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Abstract

classification rate of 77%.

those species.

Background: It has been understood that biological networks have modular organizations which are the sources
of their observed complexity. Analysis of networks and motifs has shown that two types of hubs, party hubs and
date hubs, are responsible for this complexity. Party hubs are local coordinators because of their high co-
expressions with their partners, whereas date hubs display low co-expressions and are assumed as global
connectors. However there is no mutual agreement on these concepts in related literature with different studies
reporting their results on different data sets. We investigated whether there is a relation between the biological
features of Saccharomyces Cerevisiae's proteins and their roles as non-hubs, intermediately connected, party hubs,
and date hubs. We propose a classifier that separates these four classes.

Results: We extracted different biological characteristics including amino acid sequences, domain contents,
repeated domains, functional categories, biological processes, cellular compartments, disordered regions, and
position specific scoring matrix from various sources. Several classifiers are examined and the best feature-sets
based on average correct classification rate and correlation coefficients of the results are selected. We show that
fusion of five feature-sets including domains, Position Specific Scoring Matrix-400, cellular compartments level one,
and composition pairs with two and one gaps provide the best discrimination with an average correct

Conclusions: We study a variety of known biological feature-sets of the proteins and show that there is a relation
between domains, Position Specific Scoring Matrix-400, cellular compartments level one, composition pairs with
two and one gaps of Saccharomyces Cerevisiae’s proteins, and their roles in the protein interaction network as non-
hubs, intermediately connected, party hubs and date hubs. This study also confirms the possibility of predicting
non-hubs, party hubs and date hubs based on their biological features with acceptable accuracy. If such a
hypothesis is correct for other species as well, similar methods can be applied to predict the roles of proteins in

Background

Proteins are important components of all living organ-
isms. They are responsible for essential functions within
cells. Most proteins perform their biological functions
through interacting with other proteins [1]. Map of the
whole physical protein interactions inside an organism
forms a network called Protein Interaction Network
(PIN). Although large-scale PINs have already been
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determined experimentally for several species; in general
there is a lack of protein interaction data for many spe-
cies, and the computational prediction of protein inter-
actions are still among the most wanted solutions in
protein bioinformatics [2]. These networks display scale-
free topologies which are characterized by the power
law distribution [3]. This means despite some negative
remarks [4], in general a small fraction of proteins called
hubs interact with many partners while majority of the
proteins called non-hubs, interact with only a few
others. Commonly proteins with more than eight inter-
actions in the PINs are hubs and those with less than
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three interactions are non-hubs. Others are called inter-
mediately connected (IC) [5].

Hubs have special properties that attracted great inter-
ests from both engineering and biology communities;
random removal of non-hubs elicits no observable
change in the structure of the network, whereas removal
of hubs changes the structure of the network signifi-
cantly [6]. Hubs are interesting drug targets for cancer
research [7] also, it has been shown that there is a rela-
tionship between number of protein interactions and its
sequence conservation, and cellular properties which
can be used as identifiers for separating hubs from non-
hubs [8,9].

Hubs of the PINs are classified as static or Party Hubs
(PHs) which interact with most of their partners at the
same time or Dynamic or Date Hubs (DHs) which
change their interaction partners at different times or
locations. Although the exact reasons for why date hubs
change their partners are not clear yet, party and date
hubs of the PINs are specified from the analysis of their
gene co-expression profiles [10].

The study of PINs on a genome-wide scale is possible
through advances in high-throughput experimental
research. These experiments have generated large
amounts of interaction data for several species including
S. Cerevisiae [11-15], Escherichia coli [16], Drosophila
melanogaster [17], Caenorhabditid elegans [18], and
Homo sapiens [19,20]. The corresponding PINs are
accessible through databases such as IntAct [21] and
DIP [22].

Identification of hubs and non-hubs of a PIN is
usually performed through network construction. For
example hub object analyzer (Hubba) is a web-based
service for identifying hubs in an interactome network
generated from small- or large-scale experimental meth-
ods based on graph theory [23].

Computational approaches have also been developed
to predict these networks using text-mining techniques
[24,25], three dimensional structures [26-28], gene
proximity [29,30], gene fusion events [31,32], gene co-
expression [33-35], phylogenetic profiling [36], ortholo-
gous protein interactions [37], and identification of
interacting protein domains [38-41]. The levels of intrin-
sic disorder, surface charge and domain distribution in
hubs and non-hubs and differences in their functional
domains are also studied [42]. Flexibility of hubs and
comparison of date hubs and party hubs with non-hubs
is evaluated using temperature factors [43]. However, no
study has focused on separation of non-hubs from party
hubs and date hubs.

Some researchers utilize sequences, biological data
descriptors and Gene Ontology (GO) terms in identifi-
cation of hubs and non-hubs of four different species
[44-46]. However, they do not investigate the fusion of
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biological features, and their classifier is not capable of
separating date hubs from party hubs.

Ekman et al. studied many different characteristics of
non-hubs, party hubs and date hubs of S. Cerevisiae
from domain features to protein age [5]. They showed
that hubs should share certain common features that
not only enable them to participate in several protein
interactions, but also can be used for the theoretical
identification of these hub proteins without prior knowl-
edge of corresponding PINSs.

The concepts of party hubs and date hubs are first
proposed by Hen et al. based on gene co-expressions,
using filtered yeast microarray data [10]. Based on
another filtered yeast data set no evidence for coexis-
tence of party hubs and date hubs is reported [47].
Agarwal et al. showed that small subsets of date hubs
are important for network connectivity [48]. Party and
date hubs are also studied using network motifs by Jin
et al. [49]. They have found two types of hubs named
motif party hubs (mPHs) and motif date hubs (mDHs).
The authors showed that mPHs and mDHs display dis-
tinct biological functions. They also showed that hubs
affect the topological structure of the network differ-
ently, that is deleting PHs has little influence on the net-
work structure while deleting DHs breaks the network
into many fragments. These observations emphasise the
importance of identifying not only hubs from non-hubs,
but also PHs from DHs. PHs and DHs control the
architecture of the biological networks differently, and
they are sources of biological complexity observed in
the modular organization of such networks.

In the literature, there is no mutual agreement on the
concepts of party and date hubs. In this paper we study
the relation of biological features to the concepts of
non-hubs, intermediately connected, party hubs, and
date hubs. The relation between protein roles in a net-
work and their biological characteristics may confirm
the existence of party and date hubs.

This paper is focused on answering the following
question: “Which features should be used to better discri-
minate non-hubs, party hubs and date hubs in a PIN?*
A related sub-question is “What classification methods
more effectively discriminate these classes?” In our
experiments, we concentrate on S. Cerevisiae’s proteins
however, the proposed feature analysis methodology
should be applicable to similar studies.

We formulated the problem as below: For a specific
protein, assume # feature vectors from presumably #
different sources

Xy = (00  Xygser Xage )rees Xy = (%00 X s X )i (1)

where i-th feature vector consists of k; features, and
i = 12..,n. A classifier is a mapping from features space
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to one of the output values, I to 4, representing non-
hubs, intermediately connected, party hubs, and date
hubs of the PIN.

In this paper, different features, including amino acid
sequences, domain contents, repeated domains, func-
tional categories, biological process, cellular compart-
ment, disordered regions, and Position Specific Scoring
Matrix (PSSM), from various sources are extracted and
studied. Some of these features have already been stu-
died in identification of protein interactions or separat-
ing hubs from non-hubs [46], but they have not been
used for discrimination between party hubs and date
hubs of a PIN. However, in this work, we investigate all
these features and some new ones. For example, evolu-
tionary information in the form of PSSM has been used
for prediction of protein secondary structure [50,51],
and it has recently been used for predicting sub cellular
localization of proteins [52,53]. However, in our study,
PSSM has been used as a set of features for identi-
fication of four classes of proteins in the PIN of S.
Cerevisiae.

Results and Discussion

The Protein Interaction Networks (PINs) of many
organisms are not fully determined yet. In the absence
of complete PIN data, identification of non-hubs, party
hubs, and date hubs based on their biological features
becomes increasingly important. Drug design and study
the modular organization and complexity of PINs
are among the applications that benefit from such
identification.

We focused on S. Cerevisiae, a species of budding
yeast, in our experiments. S. Cerevisiae’s identified PINs
have approximately 16,000 to 40,000 interactions
between its approximately 6,000 proteins. The data of S.
Cerevisiae’s non-hubs (NHs), Intermediately Connected
(ICs), Party Hubs (PHs), and Date Hubs (DHs) was
obtained from the supplementary material provided by
Ekman et al. [5]. Table 1 shows the frequency of these
four classes in S. Cerevisiae PIN.

In our experiments, we examine seventeen different
biological characteristics of proteins including amino
acid sequences, domain contents, repeated domains,
functional categories, biological processes, cellular

Table 1 Distribution of four classes of proteins in
S. Cerevisiae’s PIN

Class Label Number (Percentage) of Proteins
Non-Hub (NH) 4796 (81.4)
Intermediately Connected (IC) 575 (09.8)
Party Hub (PH) 195 (03.3)
Date Hub (DH) 322 (05.5)
Total 5,888 (100)
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compartments, disordered regions, and Position Specific
Scoring Matrix (PSSM) as feature-sets. We classify Yeast
proteins into four classes of NHs, ICs, PHs, and DHs
based on each feature-set separately.

The available data is bisected to 70% and 30% portions
which are used for training and testing purposes, respec-
tively. Training and testing samples are selected from
each of four classes, separately and randomly. Moreover,
the training sets are partitioned into five parts for 5-fold
cross validation.

Input Feature Reduction Methods

We used different methods of feature reduction includ-
ing Principle Component Analysis (PCA), Non-Linear
PCA (NL-PCA), and Independent Component Analysis
(ICA) to reduce the size of all seventeen input feature-
sets. Our experimental results show that supervised
PCA is the most effective method in feature reduction.
The number of features in each feature-set shrinks to
three combined features using supervised PCA.

Base Classifiers

We used the seventeen reduced features-sets as the
input for seventeen homogenous classifiers. We exam-
ined three base classifiers, including K-Nearest Neigh-
bours (KNN), Bayes with Gaussian Probability Density
Function (PDF), and Bayes with Mixture Density Model
(MDM) PDF as base classifiers. The MDM is built with
different number of PDFs for different classes. Bayes
classifier with KNN and Parzen nonparametric estima-
tion of PDF are examined as well. However, since pro-
tein labels are discrete, many neighbours of a protein
have overlapping labels. Therefore, KNN and Parzen
PDF estimators do not perform well in these cases. Our
results confirm this intuition; therefore we concentrate
on parametric PDF estimation methods.

A summary of the results from different base classi-
fiers have been shown in Table 2. In these tables average
CCR is the average of Correct Classification Rate for the
four classes of NHs, ICs, PHs, and DHs based on their
confusion matrix. Correlation coefficient of the actual
and predicted labels is also computed for each method.
The results show that in average, KNN is the least per-
forming classifier compared to Bayes classifier with
Gaussian and MD model as PDF estimators.

Feature Selection

We studied all the feature-sets and their classification
results. These studies show that amino acid composi-
tions and 48 physicochemical properties have sensitivity
equal to one and specificity equal to zero. Zero specifi-
city means that these feature-sets cannot discriminate
true negative samples properly and they are not good
candidates for separating protein classes.
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Table 2 Base classifiers comparison based on different
feature-sets

Feature Average CCR (Corr. Coef.) %
KNN Bayes with Bayes with
Gaussian PDF MDM PDF
Amino Acid compositions  26.0 (11.5) 25.0 (50.0) 336 (15.0)
Dipeptides 31.7 (21.8) 315 (25.1) 439 (36.8)
PairsComp1Gap 315 (23.7) 316 (27.2) 430 (294)
PairsComp2Gaps 30.7 (21.0) 31.8 (25.7) 459 (34.4)
Haralick Features 269 (03.5) 266 (06.1) 26.0 (07.8)
48 physicochemical prop. 266 (10.3) 25.0 (50.0) 294 (13.5)
Biological Process level 1 318 (16.8) 278 (164) 343 (18.8)
Biological Process level 2 33.0 (22.2) 33.5(18.0) 309 (14.1)
Cellular level 1 32.7 (25.8) 27.0 (19.0) 354 (29.5)
Cellular level 2 314 (28.5) 31.0 (20.2) 28.2 (14.5)
Functional Process level 1 30.0 (10.9) 273 (084) 276 (11.6)
Functional Process level 2 282 (15.8) 305 (17.9) 283 (15.7)
Domains 56.0 (60.0) 67.1 (58.9) 63.7 (55.5)
Repeated Domains 57.0 (59.3) 66.6 (57.7) 65.7 (57.1)
Disordered Regions 265 (07.5) 252 (-4.0) 27.2 (13.3)
PSSM-20 26.2 (084) 26.0 (084) 26.0 (09.3)
PSSM-400 37.0 (35.8) 426 (42.1) 54.1 (47.9)

Our experimental result on effectiveness of each clas-
sifier for each feature-set is shown in Table 2. Bayes
classifier with Gaussian PDF work best for some of the
feature-sets, while Bayes classifier with MDM PDF
works better for others. That means the features such as
domain, repeated domain, and Haralick have almost
Gaussian distribution because the MD model does not
improve the average CCR of the results. Most sequence
related data performs better with the MDM and they
are assumed to have a non-unimodal non-Gaussian
probability density function. Based on the results shown
in Table 2, six of feature categories can discriminate
protein classes significantly better than the others in
terms of average CCRs of classifiers and correlation
coefficients of the results: repeated domains, domains,
PSSM-400, cellular compartment level one, and amino
acid composition pairs with two and one gaps.

Feature Fusion

From the results of best base classifiers in the previous
section, it is clear that most of the classifiers are weak
learners. A good approach to deal with this problem is
to fuse classifiers. If they are each expert in part of the
studied subject, on the whole, it is expected that their
fusion obtains better results. Here we opt an input fea-
ture fusion approach.

Another question is that how many of the input fea-
tures should be fused. We first combined all the
reduced input feature-sets and achieved an average CCR
of 68.3%. That is a reasonable result because some of
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the tested features are not good candidates for separat-
ing our four classes of hubs and non-hubs and they
reduce the final classification rate. We then used the fol-
lowing greedy forward selection algorithm to find the
best fusion of feature-sets. At each step, one of the fea-
ture-sets with highest discrimination capability is added
to the set of input features of the classifier, and if the
average CCR and correlation coefficients are better than
the previous combination, this feature-set is augmented
to the base classifier’s input feature-set. This process
continuous until adding a new feature-set reduces the
performance of the classification based on specified
parameters.

Domain features alone have an average classification
of 67% and a correlation coefficient of 58.9% and there-
fore they form our best feature-set. The final feature-
sets that we chose are domains, PSSM-400, cellular
compartment level one, and composition pairs with one
and two gaps. We reached to an average CCR of 74.9%
among four classes using Bayes classifier with Gaussian
PDF. Results of step by step combination of input fea-
ture-sets are shown in Table 3. In this table, average
CCR of each combination of feature-sets and their cor-
responding confusion matrix are shown. Adding any
more features reduces the average CCR.

We have also tested the effects of using composition
pairs with more than two gaps. These features have a
slight effect on the results. We tested different combina-
tion of gapped composition pairs with other best
selected features. The average CCR of the classifier
changes by 0.8% using composition pairs with three and
one gap together.

Minimum Risk Classifiers as a Solution to Classify
Unbalanced Data Sets

As shown in Table 2 and Table 3, in most cases classi-
fiers do not work well when the number of available
samples from each class is not the same and risk of cor-
rect hub classification is higher than that of non-hubs.
To see if risk management improves the results, mini-
mum risk version of the selected base classifiers are also
examined. Results are shown in Table 4, where the fol-
lowing cost matrix is used:

0 01 02 0.2
01 0 02 02
09 09 0 02
09 09 02 O

The results with the selected best feature-sets and dif-
ferent maximum number of PDFs in the MDM are
shown in Table 5. We achieved an average CCR of
73.7%, and a correlation coefficient of 72.1%.
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Table 3 Fusion of feature-sets with Gaussian Bayes
classification
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Table 4 Minimum Risk extension of base classifiers on
different feature-sets

Feature Fusion Average CCR Confusion Matrix %

(Corr. Coef.)%

NH IC PH DH

All Features 68.3(62.3) NH 89.8 067 010 026
IC 344 580 032 045
PH 149 135 63.5 081
DH 221 147 011 621
Domains 67.0(58.9) NH 909 034 019 038
IC 363 478 045 115
PH 189 027 71.6 068
DH 200 084 137 579
Domain 66.8(58.0) NH 89.1 035 035 038

RepDomains IC 357 471 064 108
PH 149 041 73.0 081
DH 168 105 147 579

Domains 70.9(64.8) NH 90.2 044 025 029

RepDomains IC 350 535 064 051
PSSM-400

PH 108 054 75.7 081

DH 147 074 137 642

Domains 71.7(65.4) NH 915 040 015 031

PSSM-400 IC 350 535 045 070
PH 122 068 743 068
DH 164 063 095 67.4

Domains 74.0(67.1) NH 912 042 016 030
PSSM-400 IC 318 573 051 057
Cellular1 PH 122 054 757 068
DH 147 063 063 726

Domains 74.7(69.3) NH 917 044 015 025
PSSM-400 IC 318 580 051 051
Cellular1 PH 095 081 757 068
CompPair2Gaps DH 158 053 053 73.7
Domains 74.9(69.9) NH 921 041 015 022
PSSM-400 IC 312 592 051 045
Cellular1 PH 135 068 743 054

As the final step to improve the effectiveness of discri-
mination of party and date hubs, minimum risk versions
of our best classifiers, Bayes with Gaussian and Mixture
Density Model PDFs, are tested. As it is shown in Table
6, the Minimum Risk Bayes classifier with Gaussian PDF
outperforms the MD model.

A summary of the effectiveness of the both classifiers
(Minimum Risk Bayes Gaussian and MDM) is shown in
Table 6. Combination of the best feature-sets shows an
average CCR of 77% among four classes, and correlation
coefficient of 69.4% on the Minimum Risk Bayes classi-
fier with Gaussian probability distribution.

Feature Average CCR (Corr. Coef.) %

Min Risk Min Risk Min Risk

KNN Bayes Bayes
with with MDM
Gaussian PDF
PDF

Amino Acid 30.2 (14.2) 294 (50.0) 284 (14.8)
compositions
Dipeptides 34.8 (26.2) 435 (25.1) 450 (34.0)
PairsComp1Gap 35.7 (26.9) 418 (27.2) 42.7 (29.0)
PairsComp2Gaps 37.0 (296) 41.1 (25.7) 456 (33.6)
Haralick Features 279 (07.6) 284 (06.1) 263 (06.1)
48 physicochemical 295 (135) 29.0 (50.0) 29.0 (15.5)
prop.
Biological Process 320 (19.2) 304 (16.3) 304 (149)
level 1
Biological Process 34.1 (25.2) 35.7 (18.0) 37.7 (16.5)
level 2
Cellular level 1 34.2 (23.8) 354 (19.0) 36.6 (34.2)
Cellular level 2 358 (30.3) 34.0 (20.2) 36.6 (31.8)
Functional Process 296 (17.3) 28.1 (084) 316 (145)
level 1
Functional Process 296 (219) 332 (179 30.6 (15.8)
level 2
Domains 60.5 (57.9) 67.5 (58.9) 67.8 (57.1)
Repeated Domains 596 (57.0) 674 (57.7) 63.9 (55.7)
Disordered Regions 27.0 (07.2) 26.1 (02.6) 27.7 (08.9)
PSSM-20 26.8 (06.1) 26.3 (08.4) 256 (01.7)
PSSM-400 43.8 (33.2) 49.8 (42.1) 54.0 (48.0)

A summary of the predicted labels in both classifiers
(Minimum Risk Bayes Gaussian and MDM) are shown
in Table 7.

We computed four metrics of specificity, sensitivity,
Positive Predictive Value (PPV), and Negative Predictive
Value (NPV) for multiclass classification. Results for the
best classifier (Minimum Risk Bayes with Gaussian dis-
tribution) and the best feature-set combinations are
shown in Table 8. These features can create an image of
the final multi-class classifier effectiveness. Refer to the
method section for details on their calculations. In addi-
tion to these metrics, Receiver Operator Characteristics

Table 5 MDM Bayes classification with different number
of PDFs for the best feature-set

Number of PDFs Average CCR
(Corr. Coef.)%

2 73.0 (70.5)

3 73.7 (70.7)

4 733 (72.0)

5 72.1 (70.6)
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Table 6 Comparison of Minimum Risk classifiers on best
fused features

Classifier Average CCR Confusion Matrix %

(Corr. Coef.)%

NH IC PH DH
77.0(69.4) NH 90.8 037 018 036
IC 293 554 064 089
PH 081 040 79.7 08.
DH 074 053 053 82.1

Bayes with Gaussian PDF

Bayes with MDM PDF 74.4(69.6) NH 91.8 03.1 026 025
IC 312 49.7 083 108
PH 108 00 824 068

DH 116 032 116 737

(ROC) curves for binary separation of NHs, ICs, PHs,
and DHs with their corresponding AROC values are
shown in Figure 1.

Analysis of the Results

The final feature-set seems reasonable since in eukar-
yotes an increased number of domain combinations are
found. Also it is reasonable that a multi-domain pro-
tein can bind to many different proteins and the ratio
of hub proteins which are multi-domain in the network
is more than that of non-hub proteins. Since many
repeated domains have binding functions, it is also rea-
sonable that these proteins have more connectivity
than single domain proteins and hub proteins with
repeated domains are more probable than non-hubs in
network. PSSMs represent the conserved motifs in pro-
tein families and because of the important roles of hub
proteins and more connectivity of them, PSSM con-
tains information for prediction of protein classes.
Majority of the interactions occur between proteins in
the same sub-cellular compartment and hub proteins,
and their connected partners should be in the same
compartment. Then cellular compartment information
can help in discrimination of protein classes. It has
been shown that the dipeptide compositions of pro-
teins are important parameters for protein structure
and have been used extensively to enhance the predic-
tion quality for protein structural contents and cellular
location [54,55].

Table 7 Predicted labels from both Min Risk Bayes
classifiers with Gaussian and MDM models

NHs ICS PHs DHs Average CCR Corr. Coef.

Gaussian 1400 164 89 113 77.0 694
MDM 1384 111 127 144 744 69.6
True Labels 1440 157 74 95 - -
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Table 8 PH/DH/NH prediction results in S.Cerevisiae

Sensitivity%  Specificity%  PPV%  NPV%
NHs vs. Others 90.8 819 95.7 66.9
ICs vs. Others 554 96.2 584 95.7
PHs vs. Others 796 97.6 59 99.1
DHs vs. Others 82.1 95.7 52 989
PH+DH vs. Others 87.5 93.6 592 98.6

Conclusions

In this paper, we proposed a classification method for
proteins of Saccharomyces Cerevisiae. These proteins
were classified into four classes of non-hubs, intermedi-
ately connected, party hubs, and date hubs, based on
their biological properties. Few works on identification
of hubs in Protein Interaction Networks (PINs) have
been done before, and to the best of our knowledge,
none of them studied the discrimination of party hubs
and date hubs.

Date hubs are important proteins of the network
because they are the sources of observed dynamics. In
this work, different protein feature categories including
amino acid sequences, domain contents, repeated
domains, functional categories, biological process, cellu-
lar compartment, disordered regions, and position speci-
fic scoring matrix were studied. Different methods of
feature reduction including PCA, NL-PCA, and ICA
were examined. We showed that supervised PCA was
the most effective method. The reduced features from
each category were utilized as the inputs to homogenous
base classifiers. Different base classifiers including KNN,
Bayes classifier with different parametric and non-para-
metric estimations of probability density function were
investigated. Among different base classifiers, Bayes clas-
sifier with Gaussian distribution performs better with
five feature categories of domains, PSSM-400, cellular
compartment level one, and composition pairs with two
and one gaps. The classifier results were compared
based on average Correct Classification Rate (CCR) and
correlation coefficients.

Combination of the best feature-sets showed an aver-
age CCR of 77% among four classes, and a correlation
coefficient of 69.4% on the minimum risk Bayes classi-
fier with Gaussian probability distribution.

We will further investigate other features such as 3 D
structure of proteins in the future. The proposed feature
analysis methodology can be applied to other species to
predict unknown party and date hubs.

Methods

Extracted Protein Features

Amino Acid Sequences

Proteins are defined by their unique sequence of amino
acid residues; these sequences are one of the
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Figure 1 Roc Curves and AROC values for Separating NHs, ICs, PHs, and DHs.

well-known information sources for proteins. Amino
acid sequences of S. Cerevisiae are obtained from NCBI
http://www.ncbi.nlm.nih.gov on Jan. 2009. Six different
groups of features are extracted from sequence data. In
the sequel these features are briefly reviewed.

Amino Acid Compositions

Amino acid compositions (AAC) encapsulate the vari-
able length protein sequences into fixed length -twenty
dimensional- feature vectors [55]. AAC is the fraction of
each amino acid in a protein sequence. The feature vec-
tor extracted from a protein sequence can be expressed
by 20 coordinates, corresponding to 20 standard amino

acids. The ACCs are calculated according to the follow-
ing formula:

comp(i)=R,/N,i=1,2,...,20, 3)
where R; is the number of amino-acid of type i, and N

is the total number of amino-acids in a protein, that is,

the length of that protein.

Dipeptide Compositions

Dipeptide Compositions (DC), amino acid composition

pairs, are also computed from primary sequences [56].

DC is the occurrence frequencies of two consecutive
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residues in a protein. This feature vector extracted from
protein sequences can be expressed by 400 coordinates.
The advantage of dipeptides over amino acid composi-
tion is that they encapsulate information about the frac-
tion of amino acids as well as their local order.
Dipeptides are calculated according to the following for-
mula:

dpep(i) =D, /(N —1),i=1,2,...,400, (@)

where D; is the number of dipeptide of type i and N is
the length of protein.
Amino Acid Composition Pairs with Gap
This feature calculates the fraction of some special pat-
terns, like “AxB*, inside the whole protein sequence,
where A and B are certain known amino acids, while
the gap “x” can be any amino acid. Up to four gaps are
usually considered [56]. Amino acid composition pairs
with k gaps are calculated according to the following
formula:

gapped _dip,,(i) = E,(i)/(N —1—-k),i =1,2,...,400,(5)

where E(i) is the number of composition pairs with k
gaps of type i, and N is the length of protein. This fea-
ture also has a fixed length of 400.

Co-occurrence Matrix and Features

One may notice the similarity between amino acid com-
position pairs with gaps and co-occurrence matrix in tex-
ture analysis [57]. This analogy encourages us to use
those features defined on co-occurrence matrix to char-
acterize co-occurrence patterns in amino acid sequences.
The co-occurrence matrix in our study is a 20 by 20
matrix, where each column (or row) represents an amino
acid. The elements of co-occurrence matrix come from
(5). Some commonly used features are calculated from
co-occurrence matrix, including: energy, correlation, iner-
tia, entropy, inverse difference moment, sum average,
sum variance, sum entropy, difference average, difference
variance, difference entropy, and information measure of
correlation. They are calculated as mentioned in [57].
Length of a Sequence

Proteins have different sequences with different lengths.
Length of a protein is extracted as another feature.
Physicochemical Properties

Physicochemical properties of proteins like aromaticity,
flexibility, and polarity are used as features. 48 features
of this kind are introduced by Yu [58]; where for each
feature the fraction of amino acids with that feature in a
protein sequence is computed. For example aromatic
property is the property of H, F, W, and Y amino acids.
Now, for a protein, the total number of amino acids
from this group to the length of protein is a measure of
aromaticity.
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Domain Contents and Repeated Domains

We extract domains of each protein from InterPro web-
site http://www.ebi.ac.uk/interpro based on their Uni-
Port codes. This data is extracted on June 2009. The
total number of domains used in any of the S. Cerevi-
siae’s Proteins is 1816. An array of the length 1816 is
constructed for each protein of the S. Cerevisiae, where
if the specific domain exists in that protein the corre-
sponding cell is set to one otherwise it is set to zero.
Repeated domains are defined as two adjacent Domains
from the same family. This feature-set is provided by
Ekman et al. [5].

Functional Categories, Biological Process, and Cellular
Compartments

The Gene Ontology(GO) has categorized the proteins of
different organisms based on their functions, biological
processes and cellular compartments in the cell [59-61].
These categories formed a graph based on which one
can find these protein features with different levels of
details. The file containing the whole GOs is obtained
from GO website http://www.geneontology.org.

First, second and third level of functional categories,
biological processes, and cellular compartment of each
S. Cerevisiae’s proteins are extracted from July 2009 GO
release. At the second level of the GO hierarchy, S. Cer-
evisiae proteins are classified into 19 different biological
process, 8 different cellular compartments and 15 differ-
ent molecular functions. In the third level, this grouping
changes to 65 biological processes, 33 cellular compart-
ments and 60 molecular function categories. These fea-
tures are numerically coded in an array with the length
of maximum number of available categories for each
class. For each protein its biological process, cellular
compartment and molecular function at level two and
three of details are used as features.

Disordered Regions

Disordered regions -regions that lack a clear structure-
are suggested to be important for flexible or rapidly
reversible binding. To study whether disordered regions
can separate four protein classes of interest, the relevant
features are calculated as explained by Ekman et al. [5]
using Dispred2 [62] at a 5% expected rate of false
positives.

Position Specific Scoring Matrix

Position Specific Scoring Matrix (PSSM) is a commonly
used representation of motifs (patterns) in biological
sequences. They are derived from searching homolo-
gies in a protein database using multiple sequence
alignment. This matrix of score values provides a
weighted match to any amino acid symbol -a substring
with fixed length. It has one row for each symbol of
the amino acids, and one column for each position in
the sequence [63].
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In this research, the PSSM for each sequence is gener-
ated by PSI-BLAST search against ‘nr’ database using
three iterations while e-value of cut off is 0.001 [64].
Two vectors with dimensions 20, and 400, namely
PSSM-20, and PSSM-400 are generated from PSSM
matrix. PSSM-20 is a simple composition of occurrences
of each type of amino acids in the protein sequences of
its homologues. In PSSM400, instead of one column for
each amino acid residue, 20 values, corresponding to 20
standard amino acids types, are assumed. Hence, PSSM-
400 is a vector of dimensions 20 by 20.

Feature Selection

Three popular feature selection methods are used for
dimensionality reduction of protein feature-sets includ-
ing unsupervised and supervised Principle Component
Analysis (PCA) [65], Non-linear PCA (NL-PCA) [66],
and Independent Component Analysis (ICA) [67]. Each
feature selection method is coupled with different classi-
fiers, where results point at supervised PCA as the pre-
ferred feature selection method.

Classification Methods

After applying feature reduction to separate feature-sets,
different homogenous multi-class classifiers are applied
to each feature-set. Here utilized classifiers are briefly
introduced.

k-Nearest Neighbor Classifier

In k-Nearest Neighbor (KNN) classification [68], a
majority voting among class labels of k nearest neigh-
bors to a query protein determines the role of the pro-
tein. In this research, Euclidean distance is utilized as a
distance measure. The best value for k is chosen by
cross validation.

Bayes Classifier

In Bayesian decision theory the optimal class labels are
chosen to minimize the probability of classification error
[69]. In this framework we need to know a priori distri-
bution of classes as well as class conditional Probability
Density Functions (PDFs) for all classes. We opt two
model based methods for PDF estimation.

I. Gaussian PDF Estimation

Perhaps the most commonly encountered PDF in prac-
tice is the Gaussian or Normal density function. We
assumed the general multivariate form of normal density
function, where mean and covariance of the PDF are
estimated by means of training samples.

Il. Mixture Density Model for PDF Estimation

Mixture Density Model (MDM) provides a more flexible
model for PDF, by convex linear combination of simple
component PDFs. The MDM is particularly good in
modeling non-unimodal PDFs. The MDM can virtually
approximate any arbitrary continuous PDF with the
chosen accuracy, provided that sufficiently large number
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of component PDFs are combined and appropriate
model parameters are estimated [70]. In this paper we
used Gaussian PDF as component PDF.

Minimum Risk Classification Methods

When different errors in classification associate with dif-
ferent costs for the user, the probability of classification
error is not the best criterion for classification. Mini-
mum risk classifier is a variant for Bayes classifier
designed to handle this situation [68]. A risk function is
defined and minimized instead of error probability. In
our classification problem PINs have many non-hub
samples as compared to hubs, and correct identification
of hubs is more important than non-hubs or intermedi-
ately connected proteins. As a result, minimization of
risk function instead of error probability seems to be
reasonable.

Feature Fusion

The main goal of feature fusion is to increase the gener-
alization capability of the classifiers. Each classifier is
trained on a limited set of features. Thus pattern of clas-
sification error can be different from one classifier to
another. Combination of input features of classifiers
may hopefully results in a better performance [71]. In
this problem we have fused the input feature-sets and
studied which combination improves the performance
of classification.

Evaluation of the classifiers’ Outputs

Four characteristics of specificity, sensitivity, Positive
Predictive Value (PPV) and Negative Predictive Value
(NPV) which are usually used for binary classifications
are computed for the multi-class variant and used as a
measure for evaluating classifiers’ outputs according to
the following formulas:

L P P
Sensitivity = ———— PPV = ———,
TP + FN TP + FP ©)
T T
Specificity = _IN_ PV = _IN__
TN + FP TN + FN

where TP, TN, FP, and FN stands for True Positive,
False Positive, True Negative, and False Negative
respectively.
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