cas-
cades [11]. In the classical genomic pathway, estrogen
receptor binds to estrogen response elements (ERE) at
the regulatory region of the target genes and recruits
co-activators or co-repressors to modulate gene tran-
scription [12]. The non-classical genomic pathway does
not require ERE but mediates transcription by the inter-
actions of ERa with other proteins such as AP1 [13],
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NF-kB [14], SP1 [15,16] and others. At molecular level,
we need to identify those genes targeted and regulated
by estrogen receptors, and the more challenging task is
to delineate the architectures and the underlying
mechanisms of such regulation. Estrogen receptors,
once activated, may induce increased or decreased tran-
scription of its numerous targets, which have been
investigated by expression arrays [17,18]. In some recent
publications, profiling the distribution of ERa by ChIP-
seq ChIP-PET and ChIP-chip indicated a highly compli-
cated regulation network involved with both ERa and
other relative transcription factors [17-19]. For instance,
only a small portion of ERa binding sites were located
in the promoter regions of known genes and many
unforeseen binding sites could be far away from the
TSS, up to 50-100 kb. It was also found that a large
number of transcription factors had binding sites co-
enriched with ERa binding sites, which indicated a
close collaboration between ERa and other factors. All
these findings support the evolving concept of estrogen
receptor regulation from the conventional interaction
between ERE and ERa to the long-range chromatin
loop [20].
Tamoxifen is one of selective ER modulators (SERMs)

and is widely used to block ERa function for breast can-
cer treatment [11]; however, this endocrine therapy is
limited by the onset of drug resistance. Tamoxifen resis-
tance could be induced through both genomic and non-
genomic estrogen pathways mentioned above and
understanding estrogen regulation network will offer
therapeutic advantages. Our recent expression array
study showed that, in breast cancer cells with acquired
tamoxifen resistance, different groups of genes were tar-
geted by estrogen treatment compared with the parental
cells [20]. Delineating the changed architectures of the
ERa regulation network in tamoxifen resistance cells by
ChIP-based assays may provide direct and useful infor-
mation on tamoxifen resistance.
In this study, we collected three public available ChIP-

based datasets–ChIP-chip, ChIP-PET and ChIP-seq for
ERa binding sites in breast cancer MCF7 cells upon
estrogen exposure, which also include RNA polymerase
II (Pol-II) binding sites in these cells since the binding
of Pol-II could provide direct information of potential
transcription activation. We then applied computational
approaches to investigate the hierarchical regulatory
information for ERa regulation in MCF7 cells. We have
been able to construct hierarchical regulatory networks
with target hubs and have established the regulatory
pathways between TFs and genes. We also have applied
ChIP-seq technology to systematically compare the
estrogen-mediated regulatory information between
MCF7 and MCF7-T cells.

Results
Whole-Genome-Wide localization of in vivo ERa/Pol-II
binding peaks to genes in breast cancer cells
It is well recognized that the transcription is driven by
Pol-II and the general transcriptional machinery; there-
fore, it is likely that the genes (or promoters) bound by
ERa may not be transcribed without Pol-II binding. As
such, we need to use the whole-genome-wide binding
peaks information combining ERa with Pol-II
antibodies.
The peak-calling procedure was described in the

Methods section. The number of ChIP peaks from
ChIP-seq is 12,516 for ERa and 13,261 for Pol-II upon
E2-treated compared to the vehicle control, the number
from ChIP-PET is 14,703 for ERa and 13,133 for Pol-II,
the number from ChIP-chip is 10,409 for ERa and
11,455 for Pol-II (Additional file 1, Table S1).
Our previous studies [20-23] and others [24-28] have

tried to establish and characterize the molecular
mechanisms of estrogen-dependent breast cancer cells.
In order to further elucidate the more detailed underly-
ing mechanisms, we then created a whole-genome-wide
localization of in vivo ERa binding peaks in the MCF7.
We located these identified ERa and Pol-II binding
peaks relative to a known annotated gene from the
RefSeq database (UCSC HG18 Assembly). Our results
showed that 18% for ChIP-seq, 44% for ChIP-PET, 45%
for ChIP-chip of Pol-II binding peaks are located within
Promoter regions (defined as 2 kb upstream to 2 kb
downstream, including 5’ Core, 5’TSS and WithinGene
Core regions) of a known transcription start site (5’TSS)
(Additional file 1, Table S1 and Additional file 2, Figure
S1). We also found that a relatively small number of
ERa binding peaks are located in a known 5’TSS region
(9% for ChIP-seq, 6% for ChIP-PET, 6% for ChIP-chip).
A big portion of ERa binding peaks are located within
intra-genic regions (38% for ChIP-seq, 37% for ChIP-
PET, 58% for ChIP-chip) as well as gene desert regions
(14% for ChIP-seq, 20% for ChIP-PET, 12% for ChIP-
chip), 100 kb far away from known 5’TSSs and 3’TSSs
(Additional file 2, Figure S1B). While our location analy-
sis confirms the results from previous studies [17-19]
where the data were collected, our comparative analysis
further showed ERa binding patterns are essentially
similar in which the majority of ERa binding peaks are
outside of proximal promoter regions regardless of dif-
ferent ChIP technologies. Our analysis also suggests that
most ERa associated genes may be regulated by the
long-distance interaction between ER-bound distal
enhancer and proximal promoter regions. We also
found that some portions (18% for ChIP-seq, 17% for
ChIP-PET, 11% for ChIP-chip) of Pol-II binding peaks
are located in the 3’ ends (including 3’ Core, 3’ Proximal
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and 3’ Distal regions). This finding might imply some
alternative transcripts are transcribed in the 3’ end and
is consistent to the previous report of alternative pro-
moters identified in the 3’ end [29]. This could also be
simply due to either stalled RNA Pol II that has finished
transcription or loops formed with the promoters as has
been proposed [30].

Regulation of ERa target gene expression in MCF7 cells
We then systematically compared three different ChIP
based technologies. We aim to correlate 1,513 E2-
induced genes identified by Carroll et al. [17] to ERa
and Pol-II binding peaks identified from different ChIP-
based datasets. For Pol-II binding peaks, we only consid-
ered those peaks within proximal upstream regions (less
than 10 kb) relative of TSS, within intra-genic regions,
and within proximal downstream regions (less than 10
kb) relative of TTS. For ERa binding peaks, we consid-
ered all binding peaks except those in the gene desert
regions (larger than 100 kb away from a TSS). For
ChIP-seq data, it turned out to have a total of 12,516
ERa binding peaks corresponded to 5,693 annotated
genes and 13,261 Pol-II binding peaks corresponded to
5,186 genes. And 2,661 genes were identified to have
both Pol-II and ERa binding peaks in ChIP-seq dataset
(Figure 1A, top panel). Among these 2,661 genes with
enriched double (ERa and Pol-II) binding peaks, only
273 of them overlapped with 1,513 E2-induced genes in
MCF7 show differential expression (Figure 1A, top
panel). Surprisingly, a majority (1,240 of 1,513) of genes
in ChIP-seq dataset with differential expression lack
ERa and Pol-II binding sites. After examining the corre-
lation of ERa and Pol-II identified by ChIP-chip dataset
in MCF7, we obtained very similar results, where 307
genes have both Pol-II and ER enriched binding peaks.
(Figure 1A, bottom-right panel). In order to exclude dif-
ferent experiments’ discrepancy, we also compared the
ERa and Pol-II binding data identified by ChIP-PET,
and E2-induced expression data in MCF7. Similarly,
only 320 common genes were obtained (Figure 1A, bot-
tom-left panel). The overlap of gene number of three
different technologies was shown in Figure 1B. Overall,
the similar findings in all three ChIP-based dataset seem
to indicate that ERa binding and E2-mediated Pol-II
binding in most of ERa direct targets may not necessa-
rily lead to detectable activated or repressed expression
changes. Instead, they may be in paused states as the
previous reports suggested [18,31,32]. Meanwhile, it also
seems that a majority of E2-induced expression changes
could be caused by downstream estrogen effect and may
have not direct and close correlation with ERa-recruited
Pol-II complex for transcription initiation [33].
We also found that 164 genes (~60%) are common

between ChIP-seq and ChIP-chip (Figure 1A) while 183

(~59.6%) common genes between ChIP-chip and ChIP-
PET (Figure 1A). A comparison of ChIP-seq and ChIP-
PET has shown that they have 172 (~63%) common
genes (Figure 1A).

De Novo identification for ERa binding sites and its
binding partners in MCF7 cells
One possible scenario to explain why the majority of
ERa direct targets are not activated or repressed is
that they may lack certain binding TF partners serving
as helpers for ERa to co-regulate these genes. Thus we
applied the de novo motif discovery approach (ChIP-
Motifs) [34,35] developed in our previous study to
identify the known or novel ERa TF partners. ChIP-
Motifs is online software designed for searching the
most significant motifs in given peaks based on the
known factor motifs in TRANSFAC [36] and JASPAR
[37] databases.
In this study, for each ChIP-based dataset, we selected

the top 2000 peaks with high scores (enrichments) as
the input data for ChIPMotifs. After running ChIPMo-
tifs, ERE, PAX6, PITX2 and RORA were identified in
ChIP-seq data; ERE, PITX2, RORA and GATA2 were
identified in ChIP-chip data; RORA, PAX6, PITX2 and
ERE were identified in ChIP-PET data (Figure 2). We
failed to identify several TFs (CEBP [38], FOS (AP1)
[39], FOXA1 [17]) reported to be associated with ERa
in previous studies. One possible reason is that our
de novo ChIPMotifs first ab initio identify motifs at a
set of relatively short sequences (~300 - 500 bp), then
find possible matched TFs from the TRANSFAC data-
base after obtaining significant motifs, therefore, this
might miss some co-TFs if they locate outside 500 bp
distance from ERa. But if we used longer sequences,
that might lose the specificity for the identified motifs
such as missing identifying ERE. Regardless, we chose to
include these three co-TFs (CEBP, FOS and FOXA1) in
our further analysis. These TFs’ Seq-LOGOs in ChIP-
seq data, ChIP-chip data and ChIP-PET data were
shown in Figure 2. Further analysis of these data indi-
cates that in addition to ERE, there are two TF motifs
common among ChIP-seq data, ChIP-chip data and
ChIP-PET data–PITX2 and RORA (Figure 2).

ERa regulatory network in estrogen-dependent MCF7
cells
Previous studies have shown ERa regulates its target
genes through three major binding models a) direct
binding to ERE (estrogen response element); b) indirect
binding, through which it binds to other TF partners
which bind to DNA; and c) co-occurrent binding, where
both ERa and other TF partners bind to their own
specific DNA motifs (Additional file 3, Figure S2)
[20-22,40,41].
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In order to understand how the regulatory network
responds to E2 treatment in three ChIP-based technolo-
gies, we here integrated the ChIP data with the time ser-
ies of E2 induced gene expression data. In order to
determine if a gene is differentially expressed, we used
the difference of expression levels between time point
12 hr and 0 hr, positive value as up-regulated and nega-
tive value as down-regulated. Thus all genes in the net-
works were differentially expressed and with ERa and
PolII binding ChIP-peaks (as mentioned in “Regulation
of ERa target gene expression in MCF7 cells” section,
the ERa peak location is between 100 kb upstream of
5’TSS and 100 kb downstream of 3’TSS, while the Pol-II
peak location is between 10 kb upstream of 5’TSS and
10 kb downstream of 3’TSS. The ERa peak and Pol-II
peak do not necessarily be overlapped, but they must be
located in the same gene). Furthermore, for the tran-
scriptional regulatory network (as a part of gene regula-
tory network), only transcription factors were used for

the network construction (called normal TFs). ERa
binding peaks associated with those normal TFs were
further scanned by Hub TF (the TF which motif was
enriched in top 2000 ERa binding peaks of the genes
with both ERa and Pol-II binding sites, and was identi-
fied from the previous section “De Novo identification
for ERa binding sites and its binding partners”) PWMs
to determine if there is any connection between a Hub
TF and a normal TF. A shuffling test was performed to
test the reliability of each connection of the network.
The resulted regulatory networks were thus constructed
and topologically visualized using Cytoscape [42] soft-
ware platform (see Methods section and Figure 3). In
the network, all the normal/Hub TFs were represented
as a node (red nodes represented for up-regulated
genes, green nodes represented for down-regulated
genes, and blue nodes represented for Hub TFs), and all
the connections were represented as edge between 2
nodes (Figure 3). An edge has a direction, where it starts

Figure 1 Summary of correlations of identified ERa, Pol-II binding peaks with gene expression profile after E2-induced in MCF7 cells.
(A) Genes with both ER and Pol-II peak binding in the gene region (between 100 kb upstream of TSS and 100 kb downstream of 3’ UTR), 2661
(273 common genes overlapped with gene expression data) for ChIP-seq, 2610 (320 common genes overlapped with gene expression data)for
ChIP-PET dataset and 2378 (307 common genes overlapped with gene expression data) for ChIP-chip dataset, respectively. 172(~63%) common
genes were found between ChIP-seq and ChIP-PET, this number was higher than the common genes number between ChIP-seq and ChIP-chip
(164, ~60%) and common genes number between ChIP-chip and ChIP-PET (183, ~59.6%). (B) The overlapped number of genes of three different
technologies.
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from Hub TFs to normal TFs. The edge between a Hub
TF PWM (ex: FOXA1) and a normal TF differentially
expressed following estrogen stimulation (ex: MYC)
means that a motif of Hub TF (i.e.: FOXA1) is found
within ERa peak region(s) associated with another TF
gene (i.e: MYC). Since every normal TF was with both
ERa and Pol-II peaks, the edge represented for the pos-
sible direct/indirect binding of Hub TF (ex: FOXA1)
together with ERa to regulate normal TF (i.e: MYC).
In summary, 40 nodes (Additional file 4, Figure S3A)

were identified for ChIP-seq data, 50 for ChIP-PET and
37 for ChIP-chip (Additional file 4, Figure S3B, C). A
comparison of the three regulatory networks shows that
there are 6 common hubs (ER, FOS, RORA, FOXA1,
CEBP and PITX2) and 16 (~40%) common targeted TFs
(Additional file 5, Table S2) in MCF7. The final com-
bined ERa regulatory network for MCF7 cell from all
three ChIP-based datasets was shown in Figure 3.

ERa regulatory pathway analysis in estrogen-dependent
MCF7 cells
We next applied DREM program to model, analyze, and
visualize dynamic gene regulatory functions [43]. The

maps would potentially infer major bifurcation events in
the time series expression data and transcription factors
responsible for them. Take the ChIP-seq data as exam-
ple, we used 6 ERa associated TF partners–RORA,
PITX2 and PAX6 were identified by de novo ChIPMotifs
from our data, and CEBP, FOS (AP1) and FOXA1 were
known TF partners of ERa. After integrating the TF-
DNA interactions data with 1,513 genes (see Methods
section), a total of 5 paths were clearly diverging for
these genes (Additional file 6, Figure S4 (I)). The same
TF partners were used in ChIP-PET dataset (Additional
file 6, Figure S4 (II)). The TF PAX6 was replaced with
GATA2 in ChIP-chip dataset (Additional file 6, Figure
S4 (III)). All the TF partners were selected based on the
ChIPMotifs results (see Results section “De Novo identi-
fication for ERa binding sites and its binding partners”).
A final combined regulatory pathway map obtained
from three ChIP data showed that genes were traversing
the 3 splits are shown with (a) corresponding to the
split at 0 hr, (b) corresponding to the split at 3 hr and
(c) corresponding to the split at 6 hr (Figure 4). The
paths out of the splits were annotated with TFs deter-
mined by DREM to be associated with the genes

Figure 2 List of transcription factor motifs identified by our de novo ChIPMotifs approach. (A) ChIP-seq, (B) ChIP-PET, and (C) ChIP-chip.
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assigned to the path at a score < 0.1. The GO annotations
for genes in 5 of the paths were shown at the right with
their p-values (Figure 4). Our finding showed E2
mediated a set of repressed genes with direct ERa bind-
ing sites where they are overrepresented with lytic
vacuole/lysossome (p = 7.8 × 10-5). We further revealed a
new estrogen-mediated up-regulated path requiring a TF
partner PITX2, and the function of this set of genes is
associated with ribonucleoprotein complex (p = 6.7 × 10-
8), mRNA metabolic process (p = 1 × 10-10), mRNA pro-
cessing (p = 4.9 × 10-10) and chromosome (p = 5.5 × 10-7).
Our analysis also showed other paths with less significant
genes: Lyase activity with a p-value of 6.9 × 10-3 (RORA,
FOS and CEBP), response to virus with a p-value of 4.3 ×
10-3. We also found that the TF FOS, CEBP, FOXA1 and
PITX2 are related to the up-regulated genes, while
FOXA1 was shown up in both up and down-regulated
genes. The gene lists of five paths were shown in

Additional file 7, Table S3. The relationship of the 6 TFs
(ERa, RORA, FOS, FOXA1 PITX2 and CEBP) and their
related genes were shown in Additional file 8, Table S4.

A comparison of MCF7-T and MCF7 cells
To further understand the difference of the ERa asso-
ciated gene regulatory information between MCF7 and
MCF7-T, a tamoxifen-resistant breast cancer cell line,
we conducted ERa and Pol-II ChIP-seq experiments in
MCF7-T cells (see Methods section). Around 22 million
reads were obtained for Pol-II control data, and 19 mil-
lion reads in Pol-II E2-treated data. For ERa antibody,
the number is 14 million for control data and 16 million
for E2-treated data (Table 1). After uniquely mapping to
the human genome, the reads number reduced to 7 mil-
lion for Pol-II control data, 5 million for Pol-II E2 trea-
ted data, 5 million for ERa control data and 4 million
for E2 treated data, respectively (Table 1). In general,

Figure 3 The regulatory network for E2 treated MCF7 cells, combining with 3 different ChIP-based datasets. Red nodes represented for
up-regulated genes, green nodes represented for down-regulated genes, and blue nodes represented for Hub TFs.
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25-30% reads were uniquely mapped to the human
genome.
In MCF7-T cells, 3,596 ERa binding peaks corre-

sponded to 1,743 annotated genes and 4,644 Pol-II
binding peaks corresponded to 3,207 genes were
found. 530 genes were identified to have both Pol-II
and ERa binding peaks (Figure 5A). 438 of them show
differential expression overlapped with 1,667 E2-
induced genes identified in MCF7-T expression profile

analysis (Figure 5A). Similar to the MCF7 cells, a
majority (1,229 of 1,667) of genes with differential
expression lack ERa and Pol-II binding peaks.
Since we used ChIP-seq technology for MCF7-T cells,

we compared the number of ERa regulated genes
between MCF7-T and MCF7 cells using ChIP-seq tech-
nology. To illustrate the difference of these two cell
lines, we first compared the overlapped number of
genes with ERa binding peak and Pol-II binding peak,
respectively. We found that 1075 genes were overlapped
with ERa binding peak for both MCF7 and MCF7-T
cell lines, and this number is 1508 for Pol-II binding
peak. We also found that only 58 (~21.2%) common
genes (Figure 5A) between these two breast cancer cells.
This low overlapped number demonstrated that ERa
targeted different sets of genes in these two cancer cells.
We next applied the same computational analytical

approach to examine the ERa regulated network in
MCF7-T cells. We started with training the top 2000

Figure 4 Regulatory pathway analysis on the dataset after combining with all three ChIP-based datasets. A) The time series gene
expression data of E2 induced genes superimposed with the regulatory pathway map produced by DREM using the gene expression profile as
well as ERa binding sites and Pol-II binding sites. The bright green nodes indicate split points where the sets of expression of genes diverge. B)
Paths out of splits are annotated with TFs determined by DREM to be associated with the genes assigned to the path at a score <0.1. The GO
annotations for the genes in 5 of the paths are shown at the right with their p-values. C) The genes traversing the 3 splits are shown with (a)
corresponding to the split at 0-hr, (b) corresponding to the split at 3-hr and (c) corresponding to the split at 6-hr.

Table 1 A summary of binding peaks of Pol-II and ERa
in control and E2-treated MCF7-T cells identified by
ChIP-seq

TFs Cell conditions Reads Unique Mapped Reads

Pol-II Control 22,168,614 7,434,175

E2-treated MCF7-T 19,573,995 5,715,418

ERa Control 14,075,733 5,161,146

E2-treated MCF7-T 16,401,648 4,445,403
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ERa binding peaks with high scores (enrichments) by
the ChIPMotifs, a total of 7 TFs were identified, includ-
ing ERE, PAX6, PITX2, RORA, XBP1, PPARG and
PPARA (Figure 5B). Of them, ERE, PAX6, PITX2 and
RORA are the same as the ones we identified in ChIP-
seq data of MCF7 cells.
The ERa associated transcriptional regulatory network

in MCF7-T cells was then constructed and visualized as
shown in Figure 5C, including 32 nodes. A comparison
of the networks between MCF7-T and MCF7 cells
(using ChIP-seq dataset) showed that there are 2 com-
mon Hub TFs (RORA and PITX2) and 8 (about 25%)
common targeted TFs. However, in MCF7 cells we
found that there are 6 common Hub TFs and 16 (about
40%) common targeted TFs among different ChIP tech-
nologies. Taken together, our results strongly suggested
that E2 induces a different ERa associated regulatory
mechanism in MCF7-T cells compared to MCF7 cells,

in other words, a rewired ERa regulation network in
tamoxifen resistance cells.

Discussion
In this study, we applied computational approaches to
analyze and integrate three ChIP-based datasets and one
time-series gene expression data to investigate the
dynamic regulatory information for ERa in estrogen-
dependent breast cancer MCF7 cells. Our studies not
only compared the results of three ChIP-based proto-
cols, but also have inferred the regulatory network and
pathway for E2 induced MCF7 cells. Moreover, we used
the same approach to compare the difference between
MCF7 and MCF7-T cells.
Our comprehensive analysis of the estrogen-mediated

regulatory network in MCF7 indicated that the three
ChIP-based technologies have similar peak distribution
patterns for the same antibody. However, for different

Figure 5 Peak number, Motif and Regulatory network of MCF7-T cells. (A) Comparison of common genes between MCF7 and MCF7-T cells
in ChIP-seq dataset. Genes with both ER and Pol-II peak binding in the gene region (between 100 kb upstream of TSS and 100 kb downstream
of 3’ UTR), 2661 (273 common genes overlapped with gene expression data) for MCF7 cells, 530 (438 common genes overlapped with gene
expression data) for MCF7-T cells, respectively. 58(~21.2%) common genes were found between MCF7 and MCF7-T cells. (B) Transcription factor
motifs identified by our de novo ChIPMotifs approach for MCF7-T cells. (C) The Regulatory network for E2 treated MCF7-T cells.
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antibody (ERa and Pol-II), the binding preference is
totally different. Pol-II tends to binding to the promoter
region, while ERa has no specific preference.
Our analysis (Figure 1A) also showed that there were

more common regulated genes (in percentage) between
ChIP-seq data and ChIP-PET data than ChIP-chip
data. This may be due to a similar sequencing-based
technology used for ChIP-seq and ChIP-PET, but an
array-based technology used for ChIP-chip data. The
regulatory network analysis indicates some common
regulatory Hub TFs were formed in response to estro-
gen signaling and may lead to the same regulatory
paths in MCF7. We also found that there are ~40%
common TFs regulated by ERa among three different
ChIP-based technologies.
We also compared the regulatory network in MCF7

constructed by our approach with another method–
ReMoDiscovery [44]. We used 0.9 (for Motif threshold),
and 0.5 (for expression correlation threshold) as the
input threshold. Total 26 (of 42) nodes were overlapped
between our method (Additional file 4, Figure S3A) and
ReMoDiscovery (Additional file 9, Table S5).
In Figure 4, all the genes were with both ERa and Pol-

II peak binding, and differentially expression between 12
hours of E2 treat and control. In Figure 4A, the genes
were clustered based on the expression values. Each thin
line meant the gene expression data (relative value com-
pared with the first time point) at different time point.
The genes were classified into 3 groups (the second
time point), 4 groups (the third time point) and 5
groups (the fourth time point), respectively. The thick
lines corresponded to the gene expression trend of each
group. In Figure 4B, the important Hub TFs (Hub TFs
with statistically significant number of motifs in the ERa
binding peaks of groups of genes) were identified for
each group at every time point (4 Hub TFs for time
point 2, group 1; 1 for time point 2, group 2 and 3; 3
for time point 4, group 2). The 5 groups of genes were
also showed significantly different gene functions. We
listed the functions and p-values. Figure 4C (a) showed
both up and down regulated genes, (b) corresponded to
down regulated genes, and (c) corresponded to up regu-
lated genes. A TF-gene relationship table is prepared as
the input of DREM (Additional file 8, Table S4). In this
table, 1 represented motif of Hub TF existed in the peak
region of a gene.
Since a totally different technology is used for ChIP-

chip data, in order to reduce the inconsistency caused
by the technology itself, we further examined only
ChIP-seq and ChIP-PET data to reproduce the network
(Figure 6). We found a total of 23 TFs in the network in
which there is about 50% increase in terms of the num-
ber of nodes. After comparing the combined network
(ChIP-seq and ChIP-PET) with ChIP-seq network

(Additional file 4, Figure S3A) or ChIP-PET network
(Additional file 4, Figure S3B), about 60% of the TFs
were overlapped. However, this number is only 40% for
the combined network of three technologies together.
The hierarchical regulatory network analysis with

DREM and Cytoscape revealed that RORA could be a
potential ERa partner, which is consistent to other
reports [45] showing that RORA interacts with ERa and
enhances ER transcriptional activity in breast cancer.
This finding also indicates that RORA was required for
a subset of E2-mediated up-regulated genes associated
with functions of Lyase activity. Our results may provide
the guidance for further investigation on the role of this
co-regulation pathway played in breast cancer.
In MCF7-T cells, we found very small proportion

(21.2%) of differential expressed genes overlapped with
MCF7 cells (ChIP-seq dataset) with both ERa and Pol-II
binding peaks. In addition, the number of common TFs
of the network between MCF7-T and MCF7 cells is
only 25%. Moreover, we also found two TFs with oppo-
site expression trend between MCF7 and MCF7-T cells,
in which MSX2 is up-regulated in MCF7-T cells and
down-regulated in MCF7 cells, whereas ESR1 (ERa) is
down-regulated in MCF7-T cells. We also identified 3
new Hub TFs in MCF7-T cells which were not found in
MCF7 cells. This indicates that ERa may be no longer
the most important transcription factor, other transcrip-
tional regulators and signalling pathways may play
important role in tamoxifen resistant MCF7 cells. Our
comparative analysis also suggests that the ERa asso-
ciated regulatory network in MCF7-T cells is rewired
upon E2 induced.
We have performed additional experiments using both

RT-qPCR and ChIP-qPCR to validate randomly select
eight ER regulated binding loci in MCF7-T cell, and the
result demonstrated that the predicted ER regulated
binding loci with differential gene expression after E2
treatment were validated as shown in Additional file 10,
Figure S5.
We further compared the E2 induced gene functions

to specify the difference between MCF7 and MCF7-T
cell line. We selected the genes that were differentially
expressed and with ERa and PolII binding site. These
genes were performed by GO function by the DAVID
program [46] and the top 10 (the close functions were
removed) categories were selected based on the p-value.
The result was shown in Additional file 11, Figure S6
and Additional file 12, Table S6. 4 of the 10 functions
were the same between those two groups of genes.

Conclusions
In summary, we analyzed hierarchical regulatory net-
works for estrogen-dependent regulation in MCF7 and
MCF7-T cells. We systematically compared different
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ChIP-based technologies as well as different breast can-
cer cells. Our results revealed extended hierarchal regu-
latory networks with new target hubs in breast cancer
cells. Our computational analytical approach may also
provide a framework for dissecting transcriptional regu-
latory networks in response to breast cancer and other
human diseases.

Methods
Our computational analytical approach (Figure 7)
started with ChIP based datasets and gene expression
data. The identified binding peaks of a given TF and
Pol-II are then located to known genes, and genes hav-
ing both the given TF and Pol-II binding peaks are
further correlated with gene expression data based on

RefSeq Gene ID. The given TF binding peaks are further
used for finding the most significant motifs by the ChIP-
Motifs, in which they are used as Hub TFs. The Hub
TF-gene connection is determined by scanning the Hub
TFs’ PWMs in all binding peaks and a permutation test
(described in detail in Methods section “ERa regulatory
network analysis”) is used to test the reliability of each
connection of the network. The resulted regulatory net-
work is visualized by Cytoscape and the pathway is ana-
lyzed by DREM. In this study, a given TF is ERa.

ChIP and microarray data of MCF7 cells
For MCF7 cells, the ChIP-chip data is from Carroll’s
paper [17], ChIP-seq data is from Welboren’s paper
[18], and ChIP-PET data is from Melissa’s paper [19].

Figure 6 The Regulatory network for E2 treated MCF7 cells, combining with 2 different ChIP-based datasets: ChIP-seq and ChIP-PET.
Total 30 nodes (TFs) were found in the network. This number is approximately 60% of the nodes in the network of ChIP-seq/ChIP-PET only.
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The time-series E2-induced gene expression data in
MCF7 cells for all three ChIP-based datasets was
obtained from Carroll et al. 2006 [17]. The data was
with E2 treatment for 4 time points: 0 hr, 3 hr, 6 hr and
12 hr. We considered those genes were up-regulated if
the gene expression values of time point 12 hr are big-
ger than time point 0, and verse versa.

ChIP and microarray data of MCF7-T cells
ChIP-seq of E2-induced MCF7-T cells were main-
tained in a hormone-free medium (phenol red-free
MEM with 2 mmol/L L-glutamine, 0.1 mmol/L nones-
sential amino acids, 50 units/mL penicillin, 50 Ag/mL
streptomycin, 6 ng/mL insulin, and 10% charcoal-
stripped FBS) supplemented with 10-7 mol/L 4-hydro-
xytamoxifen. Prior to all experiments, MCF7-T cells
were cultured in hormone-free medium for 1 week to
deplete any residual OHT, and then MCF7-T cells
were cultured in hormone-free basal medium (phenol-
red free MEM with 2 mM L-glutamine, 0.1 mM non-
essential amino acids, 50 units/ml penicillin, 50 μg/ml
streptomycin, and 3% charcoal-dextran stripped FBS)

for three days. MCF7-T cells were treated with E2
(108 mol/L) for 3 hours.
5 × 107 cells were crosslinked with 1% formalde-

hyde for 10 min, at which point 0.125 M glycine was
used to stop the crosslinking. In brief, after crosslink-
ing, cells were treated by lysis buffers and sonicated
to fragment the chromatin to a size range of 200 bp-1
kb. Chromatin fragments were then immunoprecipi-
tated with 10 ug of antibody/magnetic beads. The
antibodies against Pol-II and ERa were purchased
from Santa Cruz Biotechnology (Santa Cruz, sc-899 ×
and sc-8005 X). After immunoprecipitation, washing,
and elution, ChIP DNA was purified by phenol:
chloroform:isoamyl alcohol and solubilized in 70 μl of
water. Then Illumina library was constructed and
sequenced with Illumina/Solexa Genome Analyzer
(Canada’s Michael Smith Genome Sciences Centre,
Vancouver, CA). Briefly, the ChIP DNA sample was
run in 12% PAGE and the 100-300 bp DNA fraction
was excised and eluted from the gel slice overnight at
4°C in 300 μl of elution buffer (5:1, LoTE buffer
(3 mM Tris-HCl, pH 7.5, 0.2 mM EDTA)-7.5 M

Figure 7 A summary of the computational analytical approach.
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ammonium acetate) and was purified using a QIA-
quick purification kit (Qiagen, Cat#28104). The
library was constructed using Illumina genomic DNA
prep kit by following its protocol (Illunima, cat# FC-
102-1002), clusters were generated on the Illumina
cluster station (Illumina, cat# FC-103-1002), and the
sequence was run on Illumina 1G Analyzer following
the manufacturer’s instructions (Illumina, cat# FC-
104-1003). The unique mapped ChIP-seq datasets
(bed format, total four files: control using ER anti-
body, E2 treated using ER antibody, control using
Pol-II antibody and E2 treated using Pol-II antibody)
for MCF7-T cells are available from GEO database
(accession number: GSE26083) or from our webpage
http://motif.bmi.ohio-state.edu/ERNetwork/.
For E2-induced gene expression data in MCF7-T cells,

Affymetrix U133 Plus2.0 array platform consisting of
~55,000 transcripts was used for measuring E2-induced
gene expression in MCF7-T cells. Three replicates from
different biological samples were performed and normal-
ized using MASS5 in the statistic package R http://www.
R-project.org (Additional file 13, Table S7). A p-value
less than 0.05 using a Welch’s t-test and 2 fold changes
for each gene were used as cutoff thresholds to deter-
mine a set of differential expressed genes. Finally, we
mapped the genes with Human TFs and get 1,667 genes
remains.

RT-qPCR and ChIP-qPCR
After 3 hr of E2 treatment, control and treated MCF7-T
cells were subjected to total RNA extraction by Trizol
reagent (Invitrogen). Total RNA (2 μg) was reverse tran-
scribed to cDNA with oligo-dT (SuperScript III; Invitro-
gen). Quantitative RT-PCR was performed by using
SYBR Green dye chemistry (Applied Biosystems) on a
7500 Real-time PCR system apparatus (Applied Biosys-
tems). Gene Expression was measured by the ΔΔCt
method using GAPDH as the internal control. Statistical
analyses were carried out by using a two-tailed t test.
Specific primers for amplification are available on
request.
To confirm candidate ERa target genes determined by

ChIP-seq, PCR primers targeting a region within 200 bp
of the predicted ERE were used to measure the enrich-
ment of this sequence in anti-ERa-immunoprecipitated
samples by quantitative PCR with SYBR Green-based
detection method (Applied Biosystems). Quantitative
values measured by a standard curve (50 to 0.08 ng, 5-
fold dilution, R2 > 0.99) of input DNA amplified with
the same primer set. Results are presented as the mean
of triplicates with standard derivation.

Calling peaks of ChIP-based data
A standard procedure for extracting image files, map-
ping the reads onto human genome, and filtering the
mapped reads to unique reads was followed with the
Solexa 1.6 pipeline [47]. Only uniquely mapped reads
with a length of 36 bp were then used further for deter-
mining the binding regions by our BELT program [48].
For all datasets, we narrowed the peaks with 500 bp in
length. All the common peak number in Figures 1 and
5A were overlapped according to the gene ID of each
file. We used the fisher exact test [49] to calculate the
p-value of each overlapped number, and assumed that
the human genome number is 30,000 (Additional file
14, Table S8).

ERa regulatory network analysis
The following steps were used to calculate the position
weight matrix (PWM).
Suppose there are m sequences, and the sequence

length is n. For each column j(1 ≤ j ≤ n), the occurrence
frequency of every nucleotide (A or T or C or G) was
calculated by counting the number in m sequences
(equation 1).

f

S c

mi j

i j

i

m

,

,( )

=

=
=
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1
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Where c is one of base type (A/T/C/G), Si,j is the
nucleotide at row i, column j.
Hence, the PWM is represented as a 4*n matrix. For

row i(1 ≤ i ≤ 4) and column j(1 ≤ j ≤ n), the PWM can
be calculated:

w i j
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Where p(i) is the background frequency of nucleotide i.
For Human genome, p(i = A) = p(T) = 30% and p(i = C) =
p(G) = 20%, approximately.
For the case that the number sample is small, the

equation 1 needed to be replaced as
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Then, the significant PWMs were mapped to TransFac
[36] database and JASPAR [37] database to find the most
similar TFs. And ERa and its partner TFs were found.
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To construct the regulatory network, the PWM was
used to scan the peak region of each gene. To make the
result more reliable, we use stringent threshold (1 for
core score, 0.95 for PWM score) to determine the
underlying TF binding site. The PWM score and core
score is calculated as follows:
Given a sequence with the same length (column num-

ber n) of PWM, we can first calculate the sequence
score:

S w S jseq i

j

n

=
=

∑ ( , )
1

(4)

Where w(Si, j) is the score at row i which the nucleo-
tide is the same as the given sequence at column j.
Then, the minimum and maximum score of PWM

can be calculated as:

S w i j
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The PWM score for the given sequence is shown in
equation 7

S
S S

S SPWM
seq=

−
−

min

max min
(7)

Our program ChIPMotifs will give the length (k) and
start (k1) and end (k2) position of Core region in a
PWM. The given sequence will be scanned (n-k+1)
times (move forward one position each time) to find a
maximum Core score. For the dth time, the sequence
score can be represented as:
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For equation 5 and 6, only the boundary of j was
changed from 1-n to k1- k2. The Core score for the dth
time is

S
S S

S SCore d
seq d

,
, min

max min

=
−
−

(9)

And the Core score for the given sequence is

S SCore
d

Core d= max( ), (10)

If there is Motif for ERa and Hub TFs for certain
gene, a connection between the Hub TF (include ERa)
and the gene was made. We further facilitated these
relationships by visualizing an estrogen regulatory net-
work with Cytoscape [42] software platform (see Results
section).
To test the significance of the network proposed in

this study, a statistical strategy (permutation) was used
to determine the probability of each edge of the network
under random circumstances. Since the TF binding site
region is composed of specific sequences, and only by
scanning the sequence region using PWM, we get the
network edges. Hence, we shuffled the sequence of each
peak region for 1000 times, and to see how many times
a specific TF binding site is hit by the scanning process.
The ratio (times hit by scanning divide by 1000) of each
edge was calculated. The number with low value was
considered high statistical significance (we used 0.2 as a
cutoff to include as more connection as possible while
keeping the relationship reliable).

ERa regulatory pathway analysis
The up/down-regulated genes were grouped into several
classes (sub up/down-regulated classes). For each group,
the common gene functions were identified from GO
database with p-value represented for the significance.
Then, we used the PWMs of the 6 TFs (ERa, RORA,
FOS, FOXA1 PITX2 and CEBP) to identify all possible
binding sites in all genes with peaks. Thus we estab-
lished the relationship between Hub TFs and grouped
genes. A DREM diverging score less than 0.1 was used
as a significant score threshold for TF-grouped gene
relationship.

Additional material

Additional file 1: Table S1. A distribution of locations of Pol-II and ERa
binding sites relative to Human HG18 RefSeq Genes three ChIP-based
datasets in MCF7 cell line.

Additional file 2: Figure S1. A plot of the distribution of identified
ERa and Pol-II binding loci relative to a known gene’s TSS. A)
Definition of different regions of a gene. B) The histogram of the
distribution of peak location. A big portion of Pol-II bind in promoter
regions (2 kb around TSS); A small portion of ERa binding loci are
located in promoter region. These observations confirm that the majority
of ERa binding loci are outside of proximal promoter regions in which it
is consistent with the results from other studies.

Additional file 3: Figure S2. Three major binding models for ERa
regulated gene expression. A) direct binding to ERE (estrogen
response element); B) indirect binding, through which it binds to other
TF partners which bind to DNA; C) co-occurrent binding, where both
ERa and other TF partners bind to their own specific DNA motifs.

Additional file 4: Figure S3. The Regulatory network for E2 treated
MCF7 cell line of three different ChIP-based datasets. A) The
Regulatory network for E2 treated MCF7 cell line from ChIP-seq dataset.
B) The Regulatory network for E2 treated MCF7 cell line from ChIP-PET
dataset. C) The Regulatory network for E2 treated MCF7 cell line from
ChIP-chip dataset.
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Additional file 5: Table S2. The list of common TFs among all three
regulatory networks.

Additional file 6: Figure S4. Regulatory pathway analysis from three
ChIP-based dataset. Figure S4 (I). Regulatory pathway analysis from
ChIP-seq dataset. A) The time series gene expression data of E2
induced genes superimposed with the regulatory pathway map
produced by DREM using the gene expression profile as well as ERa
binding sites and PolII binding sites. The bright green nodes indicate
split points where the sets of expression of genes diverge. B) Paths out
of splits are annotated with TFs determined by DREM to be associated
with the genes assigned to the path at a score <0.1. The GO annotations
for the genes in 5 of the paths are shown at the right with their p-
values. C) The genes traversing the 3 splits are shown with (a)
corresponding to the split at 0-hr, (b) corresponding to the split at 3-hr
and (c) corresponding to the split at 6-hr. Figure S4 (II). Regulatory
pathway analysis from ChIP-PET dataset. A) The time series gene
expression data of E2 induced genes superimposed with the regulatory
pathway map produced by DREM using the gene expression profile as
well as ERa binding sites and PolII binding sites. The bright green nodes
indicate split points where the sets of expression of genes diverge. B)
Paths out of splits are annotated with TFs determined by DREM to be
associated with the genes assigned to the path at a score <0.1. The GO
annotations for the genes in 5 of the paths are shown at the right with
their p-values. C) The genes traversing the 3 splits are shown with (a)
corresponding to the split at 0-hr, (b) corresponding to the split at 3-hr
and (c) corresponding to the split at 6-hr. Figure S4 (III). Regulatory
pathway analysis from ChIP-chip dataset. A) The time series gene
expression data of E2 induced genes superimposed with the regulatory
pathway map produced by DREM using the gene expression profile as
well as ERa binding sites and PolII binding sites. The bright green nodes
indicate split points where the sets of expression of genes diverge. B)
Paths out of splits are annotated with TFs determined by DREM to be
associated with the genes assigned to the path at a score <0.1. The GO
annotations for the genes in 5 of the paths are shown at the right with
their p-values. C) The genes traversing the 3 splits are shown with (a)
corresponding to the split at 0-hr, (b) corresponding to the split at 3-hr
and (c) corresponding to the split at 6-hr.

Additional file 7: Table S3. A. The five paths for ERa regulated genes
identified by DREM analysis in ChIP-seq data. B. The five paths for ERa
regulated genes identified by DREM analysis in ChIP-PET data. C. The five
paths for ERa regulated genes identified by DREM analysis in ChIP-chip
data.

Additional file 8: Table S4. A. The transcription factors identified in
ChIP-seq with predicted binding motifs. B. The transcription factors
identified in ChIP-PET with predicted binding motifs. C. The transcription
factors identified in MCF7 with predicted binding motifs.

Additional file 9: Table S5. Transcription factor network identified by
ReMoDiscovery.

Additional file 10: Figure S5. Validation of the regulatory network
of MCF7-T cell line. 8 TFs were selected from MCF7-T network. All the
TFs were found with ERa binding peaks. (A) mRNA levels derived from
RT-qPCR of 8 ERa regulated target genes were shown under E2 (10 nM,
3hr) stimulation in MCF7-T cells. GAPDH was as internal control. Mean ±
SD (n = 3). (B) Validations of predicted ERa-binding regions for 8 binding
loci by ChIP-qPCR. Control and E2-treated MCF7-T cells were subjected
to ChIP-qPCR with ERa antibody. Mean ± SD (n = 3).

Additional file 11: Figure S6. A comparison of GO functions
between MCF7 and MCF7-T cells using genes from ChIP-seq
technology. (A) GO functions of MCF7 cells. (B) GO functions of MCF7-T
cells. (C) the GO function of two cells in the same figure.

Additional file 12: Table S6. A list of genes used for GO function
analysis for MCF7 and MCF7-T ChIP-seq data.

Additional file 13: Table S7. Gene expression data of MCF7-T cells.

Additional file 14: Table S8. Fisher exact test of the significance of
overlapped genes in Figures 1A and 5A.
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