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Abstract
Background: There have been several methods developed for the prediction of synthetic metabolic pathways leading 
to the production of desired chemicals. In these approaches, novel pathways were predicted based on chemical 
structure changes, enzymatic information, and/or reaction mechanisms, but the approaches generating a huge 
number of predicted results are difficult to be applied to real experiments. Also, some of these methods focus on 
specific pathways, and thus are limited to expansion to the whole metabolism.

Results: In the present study, we propose a system framework employing a retrosynthesis model with a prioritization 
scoring algorithm. This new strategy allows deducing the novel promising pathways for the synthesis of a desired 
chemical together with information on enzymes involved based on structural changes and reaction mechanisms 
present in the system database. The prioritization scoring algorithm employing Tanimoto coefficient and group 
contribution method allows examination of structurally qualified pathways to recognize which pathway is more 
appropriate. In addition, new concepts of binding site covalence, estimation of pathway distance and organism 
specificity were taken into account to identify the best synthetic pathway. Parameters of these factors can be 
evolutionarily optimized when a newly proven synthetic pathway is registered. As the proofs of concept, the novel 
synthetic pathways for the production of isobutanol, 3-hydroxypropionate, and butyryl-CoA were predicted. The 
prediction shows a high reliability, in which experimentally verified synthetic pathways were listed within the top 
0.089% of the identified pathway candidates.

Conclusions: It is expected that the system framework developed in this study would be useful for the in silico design 
of novel metabolic pathways to be employed for the efficient production of chemicals, fuels and materials.

Background
In the past few decades, various systematic methods have
been developed for the prediction of synthetic metabolic
pathways for the production of chemicals by employing
microorganisms [1-15]. These methods can be classified
by whether the approach is based on chemical structural
changes, enzymatic information, and/or reaction mecha-
nisms. The method based on chemical structural changes
is applied to reconstruct the network which represents

the relationship among the biochemical compounds
using the structure-based homology analysis [1-4]. This
method generates a variety of novel pathways, but predic-
tion to specify the enzymes is difficult. Enzymatic infor-
mation-based approach focuses on combination of gene
knock outs and additions of pathways existing in different
organisms [5,6]. This method is practical to use, but pre-
dictions are limited to the synthesis of currently known
biochemical compounds. Reaction mechanisms-based
approach identifies product candidates that can be driven
from a predetermined substrate using a knowledge-based
expert system [7-10]. This method predicts novel path-
ways and compounds according to the accumulated
knowledge and rules, but it is limited to identifying bio-
degradation pathways.
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To overcome the disadvantages of the aforementioned
methods, the pathway prediction systems were estab-
lished by combining the given reaction mechanisms and
the starting and target compounds [11-13]. These
approaches can generate novel compounds and reactions
with proposed enzyme candidates. However, the starting
and target compounds should be set as known com-
pounds, and thus this method is difficult to be applied to
the prediction of a synthetic pathway for a novel com-
pound of interest. A retrosynthesis model, which is a
functional group-based synthesis method towards a tar-
get compound, has been applied to search desired target
chemicals [14]. However, the previous studies provided a
huge set of predicted pathways, rather than suggesting
more favorable pathways to achieve a goal of efficiently
producing a desired chemical. In this study, a system
framework was developed to suggest promising enzyme
candidates to synthesize desired chemicals based on
combined information on chemical structural changes,
enzyme characteristics, and reaction mechanisms. The
proposed system framework identifies structurally quali-
fied enzymes for the synthesis of predetermined target
chemicals and then ranks the enzymes via a prioritization
scoring algorithm. Recently, a nice scoring technique to
identify preferred pathways by using an automatic design
approach for the metabolic pathways has been suggested
[15]; a scoring algorithm was developed for identifying a
possible route from a considered host organism. How-
ever, this approach cannot be applied to the novel path-
ways which are not present in the database. Thus, a new
scoring algorithm was developed in this paper for the

identification of desired novel synthetic pathways. Conse-
quently, the more efficient metabolic pathways for the
production of a desired chemical can be proposed.

Results and Discussion
Using the system framework developed in this study, the
novel synthetic pathways for the production of isobu-
tanol, 3-hydroxypropionate (3HP), and butyryl-CoA were
predicted. In summary, the steps composed of definition
of a target compound, route generation, prioritization,
and parameter optimization were taken to predict the
novel synthetic pathways. The prediction shows a high
reliability, in which experimentally verified pathways for
the synthesis of isobutanol, 3HP, and butyryl-CoA
belonged to top 0.047%, 0.044%, and 0.089% of all the pre-
dicted pathway candidates, respectively.

Prediction of synthetic pathways of the production of 
biofuels and evolutionary parameter optimization
Recently, Atsumi et al. reported novel metabolic engi-
neering strategies for the production of higher alcohols
such as 1-propanol, 1-butanol, 2-methy-1-butanol, 3-
methy-1-butanol, isobutanol, and 2-phenylethanol in
Escherichia coli [16]. The six pathways were devised
involving two well-known enzymes, 2-keto-acid decar-
boxylase (KDC, ec4.1.1.1) and alcohol dehydrogenase
(ADH, ec1.1.1.1), which is based on the reaction mecha-
nism that 2-keto acids can be converted to aldehydes and
then to alcohol. To testify their work, the system frame-
work was employed. The key novel synthetic pathways
are presented in Figure 1.

Figure 1 Six synthetic pathways of higher alcohols. The synthetic pathways for 1-propanol, 1-butanol, 2-methyl-1-butanol, 3-methyl-1-butanol, 
isobutanol and 2-phenylethanol with their starting compounds, 2-ketobutyrate, 2-ketovalerate, 2-keto-3-methyl-valerate, 2-keto-4-methyl-pentano-
ate, 2-ketoisovalerate and phenylpyruvate are shown, respectively.
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Initially, for example, the structure of the target com-
pound, isobutanol, was entered in the form of SMILES
[17,18]. Then, predefined reaction rules were applied to
the target compound for generating substrates. The gen-
erated substrates were regarded as intermediate target
compounds, and the reaction rules were applied again.
The recursive generation step was completed when the
generation loop has reached the predefined limit.
Throughout the loop, various routes for the production
of target compound were generated. The system then
detects known chemicals and displays them so as to
select a starting compound (Figure 2a). The referred reac-
tion rules are shown in Figure 2b. Among the detected
known chemicals, 2-ketoisovalerate was selected as the
starting compound. After the starting compound was
determined, the routes from the starting compound to
the target compound were retrieved for further analysis.
The routes for the production of the target compound are
defined as the base routes. The identified base routes for
the synthesis of the isobutanol are shown in the bottom
of Figure 2a. Using the mechanisms defined in every reac-
tion step of base routes, the biochemical reactions in the
KEGG database [19,20] were classified into the individual
groups. Finally, all the routes from the starting compound
to the target compound defined as the reaction route can-

didates were determined by combination of the reactions
in each group. As shown in Figure 3, two base routes for
the synthesis of isobutanol were identified and two
groups, 506 reactions in B.CO.4 and 106 reactions in
B.C.1.2, were classified for each base route. Finally,
107,272 reaction route candidates were determined.

Next, a prioritization method was applied to decide
which route candidates are preferred by estimating five
priority factors: binding site covalence, chemical similar-
ity, thermodynamic favorability, pathway distance, and
organism specificity. Throughout the prioritization step,
reaction route candidates were rearranged into enzyme-
based routes which were defined as enzyme route candi-
dates. If multiple reactions are related to one enzyme, the
values of binding site covalence and chemical similarity of
the enzyme are determined by the highest values of those
of the related reactions. Figure 4 shows the results of pri-
oritization by the estimation of five factors for the synthe-
sis of isobutanol.

Finally, the preference of each enzyme route candidate
was determined as a score calculated by the weighted
sum of each factor (Equation 6a in Methods). In the ini-
tial predictions, the six pathways were positioned within
top 0.55% of the predicted candidates. Specially, isobu-
tanol was within top 0.047% as the best result. From the

Figure 2 Retrosynthesis example and the reaction rules. (a) Part of the retrosynthetic tracing steps is shown while tracing loop limit is 2. If a sub-
strate is produced from a target, the reverse of applied reaction rule is enrolled with the substrate and target. For the first generation inner loop, 62 
primary substrate candidates are identified; in addition, 4,917 secondary substrate candidates are identified for the second generation outer loop. 
Among the substrate candidates, 233 compounds are identified in the KEGG database. 2-ketoisovalerate is selected as a starting chemical and the two 
viable routes are shown in the dashed box at the bottom. The compound ids are from KEGG database. (b) Reaction rules presented in (a) are listed. 
Every rule is basically defined as forward direction. For example, C.1 is exactly the same as F.C.1 while B.C.1 is defined as the reverse reaction of F.C.1.
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initial prediction results, each three factor including ther-
modynamic favorability, pathway distance, and organism
specificity is consistent for the six pathways. The other
hand, the other factors including binding site covalence
and chemical similarity are varied. It is caused that the
same enzymes are applied to design the six pathways.
Among the results of Atsumi et al. [16], the production
rate of isobutanol was at least three times higher than the
production rates of other higher alcohols. Also, the pre-
dicted rank for the synthetic pathway via KDC and ADH

for the production of isobutanol is higher than other
pathways. Therefore, the pathway was considered to be
more suitable to produce isobutanol. For the accurate
estimate of the relative influence of each factor which is
expressed as a parameter, novel synthetic pathway for the
production of isobutanol is selected.

To identify the optimal parameters, the evolutionary
parameter optimization shown as Equation 7 in Methods
was performed [21,22]. When the parameter values of 1
were used without optimization, the experimentally

Figure 3 The base routes and reaction route candidates for synthesis of isobutanol from 2-ketoisovalerate. The reaction ids are from KEGG 
database.
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proven synthetic pathways of isobutanol was ranked at
the 20th out of 42,344 enzyme route candidates. After the
evolutionary parameter optimization, the parameter set
was changed from {1, 1, 1, 1, 1} to {0.703, 1.000, 1.001,
0.671, 0.951} and the rank of the synthetic pathway was
improved to the 17th (Figure 5). The ranks of six path-

ways were improved within top 0.42% of the predicted
candidates than the initial predictions positioned within
top 0.55% as mentioned above. In addition, there were
enzyme route candidates that always have higher values
in the final priority scores than those of the experimen-
tally proven pathways (Table 1). It means that they have

Figure 5 Parameter and rank changes through evolutionary optimization. The parameter changing behaviours are shown. According to the pa-
rameter changes, the rank changes of experimentally proven synthetic pathways for the production of isobutanol, 3HP, and butyryl-CoA are also pre-
sented.

Figure 4 Prioritization procedure of an enzyme route candidate. One enzyme can be related with multi-reactions, for example, ec1.1.1.1 and 
ec4.1.1.15 catalyze three reactions, respectively. The best values of binding site covalence and chemical similarity of novel reaction steps are selected 
and evaluated to obtain those of enzyme route candidates.
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the superior values in all factors. Thus, the superior
enzyme route candidates might be used as superior syn-
thetic pathways for more efficient production of the tar-
get chemical.

Prediction of synthetic pathways for the production of 3HP
To examine the performance of the system framework
developed in this study, the synthetic pathways for the
production of 3HP were predicted as another example.
3HP is one of the top value added chemicals suggested by
the U.S. Department of Energy [23]. Other than the sug-
gested seven metabolic pathways for the production of
3HP from glucose [24,25], alternative pathways from
acryloyl-CoA were identified. The structure of 3HP and
its existing and alternative synthetic pathways from acry-
loyl-CoA are shown in Figure 6a. To identify the synthetic
pathways for the production of 3HP from acryloyl-CoA,
two base routes shown in Figure 6b and 29,592 reaction
route candidates were generated. Next, reaction route
candidates were further analyzed quantitatively in order
to identify more promising routes by employing a priori-

tization algorithm. During the prioritization, 4,524
enzyme route candidates were generated and evaluated.
The experimentally proven synthetic pathway from acry-
loyl-CoA to 3HP through ec4.2.1.17 and ec2.8.3.1 was
ranked at the second out of 4,524 enzyme route candi-
dates (within top 0.044%). Since the existing pathway is
superior enzyme route candidate of the experimentally
proven pathway, evolutionary optimization does not
change the parameter values and the rank. This result
demonstrates the efficiency and reliability of the devel-
oped system framework for identifying novel synthetic
pathways for the production of desired chemicals.

Prediction of alternative synthetic pathways for the 
production of 1-butanol
In this paper, the alternative synthetic pathway for the
production of 1-butanol from 2-ketovalerate [16], as
Atsumi et al. presented, has been identified. Since the two
step synthetic pathway for the production of 1-butanol
from butyryl-CoA already exists in KEGG database, the
synthetic pathways to the butyryl-CoA were explored.
The constructed alternative pathways with base routes
are shown in Figure 7. During the route generation pro-
cess, 3,240 reaction route candidates and 1,120 enzyme
route candidates were identified. The enzyme route can-
didates are quantitatively analyzed by the prioritization
method and the resulting top 10 pathways are shown in
Table 2. Among the top 10 pathways, the 8th ranked
enzyme route candidate, a novel pathway via ec1.2.1.25
and ec5.4.99.13, was successfully synthesized to produce
butyryl-CoA from 2-ketoisovalerate. This pathway is
structurally identical compared to the existing pathway;
however, no organism has been found to produce the
butyryl-CoA via the enzymes. In other words, the path-
way obtained lower score in the organism specificity.
That is the reason why the pathway is ranked at the 8th.
After the evolutionary optimization, the rank is slightly
changed to the 7th and the parameter set is changed to
{0.956, 1.121, 1.001, 0.669, 0.801}. Through this work, the
novel alternative synthetic pathway for the production of
1-butanol has been identified. This study demonstrates
the applicability of the developed method and system
framework.

Conclusions
In this study, a system framework was established to
identify promising enzyme candidates to synthesize
desired chemicals. This approach can also be applied to
find the novel pathways for the biodegradation of chemi-
cals. Through this work, 50 reaction rules representing
numerous biochemical reactions were set up for qualita-
tive analysis. The most notable feature of the study is the
development of a new quantitative analysis method, pri-
oritization scoring algorithm. Using the novel estimation

Table 1: The superior enzyme route candidates for the 
production of each target chemical.

Target chemical Enzyme route candidates

1-propanol ec4.1.1.1 T ec1.1.1.2

ec4.1.1.1 T ec1.1.99.8

isobutanol ec4.1.1.1 T ec1.1.1.2

ec4.1.1.1 T ec1.1.99.8

1-butanol ec4.1.1.1 T ec1.1.1.2

ec4.1.1.1 T ec1.1.1.61

ec4.1.1.1 T ec1.1.99.8

2-methyl-1-butanol ec 4.1.1.1 T ec1.1.1.2

ec4.1.1.1 T ec1.1.99.8

3-methyl-1-butanol ec 4.1.1.1 T ec1.1.1.2

ec4.1.1.1 T ec1.1.99.8

2-phenylethanol ec4.1.1.17 T ec1.1.1.90

3HP ec4.2.1.17 T ec3.1.2.4

butyryl-CoA ec1.2.7.7 T ec5.4.99.13

Enzyme route candidates have higher values in all factors 
compared to the experimentally identified pathways.



Cho et al. BMC Systems Biology 2010, 4:35
http://www.biomedcentral.com/1752-0509/4/35

Page 7 of 16
methods, new opportunities of enzymes can be predicted
with greater precision. Moreover, the parameters are esti-
mated by an evolutionary optimization method, and thus
more accurate scores can be estimated as more experi-
mentally validated data are added. This in silico predic-
tion system is expected to contribute significantly to in
vivo or in vitro experiments.

Methods
System framework
To identify promising enzyme candidates that catalyze
novel biochemical reactions to synthesize desired chemi-
cals, a system framework that follows the steps of target
compound definition, route generation, prioritization,
and parameter optimization was developed (Figure 8).
The detailed procedure is shown in the Results and Dis-
cussion using the isobutanol synthesis pathways as exam-
ples. Having set isobutanol as a target chemical, the route
length was appointed as 2. As shown in Figure 2, the pre-
defined 50 reaction rules were applied twice repeatedly
since the route length was 2; the reaction rules are
explained in Database construction. Then, the substrate
candidates were detected and a starting chemical has
been selected from the candidates. Following this step,
enzymatic reactions having the same reaction rule with
the reactions in the pathway from the starting chemical to
the target chemical were matched. Then the prioritiza-
tion method based on quantitative analysis has been per-
formed to identify which enzymes would be more
promising for the desired novel pathway; the prioritiza-

tion method is explained in Prioritization. As a result, the
combinations of enzymes were sorted in decreasing order
of the prioritization scores. If a novel pathway is proven
by further studies including experimental validation, the
evolutionary parameter optimization is performed to
update the parameters based on the experimental data;
the parameter optimization is explained in Parameter
optimization.

JChem [26] was imported to handle chemical struc-
tures and GAMS/CPLEX [27,28] were used to perform
parameter optimization. KEGG was employed as a path-
way reference database [19,20]. SMILES/SMARTS
[17,18] were used as chemical structure representation
languages, JAVA as a programming language, and
MSSQL 2005 Server were used as a database server.

Database construction
For the management of data for pathway/enzyme predic-
tion, two databases were developed: reaction rule data-
base and binding site rule database. First, the reaction
rules explaining reaction mechanisms were defined. Basi-
cally, a reaction rule is constructed based on the smallest
substructure related to the structural change of the main
reactant and product by the reaction. Thus, cosubstrates
or cofactors are not considered. With the small number
of reaction rules, various reactions can be described. In
this study, 50 reaction rules were constructed (See addi-
tional file 1: The list of 50 reaction rules). As shown in
Figure 9a, several reactions catalyzed by ADH (alcohol
dehydrogenase; ec1.1.1.1) can be explained by a single

Figure 6 3-hydroxypropionate synthetic pathways from acryloyl-CoA and involved enzymes. (a) Experimentally validated synthetic pathways 
from acryloyl-CoA to 3-hydroxypropionate (3HP) where the enzymes existing in the KEGG database are underlined. (b) The base routes from acryloyl-
CoA to 3HP. Pathway via acrylic-acid is identified additionally.
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reaction rule defined as F.CO.4. After the construction of
reaction rules, all the reactions in the database were clas-
sified according to the reaction rules. The reaction rules
are applied not only to the forward direction, but also to
the backward direction. In addition, reaction rules can be
combined in order to represent one reaction. As a result,
these simple reaction rules can represent 81% of enzymes
present in the KEGG database. Reactions are not catego-
rized when the detailed structure of compounds in reac-
tions does not defined-; when compounds of reactions
are not carbon-related- or polymer-related; or when the
reaction mechanism cannot be defined clearly in terms of
the structure changes of both directions, especially some
lyases and ligases cannot be identified clearly. Figure 9b
shows the example of leukotriene-A4-forming reaction
catalyzed by ec4.4.1.20. The backward reaction was
defined by cleaving the C-S bond, by the forward direc-
tion could not be defined clearly with simple and widely
used cosubstrates such as carbon dioxide. The database

for binding site rules has been constructed to estimate
binding site covalence among the prioritization factors.
Since a binding site is defined based on the three dimen-
sional structure of a molecule, it is difficult to identify a
binding site with its structural formula alone, without ste-
reo information [29]. To deal with this problem, similar
chemical substructures including the functional group
may form similar binding sites [29-31]. For each reaction
rule, the branch was extended or a ring was generated
based on the functional group to generate chemical sub-
structures which are defined as the binding site rules in
this paper. The branch was extended with 103 atom
attaching reactions or a ring is generated with 25 ring
generation reactions when the main branch of the chemi-
cal had 3 or more atoms. Next, binding sites rules are
named with the direction and the related reaction rule id
for further estimation of binding site covalence. For the
binding site rule on the substrate side of a reaction rule,
the initial step is 'f '. Otherwise, the initial step is 'b' for the
binding site on the product side. The letters 'f ' and 'b'
denote 'forward' and 'backward' direction of the reaction
rule, respectively. Then, an index of reaction rule repre-
sented by a number is added to distinguish where the
binding site rule is defined. Each step is divided by a dot.
Figure 10 presents an example. As the binding site rule
grows, the name is extended. The remained number rep-
resents the hierarchical information of the binding site
rule.

Prioritization
If an enzyme reaction has the same reaction rule with a
novel reaction in a desired pathway, then it is matched as
a similar reaction. There can exist many matched enzy-
matic reactions for each reaction in the desired pathway,
and thus it is necessary to clarify which enzymatic reac-
tions will be more promising. To address this problem,
the similar reactions need to be evaluated quantitatively.
The quantitative aspect of likeness is defined by a scoring
algorithm - referred to as prioritization. The prioritiza-
tion method is composed of five factors: binding site
covalence, chemical similarity, thermodynamic favorabil-
ity, pathway distance and organism specificity. Binding
site covalence and chemical similarity are evaluated by
comparing two reactions. Here, the binding site rules
were defined by extending functional groups that are
occupied in every reaction rule. The binding site cova-
lence represents the local similarity between two mole-
cules whereas the chemical similarity is estimated based
on the entire structures of molecules in each reaction
route candidate. Thermodynamic favorability is esti-
mated by chemical structure changes through identified
base routes. Pathway distance and organism specificity
measure the relationships among enzymes to catalyze
reactions in each enzymatic synthetic route from starting

Figure 7 Alternative synthetic pathways for the production of 1-
butanol via butyryl-CoA. The base routes to design novel synthetic 
pathway are blocked by dashed box while the existing pathway from 
butyryl-CoA to 1-butanol is shown below.
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Table 2: Top 10 enzyme route candidates for the synthesis of butyryl-CoA and the prioritization values.

Rank Enzyme 
route 
candidates

Intermediate XB XC XT XP XO X

1 ec1.8.1.4 T 
ec5.4.99.13

isobutyryl-CoA 2.000 1.855 0.449 0.900 1.000 2.633

1 ec2.3.1.12 T 
ec5.4.99.13

isobutyryl-CoA 2.000 1.855 0.449 0.900 1.000 2.633

1 ec1.2.4.1 T 
ec5.4.99.13

isobutyryl-CoA 2.000 1.855 0.449 0.900 1.000 2.633

4 ec1.2.4.2 T 
ec5.4.99.13

isobutyryl-CoA 2.000 1.849 0.449 0.810 1.000 2.600

5 ec1.2.7.1 T 
ec5.4.99.13

isobutyryl-CoA 2.000 1.950 0.449 0.900 0.531 2.457

6 ec1.2.7.7 T 
ec5.4.99.13

isobutyryl-CoA 2.000 2.000 0.449 0.900 0.478 2.457

7 ec2.3.1.54 T 
ec5.4.99.13

isobutyryl-CoA 2.000 1.950 0.449 0.810 0.531 2.427

8 ec1.2.1.25 T 
ec5.4.99.13

isobutyryl-CoA 2.000 2.000 0.449 0.900 0.387 2.414

9 ec5.3.1.17 T 
ec1.2.4.2

2-oxo-valerate 1.900 1.605 0.368 0.810 1.000 2.402

10 ec5.3.1.17 T 
ec1.2.7.3

2-oxo-valerate 1.900 1.588 0.368 0.810 1.000 2.393

XB is the binding site covalence, XC is the chemical similarity, XT is the thermodynamic favorability, XP is the pathway distance, and XO is the 
organism specificity. The final priority X is evaluated by Equation 6a with the previously estimated parameter set {0.703, 1.000, 1.001, 0.671, 
0.951}. 6th ranked enzyme route candidate is the superior set of the experimentally proven pathway which is ranked at the 8th.

to target chemical. Those factors are used to calculate
priorities of the enzyme route candidates.
Binding site covalence
Binding site covalence describes how similar two reac-
tions are from the point of chemical structure changes.
As described above, binding site rules had been defined
as substructures of chemicals including their functional
groups. In addition, the systematic name of a binding site
rule entails the trace of branch extension. Therefore, the
binding site covalence is calculated by systematic names;
the more similar names the binding site rules have, the
more similar structures they have. The binding site cova-
lence between a known reaction in a reaction route can-
didate and a novel reaction in a base route can be

estimated as follows. First, the covalences of molecules on
the substrate side and the product side are evaluated. The
binding site covalence is then calculated by summation of
the covalence of molecules on both sides of reactions.
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where
i : index of reaction steps in a base route, (i = 1,2,...,n)
n : number of reaction steps in a base route (route

length)
j, J : index and set of enzyme route candidates, respec-

tively (?j  J)
XB, XBj, XBi : binding site covalence of an enzyme

route candidate, a reaction route candidate and a reaction
step in the base route, respectively

: system name steps in common for two reac-

tions on the substrate side and the product side, respec-

tively

: system name steps of a novel reaction fi on the

substrate side and the product side for a reaction step i,

respectively

: system name steps of a known reaction gi on

the substrate side and the product side for a reaction step

i, respectively
An example is shown in Figure 11. One base route can

be compared to several reaction route candidates so as to
identify which reaction route candidate will be more sim-
ilar in terms of local structures around functional groups.
If chemicals have the same binding site rule as the largest
substructure on both sides of the reactions, the binding
site covalence of the reaction step becomes the maximum
value, one, while the binding site covalence is normalized
between zero and one.
Chemical similarity
Chemical similarity is examined on both sides of reac-
tions with respect to how similar two reactions are in
terms of chemical fragments [32]. The chemical similarity
represents the similarities of the entire molecular struc-
tures, while the binding site covalence identifies only the
substructure similarities. In Figure 12, the binding site
covalence is calculated by considering the circled struc-
tures only; on the other hand, the chemical similarity is
calculated by considering the whole structures. The bind-
ing site shown in the circle always contains a functional
group shown in the square. In this case, the binding site
covalence might get higher value than the chemical simi-
larity since the substructure similarities on both sides of
reactions are more significant. Tanimoto coefficient, rep-
resenting chemical dissimilarity based on a fragment
analysis using chemical bit-strings was employed [32,33].
The Tanimoto coefficient has been one of the most popu-
lar methods to show chemical dissimilarity, since it evalu-
ates the relationship between chemicals accurately, is
normalized from zero to unity and easy to use. In the sys-
tem framework, the complementary value of the Tanim-
oto coefficient was used to evaluate the similarity not the
dissimilarity. In the same manner as the binding site
covalence calculation, the values are estimated on both
sides of the reactions and the summation is taken for each
reaction step.

XB XB
j J

j=
∈

max (1c)

bc bci
s

i
p,

bf bfi
s

i
p,

bg bgi
s

i
p,

XC T f g T f gi i
s

i
s

i
p

i
p= − + −( ( , )) ( ( , ))1 1 (2a)

XC
n

XCj i

i

n

=
=
∑1

1

(2b)

XC XC
j J

j=
∈

max (2c)

Figure 8 The system flow diagram. The system flow is shown in the 
dashed box while the research cycle is connected with the steps in sys-
tem flow. The research cycle explains how the system is developed 
and updated.
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where
XC, XCj, XCi : chemical similarity of an enzyme route

candidate, a reaction route candidate and a reaction step
in the base route, respectively

T(f, g): Tanimoto coefficient for two molecules and
while 0 ≤ T(f, g) ≤ 1

: substrate and product of a reaction step in a

base route fi for a step i, respectively

: substrate and product of a reaction step in a

reaction route candidate gi for a step i, respectively

f fi
s

i
p,

g gi
s

i
p,

Figure 9 Examples of a reaction rule with related reactions and a complicated reaction. (a) Main substrate and product of reactions catalyzed 
by ADH (EC1.1.1.1) are listed. The reaction rule explains every reaction in both of forward and backward directions. (b) An example of complicated 
reaction (leukotriene-A4-forming reaction) which is catalyzed by ec4.4.1.20. The reaction mechanism is hard to be defined as a rule.

Figure 10 An example of a binding site rule and naming. Based on the oxygen attaching reaction rule (rule number: 13), the functional groups on 
the both sides of the reaction is extended. The systematic names are also extended based on the direction and the rule id.
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Thermodynamic favorability
The group contribution method was used to estimate
Gibbs free energy of formation [34,35]. Normally, Gibbs
free energy of formation has been used to determine
whether a reaction is thermodynamically feasible, and it
takes a negative value if the reaction is feasible. Since the
group contribution method requires only group and atom
properties of a molecule, it is appropriate to be adopted
in the system framework. However, the environmental
parameters in a living system, such as temperature and
pressure, are not ideal and change continuously, and thus
the group contribution method cannot estimate the exact
Gibbs free energy of formation. Therefore, we employed
the Gibbs free energy of formation as a reference to deter-
mine thermodynamic favorability. From the starting to
target chemical, the overall Gibbs free energy of forma-
tion estimated by the group contribution method must be
the same. Thus, the more important variable than the
overall Gibbs free energy of formation is the energy level
fluctuation through the synthetic route (Figure 13). As

shown in the Equation 3a, the absolute values of Gibbs
free energies of formations are summed through a base
route so as to obtain the 1-norm distance [36].

where
XT : normalized thermodynamic favorability of an

enzyme route candidate
XTi : Gibbs free energy of formation of a step in a base

route
XTj : thermodynamic favorability of an enzyme route

candidate

XT
n

XTj i

i

n

=
=
∑1

1

(3a)

XT
XTj

j J
XT j

= −

∈

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

exp
max

(3b)

Figure 11 An example of estimation of binding site covalence. The binding site covalence between novel and known reactions belonging to rule 
number 1 (rule id F.C.1) is evaluated. The largest binding site, a compound contains, is shown near by the compound. Hereby, bc means system name 
step in common for reaction f and g while bf and bg means system name steps of a novel reaction f and a known reaction g, respectively. The superscript 
s and p means substrate side and product side, respectively. XB is the binding site covalence between a novel reaction f and a known reaction g. (Equa-
tion 1a).
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Here, we adjusted the range of thermodynamic
favorability from zero to one for comparison with other
factors. Moreover, a larger value indicates more fluctua-
tion so that the values should be converted. To make a
larger value more favorable, the negative exponential
function of each thermodynamic favorability ratio with
respect to the maximum value was applied. After the
three factors have been estimated, all the identified routes
are rearranged as enzyme route candidates. If two or
more reactions are catalyzed by one enzyme, then the
best values of binding site covalence and chemical simi-
larity are selected (Equation 1c, 2c).

Pathway distance
Previous studies have been attempted to identify the
genomic relations of pathway distance [37,38]. The path-
way distance was initially defined as the shortest path
between two enzymes; if two enzymes catalyze same
reaction, then the pathway distance becomes zero.
Shorter pathway distance showed higher genomic rela-
tion based on gene pairs [38]. The shortest pathway dis-
tance between two enzymes is examined by a full search
starting from one enzyme until met the other one. First,
the pathway distance between two enzymes is evaluated
and then that of the second and third enzymes are evalu-
ated again until the last enzyme in the enzyme route can-
didate is encountered.

where
XP : pathway distance of an enzyme route candidate
XPi,i+1 : revised pathway distance between i th and (i +

1) th steps in an enzyme route candidate
pi,i+1 : pathway distance between i th and (i + 1) th

steps in an enzyme route candidate

XPi j
pi j

, . ,
+ = +
1 0 9 1 (4a)

XP XPi j
i

n

= +
=

−

∏ , 1

1

1

(4b)

Figure 12 An example of main chemical changes in two reactions. 
Structures in squares indicate functional groups and structures in cir-
cles indicate binding sites for each chemical.

Figure 13 Gibbs free energy of formation changes via five routes. Route 3 is preferred to others since it has less fluctuation.
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Finally, all the evaluated pathway distances between
steps in an enzyme route candidate are multiplied. If one
distance is increased, the co-expression probability of two
enzymes is decreased (Equation 4a).
Organism specificity
Organism specificity has been assigned in the same man-
ner as pathway distance estimation. It estimates the
organism-to-organism distance, a subject that has been
studied extensively [39-41]. The distance is calculated
based on the hierarchical information of organism lin-
eages based on gene changes from generation to genera-
tion. If an enzyme is one generation differs from the other
one, the co-expression probability of the two enzymes is
decreased (Figure 14, Equation 5a). The lineage informa-
tion of all genes stored in the KEGG database was used.
The distance is established by comparing the lineage
information; moreover, the system explores the closest
organisms which encode the two enzymes.

where
XO : organism specificity of an enzyme route candi-

date
XOi,i+1 : organism specificity between ith and (i + 1) th

step in an enzyme route candidate
oi : number of lineage generations of ith step in an

enzyme route candidate
oi,i+1 : number of lineage generations in common for

ith and (i + 1) th step in an enzyme route candidate
Final priority score
The meanings of five factors addressed above are catego-
rized into three groups: structural similarity of reaction
steps in a route, thermodynamic benefits among interme-
diates and co-expression probability of enzymes. With
those factors, the priority score for each route is finally
obtained by Equation 6a.

where
X: priority score of an enzyme route candidate
α : parameter for binding site covalence
β : parameter for chemical similarity
γ : parameter for thermodynamic favorability
δ : parameter for pathway distance
ε : parameter for organism specificity

Each parameter was initially set to be one; in addition,
the parameters were optimized, as introduced in the fol-
lowing section. Finally, the promising enzyme candidates
are sorted by the priorities where a higher priority value
means greater likelihood to catalyze a novel synthetic
route. Since numerous enzyme candidates are ordered
quantitatively, promising enzyme candidates among
them could be distinguished and applied to experiments.
Parameter optimization
Finding optimal parameters to identify the best candidate
is one of the critical issues in determining valid priority,
since the parameters denote the impacts and the relation-
ships of the aforementioned five factors. To optimize the
parameters, the known enzymes, exist in the KEGG data-
base, were utilized to identify the experimentally proven
novel pathways. With pathway information in the KEGG
database, the currently known pathways will inevitably
receive the highest scores. For this reason, the criteria
were designed based on currently known pathways.
Herein, the compared chemical structures between a syn-
thesized route and an existing pathway are identical, and
thus the binding site covalence and chemical similarity
must be the maximum values for each step in a route.
Moreover, pathway distance must be short and the organ-
ism specificity is one. Thermodynamic favorability can be
better for an unknown route; however, this effect cannot
be analyzed alone without considering other factors. To
validate our approach, the parameters have been opti-
mized by satisfying the criterion that newly synthesized
pathways from the literatures are to be ranked high.
Using the data set of prioritization factors, a mixed inte-
ger linear problem was set up as follows. The primary
objective is to minimize the difference between the prior-

XOi i
o o oi i i i

, . ,
+

+ − ⋅= + +
1

20 9 1 1 (5a)

XO XOi i

i

n

= +
=

−

∏ , 1

1

1

(5b)

X
n

XB XC XT XP XO= ⋅ + ⋅ + ⋅ + ⋅ + ⋅1
( )a b g d e

(6a)

Figure 14 Estimated organism specificities in a hierarchical tree. 
This tree represents lineage relationships among organisms. The value 
written in each node indicates the organism specificity compared to 
the filled node. If an enzyme a is expressed in Alphaproteobacteria and 
an enzyme b is expressed in Enterobacteriales, the organism specificity 
between a and b is 0.73.
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ity score of a desired route candidate with current param-
eters and the score with adjusted parameters. The
secondary objective is to maximize the number of reac-
tions having lower scores than the desired route candi-
date. That is, the parameters evolve whenever a test case
is added so as to adjust parameters that minimize the
deviation and make experimentally verified pathways be
ranked high simultaneously.

where
α' : adjusted parameter for binding site covalence
β' : adjusted parameter for chemical similarity
γ' : adjusted parameter for thermodynamic favorability
δ' : adjusted parameter for pathway distance
ε' : adjusted parameter for organism specificity
XBobj: binding site covalence of the desired candidate

obj
XCobj : chemical similarity of the desired candidate obj
XTobj : thermodynamic favorability of the desired can-

didate obj
XPobj : pathway distance of the desired candidate obj
XOobj : organism specificity of the desired candidate

obj

: priority score of a route candidate j with

adjusted parameters

: priority score of the desired candidate obj with

adjusted parameters

yj : binary variable, 

The priority scores are calculated by Equation 6 while
the lower bound and upper bound of parameters are 0.5
and 1.5, respectively. This problem was solved by the
parameter evolutionary optimization [21,22]. After the
evolutionary parameter estimations were performed with
five test cases sequentially, the parameters have been
adjusted, and consequently the Equation 6a was specified
to Equation 6b.

The evolutionary parameter optimization process
according to enrolled test cases is presented in Figure 5.
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