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Abstract

Background: Mouse embryonic stem cells (mESCs) are derived from the inner cell mass of a developing blastocyst
and can be cultured indefinitely in-vitro. Their distinct features are their ability to self-renew and to differentiate to
all adult cell types. Genes that maintain mESCs self-renewal and pluripotency identity are of interest to stem cell
biologists. Although significant steps have been made toward the identification and characterization of such genes,
the list is still incomplete and controversial. For example, the overlap among candidate self-renewal and
pluripotency genes across different RNAi screens is surprisingly small. Meanwhile, machine learning approaches
have been used to analyze multi-dimensional experimental data and integrate results from many studies, yet they
have not been applied to specifically tackle the task of predicting and classifying self-renewal and pluripotency
gene membership.

Results: For this study we developed a classifier, a supervised machine learning framework for predicting self-
renewal and pluripotency mESCs stemness membership genes (MSMG) using support vector machines (SVM). The
data used to train the classifier was derived from mESCs-related studies using mRNA microarrays, measuring gene
expression in various stages of early differentiation, as well as ChIP-seq studies applied to mESCs profiling genome-
wide binding of key transcription factors, such as Nanog, Oct4, and Sox2, to the regulatory regions of other genes.
Comparison to other classification methods using the leave-one-out cross-validation method was employed to
evaluate the accuracy and generality of the classification. Finally, two sets of candidate genes from genome-wide
RNA interference screens are used to test the generality and potential application of the classifier.

Conclusions: Our results reveal that an SVM approach can be useful for prioritizing genes for functional validation
experiments and complement the analyses of high-throughput profiling experimental data in stem cell research.

Background
Mouse embryonic stem cells (mESCs) are derived from
the inner cell mass of a developing blastocyst and can
be cultured indefinitely in-vitro. Their distinct features
are their ability to self-renewal as well as to differentiate
into all adult cell types including the germ-line. These
features render mESCs ideal for applications in basic
scientific research and translational medicine. To har-
ness their full potential, better understanding of the
molecular mechanisms of mESCs self-renewal mainte-
nance and pluripotency is critical. Therefore, genes that

are critical to mESCs self-renewal maintenance are of
interest to the stem cell research field. In the past dec-
ade, significant steps have been made toward identifying
and characterizing the genes and regulatory networks
that compose the self-renewal machinery. A mESCs
stemness membership gene (MSMG) signature has been
proposed through application of high-throughput profil-
ing approaches such as mRNA expression microarrays
combined with advanced computational analyses as well
as through low-throughput detailed functional studies
[1-3]. Genes that are predominantly expressed in mESCs
cells are considered putative candidates for being
MSMGs. Nevertheless, the overlap among candidate
MSMGs across different studies is surprisingly small,
whereas the full identification of MSMGs, the genes
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responsible for self-renewal and pluripotency, remains
largely incomplete.
Fuelled by the growing volume, diversity and complex-

ity of genome-wide profiling data generated from high-
throughput biotechnologies, advanced computational
approaches such as machine learning have been used to
analyze multi-dimensional experimental data and inte-
grate results from many studies [4-10]. Support Vector
Machines (SVM) is a popular supervised machine learn-
ing method that is based on statistical learning theory
[11]. SVM has been widely applied as a classification
tool to address biological questions such as gene func-
tion prediction [4], protein homolog identification [5],
and disease diagnosis [6]. For example, previous studies
used SVM and gene expression data for gene function
classification [7] and cancer tissue sample classification
[8]. Such studies used a single type of experimental data
to conduct the analyses. Recently, Zhu et al. developed a
network-based SVM approach where they combined
prior knowledge with microarray data to improve the
predictive performance for cancer tissue diagnostics [9].
In another study, SVM-based predictions were applied
to infer gene function by concatenating normalized fea-
tures from diverse datasets [10]. Hence, there is a trend
of combining heterogeneous data-types to improve clas-
sification where the SVM approach is the computational
method of choice. Here we attempted to use this
approach to tackle the task of predicting MSMGs utiliz-
ing two types of high-throughput data by combining
several independent studies.
We hypothesized that we can utilize data from mESCs-

related mRNA microarrays profiling and genome-wide
transcription factor binding profiling (ChIP-seq) applied
to characterize mESCs to classify genes important for ES
cell self-renewal and pluripotency (MSMGs). We believe
that within these datasets there are subtle patterns from
which a gene’s functional characteristic, in regards to the
self-renewal and pluripotency involvement, Yes or No
question, can be inferred. We employed an SVM-based
approach to construct a classifier that can be used to pre-
dict the class membership as being MSMG or not-
MSMG for genes by combining genome-wide mRNA
expression profiling data and ChIP-seq data. The accu-
racy and generality of the classifier are evaluated using
the leave-one-out-cross-validation (LOOCV) approach.
We also compared the SVM classifier with other machine
learning classification methods, including linear discrimi-
nant classifier, decision trees, and artificial neural net-
works. Furthermore, we tested the ability of the SVM
classifiers to predict the class membership of positive and
negative lists of genes resulting from two genome-wide
RNAi screen studies to demonstrate how such classifica-
tion approach can be useful for helping in prioritizing
hits from such screens.

Results
Learning from heterogeneous data types
We extracted 91 features/attributes from mRNA gene
expression and ChIP-seq experiments for each gene
(vector) from mESCs-related studies (detailed descrip-
tion is provided in the Methods section). 79 features/
attributes were created from mRNA expression microar-
ray profiling data extracted from the Gene Expression
Omnibus (GEO) database [12] references to the files are
provided in the methods and Additional files 1, 2 and 3.
In addition to the 79 features/attributes created from
mRNA expression microarray data, we produced 12
features/attributes from ChIP-seq studies [13]. All
12 ChIP-seq experiments we used profile the global gen-
ome-wide binding of transcription factors known to be
important for maintaining self-renewal and pluripotency
[14]. We implemented two types of preprocessing
approaches for generating features/attributes from the
ChIP-seq datasets: With the first approach, we con-
verted the results from the ChIP-seq experiments into
Boolean values where zero represents absence and one
represents presence of binding sites in proximity to a
gene detected as a peak in a ChIP-seq experiment. The
second approach for creating features from the ChIP-
seq data was to compute a continuous binding value
calculated as a weighted sum of intensities of all of the
peaks of the transcription factor weighted by the dis-
tance between the peak and the transcription start site
(TSS) [15]:

a g eij k
d d

k

k= −∑ / 0
(1)

Where aij is the binding value of the transcription fac-
tor j on gene i, gk is the intensity of the kth binding peak
of transcription factor j, dk is the distance between the
TSS of gene i and the kth binding peak, and d0 is a con-
stant. aij is then log-transformed and quantile-normal-
ized. This method was previously introduced by Ouyang
et al. [15]. Altogether, the features created from the
ChIP-seq datasets are either 12 binary-valued vectors or
12 continuous-valued vectors consequently named
ChIP-binary and ChIP-continuous in the charts and
tables.
In order to train any supervised machine-learning

classifier it is required to have a gold standard training
set of classified examples. In our case, these are genes
that are known to be either MSMG or not-MSMG. For
this we obtained an expert collection set of genes
labeled as MSMG or not-MSMG (Table 1). This classifi-
cation of genes/proteins was mainly followed from a
study that designed a customize microarray for mESCs
[16]. In addition, we used manual expert curation pro-
cess which included the construction of a literature-
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based self-renewal regulatory network in mESCs from
low throughput studies [17]. In all, we obtained 46
genes as positive examples, classified as MSMG, and 70
genes as negative examples (Table 1). The training sam-
ple for positive genes is relatively small since we dis-
carded controversial candidates.
In the first set of computational experiments we tested

different versions of SVM classifiers and combinations
of training data types to determine which kernel func-
tion and which data type or combination of data-types
performs best. Table 2 summarizes such evaluations
using the LOOCV. In general, the performance of SVM
on combined data types, microarray data and ChIP-seq
data, appears to perform better than SVM trained on an
individual data type. Additionally, the LOOCV results
show that the SVM classifier with the radial basis func-
tion (RBF) kernel function appears to perform slightly
better than classifiers with linear or polynomial kernel
functions. The RBF function kernel used is a Gaussian
radial basis function with a gamma variable that ranges
between 0.1-10 as determined through the outer loop of
the LOOCV selected based on the highest accuracy. In
addition to the LOOCV, we also employed a three-fold
cross-validation in order to plot a receiver operating
characteristic (ROC) curve to compute an area under
the curve (AUC) score (Figure 1).
An alternative approach to using different individual

SVM kernel functions with all the features/attributes is
to combine two or more SVM kernel functions for opti-
mizing performance. In a prior similar study it was

shown that using different kernels on heterogeneous
datasets works better for gene function classification [5].
We did not observe much advantage of implementing
weighted combinations of kernels applied to each data
type separately. The reason may be the different data
types used, ChIP-seq and mRNA expression microarrays
data in our study versus phylogenetic and mRNA
expression microarrays data in the other study. ChIP-
seq and mRNA expression microarrays data is intuitively
more correlated [15].
Next we asked which features/attributes/studies con-

tribute the most for successful classification of MSMG
genes. For this purpose we implemented a feature selec-
tion and ranking algorithm. We applied the SVM Recur-
sive Feature Elimination (RFE) algorithm [18] to rank all
features for evaluating their discriminatory capabilities.
The top 20 discriminatory features from the RBF-SVM
and Poly-SVM classifiers are listed in Additional file 4

Table 1 Training set gene list

MSMGs Non-MSMGs

Bmp4, Cdyl, Cdyl2, Dmrt1, Dppa4, Afp, Arid3a, Arid3b, Ascl1, Ascl2,

Dppa5a, Esrrb, Etv4, Etv5, Fgf4,
Foxd3,

Bat1a, Bmp2, Bmp5, Bmper,
Ccnd2,

Foxh1, Gbx2, Grhl2, Jarid2, Klf2, Klf5, Cdh2, Cebpa, Cited1, Dach1, Dlx1,

Lefty2, Lin28, Mkrn1, Mycn, Nanog, Dlx4, Dlx6, Ednra, En1, Eomes,
Ets2,

Nodal, Nr0b1, Nr5a2, Phc1, Phf17, Eya2, Fgf5, Foxb1, Gata1, Gata3,

Pou4f2, Pou5f1, Rif1, Sall1, Sall4,
Sgk1,

Gata4, Gata5, Gata6, Gfap, Gli3,
Gsc,

Slc27a2, Socs3, Sox2, Spp1, Tcf15, Hand1, Hand2, Insm1, Isl1, Lbx1,

Tcfap2c, Tcfcp2l1, Tcl1, Tle4, Trp53, Lhx2, Lhx5, Lmx1a, Mbd2, Meis1,

Utf1, Zfp296, Zfp42 Mixl1, Myf5, Neurog1, Nfia, Npas3,

Nr2f1, Nr2f2, Nrp1, Nrp2, Olig3,
Otp,

Otx1, Pax3, Pdx1, Peg3, Phox2b,

Prl3d1, Prox1, Rybp, Shh, Sox1,

Sox18, Sox3, Sox5, Sox9, Stra13,
Syp,

Tcf4

List of genes used as training set include 46 positive examples labelled as
MSMG class and 70 negative examples labelled as non-MSMG class. These
genes are derived from expert curation.

Table 2 Performance of SVM classifiers

Datatype_kernel TP FP TN FN TPR FPR Accuracy

micro_linear 42 17 53 4 0.91 0.24 0.82

micro_poly 39 24 46 7 0.85 0.34 0.73

micro_RBF 37 3 67 9 0.80 0.04 0.90

chip_binary_linear 35 10 60 11 0.78 0.13 0.84

chip_binary_poly 36 5 65 10 0.78 0.07 0.87

chip_binary_RBF 39 8 62 7 0.85 0.11 0.87

chip_contin_linear 38 7 63 8 0.83 0.10 0.87

chip_contin_poly 36 8 62 10 0.78 0.11 0.84

chip_contin_RBF 39 5 65 7 0.85 0.07 0.90

weight_binary_linear 39 9 61 7 0.85 0.13 0.86

weight_binary_poly 37 5 65 9 0.80 0.07 0.88

weight_binary_RBF 40 4 66 6 0.87 0.06 0.91

weight_contin_linear 41 9 61 5 0.89 0.13 0.88

weight_contin_poly 37 8 62 9 0.80 0.11 0.85

weight_contin_RBF 42 5 65 4 0.91 0.07 0.92

simple_binary_linear 39 9 61 7 0.85 0.13 0.86

simple_binary_poly 37 3 67 9 0.80 0.04 0.90

simple_binary_RBF 42 3 67 4 0.91 0.04 0.94

simple_contin_linear 41 9 61 5 0.89 0.13 0.88

simple_contin_poly 43 17 53 3 0.93 0.24 0.83

simple_contin_RBF 41 3 67 5 0.89 0.04 0.93

Comparison of performance of several kernel functions used for SVM learning
applied on single and heterogeneous data types (mRNA expression and ChIP-
seq). The best performer for each category is bold-highlighted. Kernel
functions include: linear kernel, polynomial kernel (poly) and Gaussian radial
basis kernel (RBF) (see methods). Datasets include: micro-mRNA expression
microarrays; chip_binary-ChIP-seq data with pre-processing into binary feature
values; chip_contin-ChIP-seq data with pre-processing into continuous feature
values. Performance of two data integration strategies: “weight"- weighted
kernel matrices; “simple"- one kernel matrix by concatenation of the two data
types (see methods). As an example, “simple_binary_poly” means the
approach of concatenating microarray and binary ChIP-seq data and training
using an SVM with a polynomial kernel function.
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which includes both data types (microarray and ChIP-
seq). Applying SVM-RFE on both classifiers (RBF-SVM
and Poly-SVM) we identified many overlapping features
(Fisher’s exact, p-value < 0.01).
In summary, we show that the SVM-based classifica-

tion can be successfully applied for discriminating
between MSMG and non-MSMG, whereas combining
heterogeneous data types improves learning.

SVM outperforms other classification methods
In the second set of computational experiments we
compared the performance of the SVM classifiers to the
following four other types of machine learning classifica-
tion methods: Linear Discriminant Analysis (LDA) [19],
Decision Trees (DT) [20], Artificial Neural Network
(ANN) [21], and a simple classifier we created by com-
paring genes expressed in mESCs vs. genes expressed in
embryonic bodies (EB). LDA uses training data to esti-
mate the parameters of discriminant functions which
determine boundaries in predictor space between var-
ious classes. Alternatively, DT offer a nonparametric
model generating a classification tree where each
branched node is split based on the values of features of
gene vectors computed using information theory. ANN
contain an input layer that takes in the feature values, a
hidden layer made of nodes connected to the input
layer with weighted links that can be adjusted, and an

output layer consisting of the resultant classification. In
addition, to rule out the possibility that the SVM and
other classifiers simply detect mESC-specific genes, we
also compared our methods to a simple classifier which
predicts MSMGs based only on the gene expression fold
change between mESCs and EB cells.
Figure 2 summarizes the results of comparison between

the different classification methods. In general, the results
show that the SVM classifier outperforms the other meth-
ods. In all cases the best trained SVM either outperforms
or is comparable to the other methods. However, these are
not conclusive results since we haven’t attempted to opti-
mize parameter settings for the other classification meth-
ods. The average prediction accuracy of the simple
classifier is 0.76 indicating that comparing the fold change
for genes expressed in mESCs to EB cells is predictive by
itself; however, this approach does not perform as well as
any of the other classifiers.

Prioritizing candidate genes from genome-wide RNAi
screens
The third set of computational experiments further test
the generality of the SVM-based MSMG prediction clas-
sifier. Here we aim to assess whether genome-wide
experimental characterization of genes, such as those
data produced by mRNA expression profiling and gen-
ome-wide transcription factor binding profiling, can
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Figure 1 ROC curves. Representative ROC curves for three kernel-based SVM classifiers generated using the threefold cross-validation with the
mRNA expression microarray dataset for training only. The ROC curves were generated by varying the decision threshold of each SVM classifier.
The average AUC for the linear kernel, polynomial kernel and RBF kernel are 0.89, 0.85, and 0.95, respectively. ROC: receiver operating
characteristic; TPR: true positive rate; FPR: false positive rate; AUC: area under the curve.
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truly confer functional description (i.e. self-renewal and
pluripotency membership). With this question in mind,
we choose two independent studies to generate two
test-sets of genes as positive and negative examples. The
positive example test-set comes from a study that identi-
fied candidate genes functional in maintaining mESCs
self-renewal using a genome-wide RNAi screen [22].
Whereas the negative test-set are genes identified as
being important for the insulin signaling pathway, also
identified from another genome-wide RNAi screen [23].
The insulin pathway related screen is considered as irre-
levant to our MSMG definition and MSMG prediction
task. However, we cannot rule out the possibility that
some genes from the negative example test-set are also
involved in stem-cell self-renewal and pluripotency reg-
ulation. The ratio (percentage) of predicted MSMG
genes from the positive and negative test-set samples
can be viewed as “signal-to-noise” ratio (Table 3). Over-
all, regardless of the data type used, whether we use
microarray data alone or integrated data from microar-
rays and ChIP-seq, the number of genes predicted to be
MSMG from the positive test set is significantly higher
than from the negative test set (p-value ≈ 5.34 × 10-12,
two-tail t-test) (Figure 3). Additionally, there is a high
correlation (r = 0.89, Spearman’s rank correlation)
between the prediction accuracy from the LOOCV eva-
luation of SVMs and the signal-to-noise ratio generated

from SVM predictions on the independent RNAi data-
sets. In other words, the prediction capacity of the SVM
for future samples can be well estimated from its perfor-
mance on our test-set examples using the LOOCV
method. Hence, the SVM classifier is capable of discri-
minating between relevant RNAi screens hits and not
relevant hits from another RNAi screen.
Given the labor-intensive effort and cost of identifying

candidate genes from large-scale RNAi screens, the clas-
sifiers developed here may help in further prioritizing
hits for functional experimental verification. Genome-
wide RNAi screens are considered noisy, containing
high degree of false positives, where slightly different
experimental protocols and statistical analyses can yield
different results. As an example, recently Ding’s group
[24] demonstrated how a genome-wide RNAi screen
approach was used to identify novel regulators of
embryonic stem cell maintenance. Their results reveal a
small overlap with the study we used here as a test-set
[22]; 11 out of 209 candidate genes from the RNAi
screen implemented by Ding’s group overlaps with the
study we used here in which 148 candidates were
reported. Taken this into consideration, future work
should continually test and train classifiers by using

Table 3 Evaluation of RNAi screens as a test set

Datatype_kernel Signal-to-noise ratio

micro_linear 1.44

micro_poly 1.00

micro_RBF 3.91

chip_binary_linear 1.36

chip_binary_poly 1.84

chip_binary_RBF 1.88

chip_contin_linear 1.57

chip_contin_poly 1.86

chip_contin_RBF 1.91

weight_binary_linear 1.80

weight_binary_poly 1.96

weight_binary_RBF 3.82

weight_contin_linear 1.84

weight_contin_poly 1.65

weight_contin_RBF 2.35

simple_binary_linear 1.80

simple_binary_poly 3.43

simple_binary_RBF 3.80

simple_contin_linear 1.84

simple_contin_poly 1.38

simple_contin_RBF 3.21

Ranked methods based on signal-to-noise ratio performance of predicting the
percentage of genes as positive from the positive test set (self-renewal
screen) and as positive from the negative test set (insulin-pathway screen).

Figure 2 Classification performance of different types of
classifiers. The performance of the best SVM in each category is
compared to three other standard machine learning methods: LDA
(Linear Discriminant Analysis), Decision Tree, and ANN (Artificial
Neural Networks) and a simple fold-change-based predictor.
Performance of machine learning methods is evaluated and
accuracy is measured using LOOCV. Labelling of panels is as follows,
“microarray": using genome-wide mRNA microarray profiling data;
“chip": using genome-wide ChIP-seq of transcription factors data;
“micro-chip": using both microarray and ChIP-seq. The fold-change-
based predictor results are only under the “microarray” panel since
it uses only microarray data.
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diverse data types to build more robust predictions of
MSMGs.

Misclassified genes are also of interest
Interestingly, across various trained SVM classifiers
some genes from the stem-cell RNAi screen universally
resulted as being false positives regardless of the choice
of data type or SVM kernel function used. All the
results of the predictions made with various kinds of
SVM classifiers are available as Additional file 5. Hence,
it is possible that these negative examples are potentially

misclassified and are putative MSMG genes, functional
in self-renewal and pluripotency maintenance. For
example, the gene Rybp (RING1 and YY1 binding pro-
tein) is labeled as a negative example, but consistently
predicted as MSMG. Through careful examination of
the literature we found that Rybp plays a role during
early embryonic development [25]. Similarly, misclassi-
fied genes are also found in the genome-wide insulin
signaling pathway RNAi screen. Specifically, we found
several candidate genes that are always predicted as
MSMG, for example, Pim3 and Tnk2. It was shown that

Figure 3 SVM classifiers to prioritize candidate genes from genome-wide RNAi screens. Application of SVM classifiers to predict “stemness”
genes applied on test sets of two independent genome-wide RNAi screens that identified candidate genes functional for self-renewal and
insulin cell signalling. The black bars show the percentage of predicted MSMGs among the total genes from (a) positive test set (functional in
self-renewal); and (b) negative test set (functional in insulin signalling).
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self-renewal of mESCs is supported by Pim1 and Pim3
[26], whereas Tnk2 was reported to stimulate breast
cancer development in humans [27]. Considering the
relation between stem cells self-renewal maintenance
and cancer cells development, Tnk2 also appears to be a
promising candidate for qualifying as a bona-fide
MSMG. We emphasize that the misclassified genes,
initially identified as critical for insulin signaling path-
way, do not appear in our training set and therefore
never seen by the SVM classifier before. Nevertheless,
the classifier consistently predicted them as MSMGs.

Discussion
In this study we demonstrate the ability of SVM classi-
fiers to predict MSMG membership. The results confirm
that SVM is a fine choice for this type of classification
task for this type of data. Since genome-wide RNAi
screens used for discovering functional genes in stem-
cell self-renewal and pluripotency maintenance produce
candidate lists that are inherently noisy, the SVM-based
classifier can be applied to prioritize experimental
choices when facing with a large list of candidate genes
to verify and further functionally characterize. SVM has
the advantage of being flexible for handling different
data types as features in an input vector. This facilitates
combining various data sources complementing each
other which in general we show can increase accuracy.
In our study, we only used pre-translational data. In
other words, genes can only be differentiated from other
genes at the mRNA and protein/DNA interaction levels.
This means that post-translational properties cannot be
correctly learned. Fortunately, with the growing avail-
ability of high-throughput data at the proteome level,
i.e. phosphoproteomics profiling of embryonic stem cells
[28,29], classification methods such as the one devel-
oped here have the potential to increase their prediction
accuracy by combining such datasets.
Our computational experiments demonstrate that in

general the SVM classifiers benefit from incorporating
heterogeneous data. However, learning from various
data types was not beneficial for the LDA and Decision
Trees classifiers (Figure 2). The decrease in performance
for LDA and Decision Trees might be due to sensitivity
to features that do not provide substantial contribution
to the classification. In addition, we did not implement
a search for optimal parameter settings and feature
selections for those classifiers. This would probably
allow better performance and assessment of the different
types of classifiers we tested.
When training a classifier to predict gene membership

such as MSMG, there is a tradeoff between the size of the
training set and the accuracy that can be achieved. In this
study we chose to use a relatively small yet more reliable
training set to increase our certainty about the true

positives and true negatives. Alternatively, we could inte-
grate together, as positive and negative training sets, genes
identified from various studies, including both high-
throughput and labor-intensive small-scale approaches. It
would be interesting to see if such an approach would
improve the performance of MSMG classification.

Conclusions
In summary, our results reveal that SVM classifiers are
useful for predicting genes important for self-renewal
and pluripotency of mESCs. Such an approach can be
useful for prioritizing genes for functional experiments
and complement the analyses of high-throughput profil-
ing experimental data in stem cell research.

Methods
Data selection and preprocessing
To minimize the variability of different platforms and
inconsistency that arise from gene ID mapping, we
extract expression profile data collected from only two
Affymatrix platforms (GPL339 and GPL340). These stu-
dies include time-series differential expression data from
perturbed mouse ES and ES-derived cell lines [GEO:
GSE3223, GSE3231, GSE2972, GSE4679] [30,31]. The
79 microarray experiments reflect gene expressions in
diverse contexts, including expression profiling for
mESCs and Embryoid Bodies (EB) (GSE3223), time-
course expression profiling for V6.4 ES cell differentia-
tion (GSE3231) and for R1 ES cell differentiation
(GSE2972), time-course expression profiling for RA-
induced ES cell differentiation, Esrrb-knockdown-ES
cells, Nanog-knockdown-ES cells, Oct4-knockdown-
ES cells, Sox2-knockdown-ES cells, Tbx3-knockdown-
ES cells as well as Tcl1-knockdown-ES cells (GSE4679).
More specifically, GSE3223 reports 12 arrays comparing
gene expression in ES cells (J1-ES) and EB cells (J1-EB)
each in triplicates using two arrays (MOE430A and
MOE430B). Therefore, we extracted two features from
this study: the first feature is for each gene averaged
expression in J1-ES and the second feature for each
gene’s average in J1-EB. GSE3231 and GSE2972 have 66
arrays: these two datasets profiled 11-time-points gene
expression of V6.5 and R1 ES cells under undirected
differentiation, with each time point measured as tripli-
cate and each repeat using two arrays (MOE430A and
MOE430B) to cover the whole genome. Therefore, we
extracted 11 features from each dataset (V6.5 and R1).
GSE4679 holds 140 arrays including: (1) Seven time-
points (including day 0) of gene expression of differen-
tiating ES cells under RA-induced differentiation culture
conditions, with each time point having one sample on
two arrays (MOE430A and MOE430B). We extracted
seven features from this dataset. Each feature is made
of gene expression at a specific time-point. (2) Eight
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time-points (including day 0) of gene expression from
ES cells where each sample is from two arrays
(MOE430A and MOE430B) and has a knock-down vec-
tor for: Esrrb shRNAi, Nanog shRNAi, Oct4 shRNAi,
Mm343880 shRNAi, Tbx3 shRNAi, Tcl1 shRNAi, Sox2
shRNAi, and an empty vector. We extracted eight time-
point features for each of the following six samples:
Esrrb, Nanog, Oct4, Tbx3, Tcl1, and Sox2, for a total of
48 features. We did not include the empty vector and
the Mm343880 knockdown. More details are provided
in Additional files 1, 2 and 3. All experiments were
done in the mouse. Expression values were converted to
features for each gene (as a vector, X). Expression
values were log-transformed and scaled as follows:

X
E

E

i
i

i

i

= ( )

( )( )
=
∑

log

log

2

2
2

1

79 (2)

This method for preprocessing microarray data for
SVM training was borrowed from Brown et al. [8].

Weighted kernel functions
The SVM classifiers we implemented to map the data
from the input space to a high-dimensional space in
which classification can be performed by locating data
points with respect to a hyperplane that separates binary
classes. The feature space can be adjusted by selecting a
kernel function, which is used to transform the data for
optimization of the classification [4,19]. In this study we
utilized three common kernel functions and compared
their prediction accuracy:
(1) Linear kernel:

K X, Y = X Y( ) ⋅ (3)

(2) Polynomial kernel:

K
dX, Y X Y( ) = ⋅ +( )1 ,  here we used degree d equals to 3 (4)

(3) Gaussian radial basis kernel

K X Y
X Y

,
| |

( ) =
−

e

2

22 (5)

It is common practice to set s to be equal to the
median of the Euclidean distances from each positive
sample vector to its closest negative sample vector [6],
we note that such choice was not optimal for this parti-
cular application. Therefore, our strategy for determin-
ing s is to sample a range of values (10-2 to 101), using
LOOCV, to select the best s value that maximizes the
prediction accuracy.

Classifier training
We integrated the two data types, mRNA expression
and ChIP-seq, simply by concatenation. We then trained
the SVM classifier using one of three kernel functions.
Alternatively, motivated by the hypothesis that the clas-
sification would be better for treating each data type
separately, we employed a strategy of integrating two
kernel functions each applied to one of the two different
data types. The weights for each classifier are deter-
mined by an F1 score.

F TP TP FP FN1 2 2= + +( )/ (6)

F1 score is a measure of accuracy that takes into
accounts both precision and recall.

precision
TP

TP FP
=

+
(7)

recall
TP

TP FN
 =

+
(8)

As a result, we can obtain a classifier that is made of
two weighted kernels.

K K KX Y,( ) = × + ×F FK m Km c
1 1 c (9)

Km and Kc represent the kernel matrix measured from
the microarray data and the ChIP-seq data, respectively.
Hence, the more accurate, the more weight each data
type in the kernel matrix would be. The motivation for
combining kernel matrices by their weights is that each
kernel matrix (from single data type) should exert their
effects on the final training of the SVM according to
their performance. We named these strategies “simple”
and “weighted” in the figures and tables.

Comparison to other classification methods
Analyses for LDA, Decision Trees and ANN were per-
formed with the default settings using the Statistics Tool-
box in MATLAB, Natick, MA. For ANN, we used the
Neural Network Toolbox in MATLAB implementing
back-propagation to learn a two-layered-feed-forward
network with five neurons in the hidden layer. To
increase the reliability of the ANN results, we trained 30
ANNs and the final result is computed as the average
accuracy. The simple fold-change-based predictor/classi-
fier classifies genes as MSMG if the ESC-to-EB gene
expression ratio is more than one. Such ratio was
extracted from studies that compared gene expression in
mESCs and EBs (GEO accessions: GSE3223, GSE10518).
The accuracy of this simple predictor based on these two
independent datasets is 0.73 and 0.79, respectively.
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Leave-one-out cross-validation (LOOCV)
The performance of SVM classifiers and other machine
learning classification methods is evaluated by LOOCV.
Each classifier is trained on n-1 of the total n training
samples and tested on the one left out. This step iterates
n times to calculate the average performance of the
trained classifier as an estimation of prediction error for
unseen samples. We measured the accuracy to assess
the learning performance:

Accuracy = +
+ + +
TP TN

TP TN FP FN
(10)

ROC curves
We also evaluated the performance of various SVM
classifiers by measuring the average area under the
curve (AUC) using a receiver operating characteristic
curve (ROC). Each time we left one fold of training
samples out as a testing set and trained the SVM on the
other two folds. This step is iterated three times and the
average performance can be calibrated as AUC. The
ROC curves were generated by varying the decision
threshold of each SVM classifier.

Application of the SVM-based classifier to indentify and
classify unseen MSMGs
To evaluate the SVM classifier, we chose two indepen-
dent sets of genes from genome-wide RNAi screens.
One screen identified genes important for stem cell self-
renewal and pluripotency, whereas the other screen
identified genes important to insulin signaling. We were
able to match the IDs of 126 genes from the screen that
identified stem cell self-renewal out of 148 genes identi-
fied in the study [22]. These genes were used as the
positive example test set. 101 genes out of the 126
genes identified as insulin signaling pathway members
from the second study were ID matched [23] and used
as the negative test set. SVM classifiers trained on our
original training set of 46 positive and 70 negative
examples were tested for their ability to classify genes
from these two independent sets. The ratio of percen-
tage of predicted MSMGs from the positive and negative
test samples can be viewed as a signal-to-noise ratio:

ratio = Predicted MSMGs in positive set
Predicted MSMGs in n

%
eegative set%

(11)

Additional material

Additional file 1: Feature description and reference. This file contains
a table listing all features/attributes with a description and the GEO
accession numbers.

Additional file 2: Processed microarray and binary ChIP-seq features
for all training and RNAi test samples. This file contains the
normalized microarray features (1 to 79) and binary ChIP-seq features
(Feature 80 to 91) for all training and RNAi test samples.

Additional file 3: Processed microarray and continuous ChIP-seq
features for all training and RNAi test samples. This file contains the
normalized microarray features (Feature 1 to 79) and continuous ChIP-
seq features (Feature 80 to 91) for all training and RNAi test samples.

Additional file 4: Top 20 features. This file contains two lists that are
the top 20 features using the weight magnitudes in a RBF-SVM classifier
and a Poly-SVM classifier as criteria for inclusion in the list. This means
that these features are most useful for separating the data into the
correct classes.

Additional file 5: Results of gene membership predictions of SVM
classifiers. This file contains the classifications results across all SVM
classifiers for all training samples and RNAi test samples. The column
labels correspond to the same labels as in Table 2 and 3.
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