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Abstract

Background: A genomic catalogue of protein-protein interactions is a rich source of information, particularly for
exploring the relationships between proteins. Numerous systems-wide and small-scale experiments have been
conducted to identify interactions; however, our knowledge of all interactions for any one species is incomplete,
and alternative means to expand these network maps is needed. We therefore took a comparative biology
approach to predict protein-protein interactions across five species (human, mouse, fly, worm, and yeast) and
developed InterologFinder for research biologists to easily navigate this data. We also developed a confidence
score for interactions based on available experimental evidence and conservation across species.

Results: The connectivity of the resultant networks was determined to have scale-free distribution, small-world
properties, and increased local modularity, indicating that the added interactions do not disrupt our current
understanding of protein network structures. We show examples of how these improved interactomes can be used
to analyze a genome-scale dataset (RNAi screen) and to assign new function to proteins. Predicted interactions
within this dataset were tested by co-immunoprecipitation, resulting in a high rate of validation, suggesting the
high quality of networks produced.

Conclusions: Protein-protein interactions were predicted in five species, based on orthology. An InteroScore, a
score accounting for homology, number of orthologues with evidence of interactions, and number of unique
observations of interactions, is given to each known and predicted interaction. Our website http://www.
interologfinder.org provides research biologists intuitive access to this data.

Background
Proteins often physically interact to carry out their func-
tions within living cells. A protein-protein interactome,
or a protein-protein interaction (PPI) network, is the
collection of these interactions between proteins in a
single organism. The utility of generating a high quality
PPI network with significant protein coverage for any
species is manifold. It has been suggested that if two
proteins interact, then they are likely to have related
functions [1]. Therefore, perhaps the greatest benefit of
a comprehensive PPI map will be to provide insight into
the biology of proteins with no known function, a signif-
icant issue for all species in this “post-genomic era.”

Systematic identification of PPI has provided new
insights into the relationships between both individual
proteins and the processes within which they are
involved. There have been several studies aimed at
determining the full set of PPI for multiple model
organisms [2-8], as well as for humans [9-11], and a
wide range of publications on PPI at a much smaller
scale. The strength of an interactome is in the quality
and extent of the available data. Although there is a
considerable amount of interaction data available for
organisms such as yeast, worm, fly, human, and to a les-
ser extent mouse, unfortunately there is an underrepre-
sentation of the potential PPI, with a majority of
proteins not included in the current maps for any one
species. The exception is yeast, which is estimated to
have 18,000 ± 4500 interactions [12] encompassing 84%
of the known proteome. In the absence of a technologi-
cal advance that would improve the coverage of PPI
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identification for a single species, alternative approaches
need to be incorporated to speed the development of
more complete PPI network maps.
One way to address the current deficiencies within

available PPI data is to examine orthologues of interact-
ing proteins in other organisms and predict possible
interologues (conserved PPI between sets of conserved
orthologues). The basis of this comparison is that pro-
teins encoded by orthologous genes maintaining a con-
served function also maintain most, if not all, PPI with
other conserved proteins. In order to predict interolo-
gues by conservation, one must first obtain an accurate
set of orthologues. In general, the BLAST sequence
alignment algorithm [13] is commonly used for identify-
ing interspecies orthologues due to being computation-
ally inexpensive, albeit less robust than algorithms such
as Smith-Waterman [14]. With this cross-species map-
ping, conserved interologues can be identified and pre-
dicted as has been reported by others [15-21]. The
interaction prediction database STRING [19,22-24] uses
Clusters of Orthologous Groups of proteins (COGs) for
orthologues between species.
Alternatively, Michaut et al. [22] predicted interac-

tions in a multitude of organisms using pair-wise Smith-
Waterman similarity to determine orthology, with a best
reciprocal hit approach, resulting in all “orthologues”
existing in a one-to-one relationship. A more powerful
approach for orthology mapping was used by Ensembl
[25], where a combination of BLAST and Smith-Water-
man was used for alignments, followed by reconciliation
using the phylogenetic tree of all species in their data-
base. This allows for more than one-to-one orthologues,
a feature of which we take advantage to generate com-
prehensive, predicted PPI network maps.
Considering the recent use of protein interactomes in

defining pathways or predicting gene involvement in
disease on the premise of “guilt-by-association,” expand-
ing our knowledge of PPIs would be of benefit to health
sciences [26,27]. Because the number of interactions
observed within a single species is very limited, we have
endeavored to predict interologues from known interac-
tions in other species. Through intra-species and inter-
species analysis, we predict new PPI for human, mouse,
fly, worm, and yeast. We then assign a confidence mea-
surement to each interaction based on the level of con-
servation of the interaction across multiple species and
the number of supporting experiments. This measure-
ment allows interologues comprised of one-to-many and
many-to-many orthologues to be scored, although here,
we score them lower based on their level of homology.
In addition, we implement PPI predictions to interpret
biological data. Because the software Cytoscape [28]
offers highly flexible network visualization, we provide
all of our results in a Cytoscape compatible format as

supplementary data. We also developed a web interface
(interologfinder.org) for downloading pre-computed files
and exploring user-specified genes of interest, for which
both browsing and Cytoscape files are available.

Results
Comparison of Orthologues
In order to facilitate the comparison of interactions
across species, we first surveyed the amount of gene
conservation between species. Orthologue data from
Ensembl 50 were compared between five species:
human, mouse, fly, worm, and yeast, and the number of
orthologues between species were determined for those
genes whose status Ensembl annotated as “known.” Fig-
ure 1 shows the overlap between the organisms as a
five-way Venn diagram. Human and mouse are the
most closely related organisms we are investigating and
as such, demonstrate a high level of gene conservation.
Yeast, however, shares less than half of its genome with
the four animal species in this study. A large majority of
genes annotated “novel” was found to be unique to their
species. For instance 9,390 human genes were “novel”
(as noted by Ensembl), and 9,165 of these did not have
orthologues in any of the other four species, bringing
their authenticity into question.
For those genes that are conserved in all five species,

Gene Ontology (GO) analysis reveals an overrepresenta-
tion of a wide variety of metabolic, biosynthetic, and
DNA repair processes (Additional file 1: Table S1).
These same GO annotations are consequently under-
represented in the non-conserved genes for each species.
In contrast, processes such as signal transduction, extra-
cellular communication, integral membrane channel/
transporter activities, and regulation of transcription and
gene expression were over-represented in the non-con-
served group and are consequently under-represented in
the conserved gene group.

Comparison of Databases
Genes and the binary interactions of the proteins they
encode were retrieved from three databases, IntAct, DIP,
and BIND, for the five species investigated. Retired gene
accession numbers were converted to updated numbers,
then each accession number was converted to its Ensembl
Gene ID. Only accession numbers matching the expected
species were retained from each database. A summary of
the data preserved from each database is presented in
Additional file 2: Table S2. Unless otherwise noted, only
genes annotated either “known” or “novel” by Ensembl
were used. For each species, we determined the overlap
between the three protein interaction databases employed
(Additional file 2: Table S2). Although the number of pro-
teins shared between any two databases is more than
expected (Additional file 2: Table S2), there are few
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protein interactions present in all three databases, likely
due to the small percentage of the proteome covered.
Merging the three databases has therefore extended the
PPI network coverage for each species. For example,
InAct, DIP, and BIND each house protein interactions for
17, 10%, and 2.5% of the human proteome, respectively,
but their combination achieved 21% coverage (28% if con-
sidering only “known” genes), highlighting the lack of
knowledge in the currently available PPI networks (Addi-
tional file 2: Table S2). Yeast, however, has the largest

percent of its proteome represented, with 77% present
when the databases are combined, or 84% if only “known”
genes are considered.

Comparison of Interologues and Predicted Interologues
Protein interactions conserved between organisms are
called interologues. Existing interologues between the
five merged interactomes that we produced were identi-
fied (Additional file 3: Figure S1A). We also predicted
interologues in each organism from pairs of interacting

Figure 1 Five-way Venn Diagram of orthologous genes in five species. Orthologues in human (red), mouse (orange), fly (yellow), worm
(green), and yeast (blue). Numbers of genes overlapping between all five species are given in their respective colors and encircled. All other
groups of orthologous genes only show the number of genes found in the organism with the largest number in that group. Orthologues were
retrieved from Ensembl 50.
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orthologues present in the other four species (Additional
file 3: Figure S1B). Files have been generated for each
species and are available for download as supplemental
data or at http://www.interologfinder.org (listed in Addi-
tional file 4: Table S3).
We observed 99 worm interactions conserved in fly

and 96 fly interactions conserved in worm, even with
25,476 known interactions in fly. Perhaps this is due to
the small number of interactions known in worm, only
5204. Because of the low number of interologues
between fly and worm, there were almost no interolo-
gues predicted in any species from interactions present
in both of these two species. We tested the proportions
of orthologues for each species of those found in the
interactomes verses in the whole genomes, and found
that for both fly and worm, statistically, orthologues
were underrepresented in the interactomes for these
two species (p-value < 0.0001). Indeed, across all species,
the test for proportions of proteins with orthologues
present in the interactome of each species, worm had
the most extreme t-statistics of all species (t-value > 40
when compared to human, mouse, and fly versus med-
ian t-value of 22 for human, mouse, and fly when com-
pared with each other (t-value range 19 - 55). A GO
analysis was conducted on the highly conserved proteins
present in the combined known and predicted interac-
tomes (Additional file 1: Table S1). In particular, GO
annotations were compared between all proteins in the
known fly and worm interactomes and found to be dis-
similar (data not shown). Indeed, only 20% of the
“known” genes in worm have an orthologue in at least
one of the other four species investigated (Figure 1).
Additionally, comparing the proteins represented in the
interactome and total proteome for each species
revealed that proteins with orthologues are highly over-
represented in known PPI.
To provide a quality measurement for protein interac-

tions, known and predicted, we developed three confi-
dence scores. The SpeciesScore relates both to the
number of species in which an interologue has been
observed and to the percent homology between ortholo-
gues known or predicted to be involved in the interac-
tion. The ExperimentScore is based on the number of
experiments in which a PPI has been observed. Finally,
the InteroScore is a combination of the SpeciesScore,
the ExperimentScore, and the ExperimentQualityScore.
We also include the SpeciesNotation to denote the spe-
cies in which an interologue is present and which spe-
cies have the potential for an interologue but have not
yet had one verified. The summary of this nomenclature
and data available for download can be found in Addi-
tional file 4: Table S3.
Because the known interactomes for every species but

yeast has a dramatic underrepresentation of the full

proteome, we wanted to provide biologists with all of
the predictions so that they may further investigate
those potential interactions of interest to them. If a
score is low, it does not mean that we have little confi-
dence in it, only that there was only one species in
which the interaction has been observed thus far. Given
the poor coverage of the proteomes, this is not surpris-
ing. With this in mind, however, we wanted to assess
the distribution of InteroScores in each of the five spe-
cies. A cutoff of 1.5 was chosen, with those predicted
interactions with an InteroScore of at least 1.5 to be
those in which we have high confidence. The percen-
tages of predicted interactions with high confidence are
as follows: 50.2% for yeast, 18.4% for fly, 14.7% for
worm, 11.7% for human, and 10.8% for mouse. Many of
the interactions have been predicted from yeast, because
it has the greatest coverage. Another factor contributing
to a low score could be that the pair of predicted inter-
acting proteins is only found in one other species, mak-
ing a higher score less likely.

Topological Analysis of PPI Networks
Many studies simply compare GO annotations between
predicted interacting proteins as a benchmarking
method [29]. Although GO may be used as a tool to
examine a general overview of the data, we do not
believe that this approach is valid as benchmarking
because of the varied level and completeness of the gene
annotation. Other studies compare their results to a
“gold standard” [30]. Defining a gold standard for all
species, considering the apparent substantial deficiency
in each PPI database, however, appears inappropriate,
even assuming that almost all yeast two-hybrid data is
correct [31]. Given that 84% (5510/6532 known protein-
coding Ensembl Gene IDs) of the yeast proteome is
represented in its known interactome, we make the
assumption that it is the closest to being complete. We
therefore attempt to compare results from the other
four species to that of yeast. Unfortunately, yeast is also
the organism with the least gene conservation in the
other species in this study, and this may affect the
comparisons.
To determine the effect of including predicted interac-

tions on the PPI network structure, we analyzed their
topology. We first examined the degree distribution of
the networks. As can be seen in the left panels of
Figure 2, like the yeast network, all networks, either
with or without the predicted interactions, exhibit scale-
free degree distributions (i.e. the majority of the nodes
in the network have very few connections to other pro-
teins, e.g. they have low degrees), while a small number
of nodes have much higher degrees. More precisely, the
degree distributions fit with the power-law function p(k)
= c k-r. It is well known that many types of real
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networks, including social networks and the Internet,
have scale-free degree distributions [32], which are
believed to contribute to the robustness of complex sys-
tems against random node failures. The predicted inter-
actions did not change the degree distribution for any
species, which suggests that the predicted interactions
are not random.
Secondly, we analyzed network diameter and cluster-

ing coefficient (Additional file 5: Figure S2A and B,

respectively), which are related to the definition of
small-world networks. When the known and predicted
interactions are combined, for all species except yeast,
the network diameters are significantly reduced and the
clustering coefficients are significantly increased. With
yeast, we predicted relatively few new interactions due
to the robustness of the experimentally derived data,
and therefore our predictions made little impact on the
complete PPI network. The reduction in network dia-
meters and increase in clustering coefficients strongly
indicate that the predicted interactions increase local
modularity (e.g. connecting members of a protein com-
plex), moving closer to what is observed in the yeast
known interactome. This suggestion is confirmed by our
co-immunoprecipitation experiments (see below). To
assess the confidence level of the results, we conducted
similar tests using two random counterparts for each
combined network. The first random network was
obtained by randomly rewiring the combined network
while preserving the degree of each node (denoted as
the “rewired” network). The second random network
was obtained by randomly rewiring the predicted inter-
actions and combining them with the known interac-
tions (denoted as the “partially rewired” network). As
shown in Additional file 5: Figure S2, the partially
rewired networks have diameters similar to the true
combined networks, but the former have much smaller
clustering coefficients. The rewired networks in all five
species, on the other hand, have both smaller diameter
and smaller clustering coefficients than the true com-
bined networks. The diameter shrinkage after random
rewiring often indicates a collapse of local “community”
structures existing in real-world networks.
It is possible that the predicted interologues could have

an over-representation of highly self-interacting protein
complexes. Such a scenario would bias our network effi-
ciency measurements. We therefore examined the effi-
ciency of “Known” (0.0076), “Predicted” (0.0175), and
“Randomized Predicted” (0.0138) human networks for
each Gene Ontology (GO) slim term; the average effi-
ciency is provided in parentheses. GO slim allows a
broad view of gene ontologies for use in genome scale
analysis. From these measurements, it is clear that the
known human interactome is more highly connected
than the predicted interactions that were added, which
are no better than random interactions within the same
set of proteins. Thus, the predicted interologues are
represented throughout the known protein interactome
and do not represent complexes or protein modules. In
contrast, the connectivity (global efficiency) was
improved for every slim GO term examined, with a med-
ian increase of more than 200% connectivity (data not
shown). In general, increased connectivity was associated
with an increased clustering coefficient (data not shown).

Figure 2 Degree distributions of the known (circle) and known
and predicted (plus) networks (left panels) and plot of the number
of known versus predicted interactions for each node (right panels)
for human, mouse, fly, worm, and yeast.
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The greatest increases in connectivity was observed in
processes involved in metabolism, as might be expected
considering these were the proteins most highly con-
served across organisms and thus allowed the greatest
number of interologue predictions. In contrast, the GO
terms where we observe the least improvement in con-
nectivity, such as extracellular space (GO:0005615),
extracellular structure organization (GO:0043062) and
cell surface (GO:0009986), are less well conserved across
our five model organisms, and would be expected to have
the least interologue predictions. In conclusion, it is
expected that two proteins that are involved in the same
process are likely to be more closely connected in the
network, thus our predictions appear to be improving
this relationship within each GO. This also suggests the
predicted interologues have biological value and indicates
the quality of this analysis.
In a final analysis of the networks, we compared pro-

teins that are highly conserved across species (present in
four or five of our test species) to proteins that are only
moderately conserved (present in two or three of our
test species) or are unique to their species. The degree
distribution was measured for each group of proteins
(Additional file 5: Figure S2). Weakly and highly con-
served proteins have similar degree distributions in the
known interactomes, but following interologue predic-
tion, highly conserved proteins have an increased level
of connectivity compared to those weakly conserved.
This is expected because PPI are predicted based on
interactions between conserved proteins, thus biasing
the outcome. Obviously, the degree distribution of
unique proteins is unchanged between known and com-
bined interactomes, since no new interactions were pre-
dicted for these proteins.
In summary, we conclude that the combined networks

have both scale-free and small-world properties, and the
predicted interactions increase local modularity of the
networks. Analysis of the PPI networks for all five spe-
cies shows that both the known and the combined inter-
actomes for each species exhibit scale-free degree
distribution. This indicates that the predicted PPI are
not random because the network structure did not
change. Interestingly, we find that the number of pre-
dicted interactions for each node is inversely propor-
tionally to the number of known interactions (Figure 2,
right panels). This suggests that our method is effective
in predicting PPI that have not yet been captured by
experimental techniques. If a protein already has many
known interactions, we may expect to predict relatively
fewer interactions for it, since its interaction partners
may have been extensively surveyed, either due to its
popularity as a research target, or because of the non-
transient nature of its interactions. But because of the
extensive research previously conducted on yeast PPI,

we were unable to predict many new interactions in our
“gold standard” species, indicating its likely near-com-
pleteness. Again, the degree distributions for each spe-
cies after prediction better resemble yeast (Additional
file 5: Figure S2), suggesting that we are advancing to
more complete interactomes.

Comparison with Previous Works
There have been several studies predicting interactions;
most do not include the stringent one-to-many or
many-to-many orthologues as we did. Inclusion of these
orthologous relationships resulting from speciation
events allows for increased support of our predicted
interactions. We therefore compared the predictions we
made for the human interactome with those human pre-
dictions made by four earlier reports [19,22-24]. We
examined the clustering coefficients and degree distribu-
tions of the four networks compared to their randomly
rewired networks (range of 0.128-0.317 compared to
0.019-0.079 rewired). Similar to our predicted networks,
the four other predicted networks had a higher cluster-
ing coefficient compared to that of the randomly
rewired network and were similar to our benchmark of
yeast. Additionally, the diameter of each was reduced
when compared to the rewired network (range of 10-13
compared to 6-10 rewired), as was ours, suggesting
modularity of the networks predicted by each study.
We directly compared our predicted interactions with

those from STRING. To evaluate the quality of various
experimental supports (see ExperimentQualityScore), we
determined the ratio of interactions in both STRING
and our interactome as supported by an experiment.
When comparing the ratios among experiments, we dis-
covered that the ratios among the known interactions
were higher than the predicted interactions. Some ratios
were dramatically different. For example in humans for
MI:0397(two_hybrid_array), 185 of the 8251 (0.022) pre-
dicted interactions were included in the STRING data-
base, however, 218 of the 237 known interactions
(0.919) were included in STRING. This was not the case
for all experiments. MI:0114(x-ray_crystallography)
ratios of 0.427 (68 out of 159 predicted) and 0.659 (184
out of 279 known) were more similar.

Online Tools
At http://www.interologfinder.org, we provide a link to
download each set of Cytoscape files for each species
(listed in Additional file 4: Table S3). In addition, we
provide the ability to search for a protein or list of pro-
teins by Ensembl Gene ID or gene name. Data retrieved
from this search includes all known and predicted inter-
actions involving the queried proteins, the InteroScore,
the SpeciesNotation, and the experimental evidence for
the known interactions or the evidence for the
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interactions from which an interologue was predicted.
PPI are divided by known and predicted interactions
between the queried proteins and by interactions
between the queried proteins and others within the spe-
cies. Data may be viewed in the user’s web browser or
downloaded to be directly imported into Cytoscape.

Application 1
PPI networks can be used to reveal a higher order struc-
ture within an experimental dataset, to subsequently
identify proteins and processes worth pursuing, and to
derive hypotheses. We therefore employed our predicted

interactome in improving the connectivity of a genomic
dataset of proteins identified to be involved in damage
survival [33]. We recently reported a genome-wide
RNAi screen for genes required for viability after treat-
ment with methyl methanesulfonate (MMS) in fly [34].
We validated 202 of the potential positives from the
screen as being real hits; 159 are present in the known
fly interactome, connected by only 42 edges (Figure 3).
Seventeen proteins were present in the “predicted fly
interactome” that were not present in the “known inter-
actome,” bringing the total number of proteins to 176 in
the combined MMS survival subnetwork, connected by

Figure 3 Network analysis of proteins required for survival after MMS damage. A) Subnetwork of proteins required for survival after
treatment with the DNA damaging agent MMS in fly, before (left) and after (right) PPI prediction. Nodes in black are connected before
prediction, while nodes in red are orphans before prediction. Yellow nodes are added to the interactome after interologue prediction. Blue
edges are interactions known in fly, while black edges are predicted interactions. B) Global efficiency of the subnetworks before (left) and after
(right) interologue prediction (dashed red line). The global efficiency of random networks determined by a set of random nodes equal to the
number of nodes used in the actual set are shown with blue bars.
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291 edges. Forty-one of the 111 orphan proteins (nodes
not connected to another node in the subnetwork) were
connected to another protein after prediction. There-
fore, using the predicted fly PPI network greatly
increased the number of proteins in the network and
the connections involved.
We used the global efficiency of the MMS survival

subnetwork to examine the connectivity of the subnet-
work before and after interaction prediction. The global
efficiency is measured as the mean of the reciprocal of
pair-wise distances and is represented by values between
0 and 1, a larger value indicating a shorter average dis-
tance, or higher connectivity. Because we expect that
the predicted subnetwork will already have a much
higher connectivity, as the predicted interactome did, we
compared the two subnetworks with their respective
randomly rewired networks. The global efficiency for
the MMS subnetwork before and after prediction is 0.21
and 0.34, respectively. The Z-scores for the two mea-
sures, when compared to the same measurement in ran-
dom networks, are 3.3 (p = 5e-4) and 8.4 (p < 1e-16),
respectively, suggesting that the predicted PPI improved
the MMS protein viability network connectivity better
than by chance.

Application 2
One potential advantage of using PPI networks is to
facilitate the assignment of function to proteins. If the
interaction of two proteins suggests that they share a
role in a process, then developing improved PPI net-
works are of significant benefit. To test this hypothesis,
we examined the role of proteins interacting with fly
proteasome on proteasome activity. Forty-one members
of the fly proteasome (using data from KEGG; http://
www.genome.jp/) and 155 proteasome interactors are
present in the “known interactome” and 409 additional
interactors are predicted. Using RNA interference knock
down, we individually removed each of 30 proteins that
interact with proteasome components and measured
proteasome activity. Knock down of seven genes
resulted in a statistically significant decrease in protea-
some activity (P < 0.05), while knock down of four
others resulted in a decease of at least 10% in protea-
some activity albeit not significantly. Of these 11 genes,
four were previously known to interact with proteasome
components while seven are predicted interactors (Fig-
ure 4). Among the known proteasome interactors,
FK506-BP belongs to the immunophilin family involved
in protein trafficking and interacts with most of the
components present in the 26S proteasome [35], thus
providing a “proof of principle” for this approach.
Among the predicted interactors are the ribosomal pro-
teins sta, RpL9, and RpL23. Recent investigations sug-
gest that the proteasome might be involved in

regulating translation through direct interaction with
ribosomal proteins [36], which supports the interaction
of these proteins, though our observation suggests a
reciprocal modulation of activity. Although 19 of 30 the
proteins examined did not affect proteasome function
under the conditions tested, this does not imply that
these proteins do not interact with proteasome compo-
nents, only that their removal does not affect protea-
some activity. Together these results demonstrate the
utility PPI predictions and the utility of improved and
expanded PPI network maps.

Confirmation of Predicted Interactions
In order to validate our findings of predicted interac-
tions, we tested six known and 15 predicted fly PPI. For
this we selected only proteins that have a one-to-one
orthologous relationship with interacting human pro-
teins. We selected predicted interactions in which at
least one of the proteins was either known to be
required for viability after MMS exposure [34] or
known to interact with an MMS viability protein. Pairs
of predicted interacting proteins were epitope tagged
with either FLAG or HA and expressed in Kc167 cells
and immunoprecipitated with FLAG-antibody. All six
known protein interaction pairs were confirmed, and all
but four predicted PPI tested were found to be correctly
predicted (Figure 5). Some of predicted PPI are part of
the mediator complex [37]. The predicted interactions
in such complexes increase the local modularity of this
subnetwork, and because complexes are known to exist
and function as such, it is most likely that these are bio-
logically relevant PPI. There did not seem to be a corre-
lation between InteroScore of a predicted interaction
and whether or not it was confirmed. Interestingly,
three of the PPI that we predicted and validated were
not predicted by STRING, namely MED26 and MED4,
MED26 and MED17, and MED16 and MED2, each with
an InteroScore of 1.18. All other interaction we tested,
including those that we could not confirm, were pre-
dicted by STRING.

Discussion
PPI Prediction Across Multiple Species
Identification of PPI in multiple model organisms and in
human has been accomplished by many different in
vitro techniques, including two-hybrid expression, co-
immunoprecipitation, and affinity chromatography
[31,38]. Even so, a large proportion of the proteomes
have not been represented in these analyses. Like several
recent studies [8,19,30], we have successfully used
orthologous interacting proteins from one species to
predict interactions in another species. Here we have
compared orthologous genes in five species (human,
mouse, fly, worm, and yeast) in order to predict
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interologues in these organisms and created an easy to
use, online tool for biologists to access the data of inter-
est to them. Unlike comparisons conducted in other stu-
dies using only BLAST for homology, we used high
quality homology annotation from Ensembl to compare
orthologous genes. For orthologue determination,
Ensembl has used Blastp and Smith-Waterman to com-
pare sequences, followed by phylogenetic tree analysis,

allowing one-to-many and many-to-many orthologous
relationships. We found that proteins involved in meta-
bolic processes and DNA repair were highly conserved
across all species, but those proteins used in either sig-
nal transduction or cell-cell communication and trans-
membrane proteins were more likely to be unique to
their species. Metabolism is known to be well-conserved
[39], and conservation of transmembrane lies in

Figure 4 Predicted interactors of proteasome components that affect its activity. A) Subnetwork of proteasome components (black circles) and
interactors (white squares) that affect proteasome activity in fly. Thick black edges are known PPI, while grey edges are predicted PPI. B) Proteasome
activity normalized per cell after knock down of proteins indicated in A. Luc (non-targeting RNAi against luciferase) and Rpn2 as negative and positive
controls, respectively). Error bars represent the standard deviation of four replicates, and p-values are given above each bar.
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hydrophobicity and charge probably more so than in
conserved residues [40], so these discoveries are not
surprising.
Unlike most PPI prediction studies predicting interac-

tion in human only, we compared and predicted PPI in
human, mouse, fly, worm, and yeast, with data retrieved
from three publically available PPI databases, IntAct,
DIP, and BIND. By limiting the proteins retained from
these databases to those with current identifiers or con-
vertible to current identifiers, and found only in the tar-
get species, we increase confidence in the combined PPI
network. The known yeast interactome, with 5688

known or Ensembl-predicted proteins observed to be
involved in 40249 interactions, is the species with the
most complete protein interactome map. After prediction
of interologues from the other four species, connectivity
was nearly unchanged (Additional file 5 Figure S2), and
as a species with nearly complete proteome coverage
within its interactome (and thus our “gold standard”), we
find the representation of both proteins and interactions
observed in the other species sorely lacking. Our predic-
tions for human extrapolated from other species
increases the coverage from 7541 to 11647 proteins, or
32% of the proteome, or 43% of the “known” proteome.

Figure 5 Western blots of co-immunoprecipitations (coIP) of predicted and known interactions. CoIP was conducted with anti-FLAG, and
membranes were probed with anti-HA, stripped, and probed with anti-FLAG. Bands indicate a presence of tagged protein. “Input” is total
protein before coIP, while “FLAG-IP” is protein present after coIP. If a band is present in both the input and FLAG-IP lanes, it indicates that the
protein has been pulled down with the anti-FLAG antibody. When the protein in question is tagged with HA instead of FLAG, this indicates an
interaction between the FLAG-tagged protein and the HA-tagged protein. InteroScores are given in parentheses: PPI between LSm7 and CG6610
(3.27), LSm7 and SmD3 (1.27), CG2021 and CG17768 (3.27), CG9344 and CG6610 (3.27), LSm7 and CG17768 (3.27), and CG12703 and spn-A (1.27)
were positive controls of known PPI. Predicted PPI that were confirmed to interact were: CG10418 and CG6610 (1.39), LSm7 and CG2021 (1.69),
LSm7 and CG9344 (1.39), CG9344 and CG2021 (2.69), RfC4 and RfC38 (2.64), RfC4 and CG8142 (3.27), DNApol-alpha50 and DNApol-alpha60 (1.39),
MED26 and MED4 (1.18), ix and MED28 (1.18), CG5325 and CG5525 (1.39), MED17 and MED26 (1.18). Those that were not confirmed were:
CG10418 and CG17768 (1.77), CG10418 and SmD3 (1.53), dup and CG6905 (1.12), and MED6 and MED26 (1.18).
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Although this is still less than half of the proteome it still
includes 50% more proteins than previously included.
The overlap of interologues was surprisingly little: only
1837 of the 24612 interactions observed in human had
also been observed in at least one of the other species.
Indeed, Gandhi et al. [41] only found 36 interologues
overlapping between fly and worm that were not known
in human, demonstrating the poor overlap in observed
interactions between species. Because of the scale-free
degree distribution and small-world properties of the
combined interactomes, we have confidence that most of
the predicted interactions are real.

Confidence Measures
Measures akin to our SpeciesScore have been used by
other researchers. Yu, et al. [30] reviewed two methods
for determining orthologous relationships and the scor-
ing thereof: the simplistic, albeit inaccurate, determina-
tion similarity by best-match of sequence homology
versus the higher accuracy of reciprocal best-match of
homology mapping. Ensembl maintains the accuracy of
the reciprocal best-match, but extends it to find more
complex one-to-many and many-to-many relationships
based on clustering and phylogenetic trees. By using
their percent identity score, we take advantage of their
more complex discovery and scoring mechanism. There-
fore, our SpeciesScore, exploits orthologous type
descriptions given at Ensembl by scoring not just the
single best orthologous pair in another species, as other
researchers have done, but also other likely orthologues
with slightly weaker sequence homology. We also bol-
ster the prediction of interactions if they, or the PPI
that predict them, have been found by more than one
type of experiment with the ExperimentScore. When
this is combined with the SpeciesScore to obtain the
InteroScore, we obtain a metric that is a reasonable and
intuitive solution incorporating multiple predictive PPI
evidences, with higher InteroScores having more evi-
dence supporting the interaction, either from more spe-
cies or by more types of experiments. Because it appears
that a large proportion of PPI are not represented in
experimental data, a low score should not indicate a
lack of confidence in a PPI, but rather a high score
should indicate a likelihood that the interologue exists.

Applications for Research Biologists
We have validated this methodology by verifying pre-
dicted interactions in fly by co-immunoprecipitation.
Based on our interologue predictions, we have con-
firmed eleven new protein-protein interactions in fly.
Validation of the predicted interactions was chosen not
to validate our prediction method, but rather to demon-
strate that predicted PPI are more likely to be real when
taken together with real biological data, in this case

proteins required for viability after exposure to MMS
[34]. Thus, our “validation” rate is higher than expected.
We therefore believe the use of interologue predictions
is a powerful means to expand upon our currently avail-
able PPI network maps.
Unlike other studies, we provide a website useful to

research biologists - http://www.interologfinder.org. At
the website, users may not only download our data in
its entirety, but also upload a list of genes of interest to
them, and retrieve known and predicted interactions
involving those proteins. Also included in the retrieval
are InteroScores, ExperimentalEvidence, and SpeciesNo-
tation. We have designed our output to be used with
Cytoscape [28], an open source, network visualization
and data integration tool that is widely adaptable.

Suggestions for Future PPI Identification Studies
A proteome-wide analysis of interactions is unlikely to
capture all possible interactions, even under the single
condition in which the experiment is carried out. Braun
et al. [38] and Venkatesan et al. [42] address this issue
as inherent to the current high-throughput assays
designed to detect PPI. Using prediction of interologues
from PPI present in other species, therefore, is a promis-
ing method for research biologists to either choose pairs
of proteins to test for interaction or to use as a more
robust model of the interactome in order to construct
hypotheses regarding their proteins of interest.
Schwartz et al. [43] suggest that predictions based on

orthology should preferentially be used to empirically
complete the interactomes cost-effectively because there is
more confidence in the interactions. We believe, however,
emphasis should be placed on testing PPI in which at least
one protein is not conserved between species, because
while these may be easily predicted, PPI between proteins
with no orthology can never be predicted in this manner.

Conclusions
Here we have predicted PPI in human and four com-
monly used model organisms based on orthology to pro-
teins involved in known interactions within these five
species. We provide a simple scoring mechanism, an
InteroScore. This score is inclusive of the extent of
homology, the number of orthologues demonstrating evi-
dence of interaction, and the number of types of different
experiments implicating the PPI. We supply our data in
two formats, both readily available to the research biolo-
gist: our website http://www.interologfinder.org at which
users can search for information on proteins of interest
to them and also whole proteome files that may be used
with the network viewer Cytoscape. Here we demonstrate
two of the myriad of ways that these PPI predictions may
be used to further biological research - a way to examine
data from high-throughput screens (genes required for
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viability after MMS treatment) and to assign new func-
tion to proteins (proteins interacting with components of
the proteasome). Although we are able to successfully
predict PPI based on orthology, a good deal of data that
cannot be predicted is still missing from these interac-
tomes. Focus therefore must now be placed on testing
interactions for those proteins.

Methods
Orthologue Data Collection
Orthologue data were retrieved from Ensembl 50 for all
genes in Homo sapiens, Mus musculus, Drosophila mela-
nogaster, Caenorhabditis elegans, and Saccharomyces cer-
evisiae. Ensembl has compared all genes for all species
for which they have complete genome data, first against
all genes of its own genome and second against all genes
of every other genome in their database [25]http://www.
ensembl.org/info/docs/compara/index.html. In short,
Ensembl conducted the following: they used the longest
translation from each gene to run both Blastp and Smith-
Waterman sequence comparisons. Relationships between
genes were graphed based on best reciprocal hits and
best score ratios, before constructing multiple sequence
alignment on each cluster that was derived. Phylogenetic
trees were then constructed for each gene cluster, and
these were fit with speciation trees. Finally, typical pair-
wise gene relationships were determined - orthologues of
one-to-one, one-to-many, and many-to-many. Addition-
ally, Ensembl provides paralogous relationships both
within and between species. These data, along with the
percent sequence identities and similarities, were
retrieved from Ensembl for each of the five organisms
investigated from BioMart at Ensembl http://www.
ensembl.org/biomart/.
A one-sample, two-tailed, hypothesis t-test for propor-

tions was conducted for each pair-wise set of species to
determine if the proportion of the interactome that had
orthologues was equal to the proportion of the genome
with orthologues.

Gene Ontology Analysis
FuncAssociate [44] was used to determine the over- and
under-represented GO for genes that are highly con-
served or unique between the five species investigated
and for proteins highly conserved that are represented
in the interactomes. An adjusted p-vale of 0.05 was con-
sidered significant.

Interactome Data Collection
Binary PPI data were retrieved from three databases:
IntAct [45]http://www.ebi.ac.uk/intact/, the Database of
Interacting Proteins (DIP, dip.doe-mbi.ucla.edu) [46], and
the Biomolecular Interaction Network Database (BIND,
bond.unleashedinformatics.com) [47]. Data was retrieved

on Aug 28th, 2008 from all databases, and experimental
evidence annotation was obtained when available.

Conversion of Identifiers to Ensembl Gene IDs
Synonym tables provided by Ensembl (external data
downloadable from their BioMart site) were used to
convert the identifier for each protein used from IntAct
and DIP into an Ensembl Gene ID. BIND, however,
does not provide an identifier present in the Ensembl
tables, but provides NCBI Gene Identifier (gi) numbers.
We therefore queried NCBI [48]http://www.ncbi.nlm.
nih.gov to retrieve the newest gi, and subsequently the
associated NCBI protein accession numbers, for each
protein. Because we were only interested in PPI, we
omitted interactions involving non-protein molecules
provided by BIND. For all databases, we selected only
those interactions between proteins of the same species
using the taxonomy identification provided. For each
species, a single file with non-redundant experiments
supporting the interactions was created. Gene name
synonyms were also retrieved from NCBI to be used at
our website, http://www.interologfinder.org, in order to
accept gene names as a query.

Interologue Prediction
For those PPI where orthologues exist for both interact-
ing proteins in another species, but no interaction is
known between those proteins in that other species, a
conserved interaction (an interologue) were predicted.

Confidence Measurements for Interologues
To achieve a single, unified confidence score for interac-
tions and predicted interactions, we developed several
scores taking into account different attributes of an inter-
action and combined them to form a single InteroScore.
OrthoScore
In order to obtain a score that represents how similar
interacting partners are to their orthologues, all ortholo-
gues of a protein were combined to form a single score.
Each orthologue pair (P1sP1t, where s is the source spe-
cies and t is the target species) has an OrthoScore, which
represents a score adjusted to represent one-to-one, one-
to-many, and many-to-many relationships between P1s
and P1t. For the one-to-one proteins, an OrthoScore is
assigned a value of 1. This score, however, does not
encompass evidence from other highly related proteins in
other species, which exist as one-to-many or many-to-
many orthologues, having varying degrees of identity.
Orthologues which provide evidence for a predicted PPI
but which have weaker homology than the highest ortho-
logue pair are accounted for with scores having values
less than 1, proportional to their percent identities as
compared to the protein with the highest identity. As an
example, the percent identities for three orthologues may
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be 92%, 87%, and 72%. The highest identity is adjusted to
100%, while the other two are scaled relative to 92%
(94.5% and 78%, respectively). The values are squared to
give low scores less of an effect than high scores. The
resulting OrthoScore is the sum of these percents
squared (1.02 + 0.9452 + 0.782 = 2.501).

OrthoScore P sP t norm EnsemblIdentity P P
P isOrt

( ’ ) ( ( ( ’))
’

1 1 1 1 2

1


hhoP1



SingleSpeciesScore
Each annotated interologue (P1P2sP1P2t) has a Single
Species Interaction Percent Identity Score (SingleSpe-
ciesScore), formed by the product of the OrthoScores
for both orthologues when the orthologues were found
to interact in the target species. For example, an interac-
tion predicted in fly is known in human with both fly
proteins having a one-to-one relationship with their
orthologues in human. Each OrthoScore will contribute
1.00 to the score because each is both the maximum
and the only value. The combined score is 1.0
(1.00·1.00) representing the support of the interologue.
However, given the more complex one-to-many example
above to represent P1sP1t (2.501), combined with a
one-to-one OrthoScore for P2sP2t (1.00), the resulting
SingleSpeciesScore is 2.501 (2.501·1.00).

SingleSpeciesScore P P sP P t Ortho score P sP t Ortho( ) ( _ ( ’ )1 2 1 2 1 1  __ ( ’ ))
’ , ’

score P sP t
P OrthoP P OrthoP

2 2
1 1 2 2 



SpeciesScore
The SpeciesScore representing the conservation of the
interaction is a combination of the number of species
that support the annotated interaction, the strength of
the orthologous relationships, and the number of intero-
logues supporting the annotation. Interaction scores
were not penalized for their apparent absence in another
species in which the orthologues were conserved but no
interaction known. In this five species analysis, a pre-
dicted interaction from only one-to-one orthologous,
with the highest degree of confidence would therefore
have a score of 4 (four other species have orthologues
with an experimentally verified PPI). Of course if a single
OrthoScore is greater than one, the overall SpeciesScore
can exceed 4. For example, an interaction predicted in fly
is known in human, worm, and yeast, with both fly pro-
teins having a one-to-one relationship with their ortholo-
gues in each species. Each species will contribute 1.00
(1.002) to the score because each is both the maximum
and the only value. The final SpeciesScore would be 3.00
(1.00 + 1.00 + 1.00) and reflects the number of species
supporting the interaction. A more complex example is
an interaction predicted in fly that is known in worm as a
single interaction (again, with all proteins being one-to-
one orthologues), but is present in human as three

interologues due to paralogues in human (in a one-to-
many or many-to-many orthologous relationship with fly
proteins). The fly interaction would therefore score 1.00
from worm, but higher from human. Using the one-to-
many example above, the final SpeciesScore for this sec-
ond example fly predicted interaction is therefore 3.501
(1.00 + 2.501). Contrasting these two examples of high
support for the predictions, one is due to the diverse
number of species that support the prediction and the
other due to the number of interologues within a single
species that support the prediction.

SpeciesScore P P SingleSpeciesScore P P sP P tn

n compa

( ) ( )
{

1 2 1 2 1 2
 rrisonspecies}


ExperimentScore
Using the experimental evidence available from DIP and
IntAct (experiment identifier and type), the Experiment-
Score was developed. For each PPI, each type of experi-
mental evidence was only counted once regardless of
the number of databases in which it was found, and the
total number of experiments for each PPI is the Experi-
mentScore. BIND does not include experiment type in
its publicly available database and was therefore gener-
ally excluded from this confidence score; PPI annotated
only in BIND were described as “protein_protein” and
given an ExperimentScore of 1. Cytoscape files were cre-
ated for the annotated interactions. The following equa-
tion was used, where N is the count of all experiments
that support the interaction between P1 and P2.

ExperimentScore P P
i

N

( )1 2 1
1





ExperimentQualityScore
To quantify the quality of various experimental evidences,
we determined how many interactions annotated or pre-
dicted by a specific experiment were also present in
STRING. For a given experiment, such as MI:0019(coim-
munoprecipitation) in worm, we determined that out of
4324 interactions annotated by this experiment only 813
of these interactions were present in the STRING database
for a ratio of 0.188 (813/4324). Conversely, 4287 interac-
tions out of 5971 MI:0398(two_hybrid_pooling) annotated
interactions were found in STRING for a ratio of 0.718.
To incorporate as much evidence as possible while adjust-
ing for quality of experimentation support, the ratios for a
single interaction’s experimental evidence were summed.
Thus, an interaction described by both MI:0019 and
MI:0398 would have an ExperimentQualityScore of 0.906
(0.188+0.718).

ExperimentQualityScore P P ExperimentSupport P Pn

n Ex

( ) ( )
{

1 2 1 2
 pperimentsThatSupportP P1 2}
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InteroScore
To create a single, combined confidence measurement,
we took the product of the SpeciesScore and the Experi-
mentScore then added the ExperimentQualityScore for
each interaction and refer to it as the InteroScore.

InteroScore P P SpeciesScore P P ExperimentScore P P( ) ( ) ( )1 2 1 2 1 2   ExperimentQualityScore P P( )1 2

SpeciesNotation
To provide users with a quick indication of the species in
which each PPI is found and the species in which each
has the potential to exist, we developed the SpeciesNota-
tion. We used the first letter of the genus, with uppercase
indicating that the PPI exists between orthologues in that
species, and lowercase indicating the existence of ortho-
logues in that species but no confirmed interaction.

Data Output
The data is presented in a format compatible with the
interaction viewer Cytoscape [28]http://cytoscape.org/.
For each species, these files include a PPI file, files
noting the InteroScore, SpeciesScore, Experiment-
Score, SpeciesNotation, and the type of orthology
(Additional file 4: Table S3, Additional file 6: Zip Hsap,
Additional file 7: Zip Mmus, Additional file 8: Zip Dmel,
Additional file 9: Zip Cele, Additional file 10: Zip Scer).

Connectivity Measurements
Briefly, the shortest path between two given nodes in a
network is the minimum number of edges that need to
be traversed to get from one node to the other; the dia-
meter of a network is the maximum length among all
shortest paths between any two nodes in the network.
Many real-world networks as well as random networks
(e.g., the canonical Erdos-Ryni network [32]) have small
diameters, while highly structured networks, such as
high-dimensional grids typically have large diameters
[32]. On the other hand, real-world networks often dif-
fer from random networks in their clustering coefficient,
which is defined as c = 3(tri/conn_trip), where tri is the
number of triangles in the graph and conn_trip is a
“connected triple” or a path of three nodes. For many
real-world networks, the clustering coefficient is
between 0.1 and 0.5, while for random networks (such
as the Erdos-Ryni network) of n nodes, limn®∞ c = 0. A
high clustering coefficient indicates that the network is
organized into modules, and networks with both high
clustering coefficients and small diameters are collec-
tively called small-world networks [32].

Media, Strains, and Plasmid Constructs
Drosophila Kc167 cells were maintained in Schneider’s
medium as previously described [33]. Genes were cloned
from fly genomic DNA purified from Kc167 cells (Table 1).

If the first round of cloning failed, genes were cloned from
cDNA reverse transcribed using the ImProm-II Reverse
Transcription System (Promega, Madison, WI) from RNA
obtained from whole flies (generously provided by Dr.
Donald McEwen, UTHSCSA). PCR was conducted using
gene specific primers designed to the 5’ and 3’ ends of the
transcripts to be cloned. The 5’ end of each forward pri-
mer was designed as CACCATG in order to directionally
clone it into GATEWAY destination vectors, with the
ATG in frame for transcription. The reactions were 0.2
μM each primer, 0.2 mM dNTPs, 2 mM MgSO4, 1× high
fidelity buffer, 1 U Platinum Taq (Invitrogen), with 35
cycles per manufacturer’s instructions. PCR products were
TOPO TA cloned into pENTR/D-TOPO (Invitrogen) per
manufacturer’s instructions. Resultant plasmids were
bidirectionally sequenced with M13 primers. Clones were
then moved to one or more of the following GATEWAY
vectors, pAFW and pAWF (3xFLAG) or pAHW and
pAWH (3xHA) [49] per manufacturer’s instructions. A
GFP-expressing plasmid, pAB27, was constructed as a
control for transfection; EGFP-N1 (Clontech, BD Bios-
ciences, San Jose, CA) was digested with KpnI and NotI,
and the fragment containing EGFP was directionally
cloned into pAct5 (Invitrogen), which had also been
digested with KpnI and NotI.

Transfection and Expression
For single transfections, Kc167 cells were plated at 2 × 106

cells at 1 mL/well in 6-well plates. Cellfectin (Invitrogen)
was added at 7 μL/mL cultured Kc167 cells with 1 μg
DNA per manufacturer’s protocol. pAB27 was used as a
transfection control. All plasmids were cotransfected
with 0.1 μg pCoHygro (Invitrogen) for hygromycin resis-
tance; hygromycin (Roche, Indianapolis, IN) was added
48 hours after transfection at 300 μg/mL. After an addi-
tional three days, medium was changed and 150 μg/mL
hygromycin was added. For cotransfections, 0.5 μg of
each plasmid was transfected along with pCoHygro. Cells
were plated in 100 mm dishes in 2 mL of medium.

Protein Purification, Immunoprecipitation, Separation,
and Detection
Cells were harvested in cold PBS, and protein lysates were
prepared using radioimmunoprecipitation assay buffer (50
mM Tris pH 7.4, 150 mM NaCl, 0.1% w/v SDS, 0.5% w/v
sodium deoxycholate, 1% w/v NP40, and the protease
inhibitors (Sigma) 0.2 U/mL Aprotinin, 1 mM phenyl-
methanesufonyl fluoride, and 1 mM Na3VO4), and protein
concentration was determined using a Bio-Rad Protein
Assay Kit (Bio-Rad, Hercules, CA). Protein was immuno-
precipitated with anti-FLAG (Sigma) as described at
http://cellsignal.com/. Equal amounts of proteins were
resolved by 8% or 12% SDS-polyacrylamide gel electro-
phoresis. Proteins were transferred to membrane and

Wiles et al. BMC Systems Biology 2010, 4:36
http://www.biomedcentral.com/1752-0509/4/36

Page 14 of 16

http://cytoscape.org/
http://cellsignal.com/


detected using the ONE-HOUR Western Complete Kit
(GenScript, Piscataway, NJ), including their secondary
antibody and detection per manufacturer’s protocol. Either
mouse anti-HA (Convance, Quebec) or rabbit anti-FLAG
(Sigma) at 1:100 were used as the primary antibody. Two
additional washes with 1× TBST, pH 7.6 were employed
before the wash dictated by the protocol.

Proteasome Assay
Proteasome activity was measured in Drosophila Kc167
cells with a cell based Proteasome-Glo assay kit (Pro-
mega), using methods described before [34]. dsRNA
were produced also as previously described [33].

Additional file 1: Supplemental Table 1. GO Analyses. A Gene
Ontology analysis of genes unique to their species and genes that are
conserved in all five species in this study, and a Gene Ontology analysis
of highly conserved proteins that are represented in interactomes of the
five species in this study.

Additional file 2: Supplemental Table 2. Descriptive Statistics of
Interaction Databases. The number of genes and interactions unique to
each databases and total genes and interactions represented in each
databases is shown. The number of genes and interactions lost from each
database after conversion to unique Ensembl Gene IDs is also indicated. For
human data, the gene and interaction overlap (after conversion to Ensembl
Gene ID) is given as observed and expected values.

Additional file 3: Supplemental Figure 1. Four-way Venn Diagrams
of interologues in five species. For each species, human (red), mouse
(orange), fly (yellow), worm (green), and yeast (blue), A) interologues
known to be conserved by experimental evidence in the other four
species are shown. For example, there are 22775 interactions in human
that are not known to be conserved in any of the other four species, but
there are 573 human interactions that are conserved in yeast, and 50
human interactions conserved in yeast and mouse together. B)
Interologues predicted in each organism by orthology noted by the
species from which the predictions are based.

Additional file 4: Supplemental Table 3. File Types Available for
Download in Supplementary Material.

Additional file 5: Supplemental Figure 2. A) Diameters and B)
clustering coefficients for worm (ce), fly (dm), human (hs), mouse (mm),
and yeast (sc). Metrics for the combined known and predicted
interactions (dark blue), known (cyan), a random network obtained by
randomly rewiring the predicted interactions and combining them with
the known interactions (partially rewired, yellow), and a random network
obtained by randomly rewiring the combined network while preserving
the degree of each node (rewired, red) are shown.

Additional file 6: Zip Hsap. A zipped folder containing files formatted
for use in Cytoscape listed in Supplemental Table 3. These files are for
Homo sapiens proteins.

Additional file 7: Zip Mmus. A zipped folder containing files formatted
for use in Cytoscape listed in Supplemental Table 3. These files are for
Mus musculus proteins.

Additional file 8: Zio Dmel. A zipped folder containing files formatted
for use in Cytoscape listed in Supplemental Table 3. These files are for
Drosophila melanogaster proteins.

Additional file 9: Zip Cele. A zipped folder containing files formatted
for use in Cytoscape listed in Supplemental Table 3. These files are for
Caenorhabditis elegans proteins.

Additional file 10: Zip Cele. A zipped folder containing files formatted
for use in Cytoscape listed in Supplemental Table 3. These files are for
Caenorhabditis elegans proteins.
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