
Rodrigo et al. BMC Systems Biology 2010, 4:48
http://www.biomedcentral.com/1752-0509/4/48

Open AccessR E S E A R C H  A R T I C L E
Research articleRobust dynamical pattern formation from a 
multifunctional minimal genetic circuit
Guillermo Rodrigo1,2, Javier Carrera1,2,3, Santiago F Elena1,4 and Alfonso Jaramillo*2,5

Abstract
Background: A practical problem during the analysis of natural networks is their complexity, thus the use of synthetic 
circuits would allow to unveil the natural mechanisms of operation. Autocatalytic gene regulatory networks play an 
important role in shaping the development of multicellular organisms, whereas oscillatory circuits are used to control 
gene expression under variable environments such as the light-dark cycle.

Results: We propose a new mechanism to generate developmental patterns and oscillations using a minimal number 
of genes. For this, we design a synthetic gene circuit with an antagonistic self-regulation to study the spatio-temporal 
control of protein expression. Here, we show that our minimal system can behave as a biological clock or memory, and 
it exhibites an inherent robustness due to a quorum sensing mechanism. We analyze this property by accounting for 
molecular noise in an heterogeneous population. We also show how the period of the oscillations is tunable by 
environmental signals, and we study the bifurcations of the system by constructing different phase diagrams.

Conclusions: As this minimal circuit is based on a single transcriptional unit, it provides a new mechanism based on 
post-translational interactions to generate targeted spatio-temporal behavior.

Background
Synthetic Biology aims to engineer genetic networks with
defined dynamics [1]. For this, it usually relies on the use
of design principles derived from the analysis of natural
genetic networks. Those networks are large and complex
systems with many unknown interactions that can dra-
matically affect the system dynamics. Then, for a com-
plete understanding of the mechanisms underlying gene
networks it is valuable the engineering of synthetic cir-
cuits that have a minimal complexity. In addition, such
small circuits would allow the modular design of complex
hierarchical structures with targeted spatial and temporal
behaviors. However, even the design of small circuits with
existing genetic components is very challenging due to
the lack of enough parameters to fine-tune the system. In
fact, the use of properly characterized genetic compo-
nents favors an accurate prediction of the dynamics of an
in vivo implemented circuit [2-5]. The extreme case being
the design of a genetic network composed of a single
transcriptional unit showing a specified spatio-temporal

dynamics. As all the protein concentrations shall be cou-
pled, it is very difficult to have a non-trivial dynamics
unless the time scales of protein interactions and of cell-
to-cell communication are conveniently coupled.

In higher organisms, development results from the
coordinated action of thousands of genes at any moment
during the cell cycle. However, small regulatory circuits
control the execution of genetic programs by triggering
cell differentiation according to spatial patterns [6]. These
patterns result from gradients of signaling molecules,
which diffuse in the medium and are sensed at each
moment by the cell circuitry. Quantitative models based
on reaction-diffusion equations have been successfully
applied to understand the principles of organism's devel-
opment [7-9]. Furthermore, synthetic patterns have been
previously engineered in bacteria [10] and flies [11].
However, genetic systems with defined spatial and tem-
poral behavior have not been artificially constructed yet.
In such a synthetic system, the fate of every cell within
the population could be controlled, for instance, by oscil-
lators working in a specific manner in response to spatial
location or by the state of an internal memory. It is of par-
ticular interest to apply the same design principles under-
lying naturally occurring molecular clocks, where
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rythmicity is mainly based on negative feedback loops
[12], to the in vivo engineering of synthetic oscillatory
circuits [13,14].

The simplest imaginable genetic circuit consists in a
single operon with a feedback loop. On the one hand,
negative autoregulation promotes robustness [15], but it
can also cause oscillations if the process introduces a
delay [16-18]. On the other hand, positive autoregulation
yields bistability [19]. By combining both structures, we
have designed and analyzed theoretically a synthetic
genetic circuit with a minimal transcription structure
exhibiting multifunctionality (Fig. 1a). We present a
mathematical model at the molecular level based on dif-
ferential equations for the synthetic self-regulated tran-
scription circuit. The system shows oscillatory and
bistable behaviors, together with intrinsic robustness

through a quorum sensing (QS) mechanism (Fig. 1b) that
allows for cellular synchronization [20,21]. The system,
which is expressed from plasmids, consists of two tran-
scription factors (TFs) responding to two different chem-
icals. Thus, we perform spatio-temporal simulations
showing different dynamic pattern formation depending
on the initial environment.

Results and Discussion
The system, a single transcriptional unit, consists in a
combinatorial promoter, lactose-luciferase, which con-
trols the expression of two TFs LacI and LuxR, and the
enzyme LuxI (see Methods for further details). Being all
the concentrations of protein species proportional, it
would make a priori especially difficult our targeted
dynamics. Fortunately, we can still have a rich dynamics

Figure 1 Scheme of the system and dynamical simulation at the single cell level. (a) Scheme of the synthetic gene cassette and the fully regu-
lated promoter forming a delay-inducing DNA loop. Arrows (blunt lines) mean positive (negative) regulations. (b) Quorum sensing scheme. Each cell 
produces AHL which is pumped to the medium, allowing cell population to reach a homogeneous concentration of AHL. (c) Simulation of the circuit 
behavior at the single cell level showing oscillations with the nominal parameters (Table 1). The initial condition is given by no molecular species in 
the system and with no IPTG in the medium. (d) Normalized oscillatory frequency versus the amount of IPTG (vertical line gives the limit where the 
sustained oscillations are lost, ic � 0.085).



Rodrigo et al. BMC Systems Biology 2010, 4:48
http://www.biomedcentral.com/1752-0509/4/48

Page 3 of 11
at single cell owed to the suitable design of molecular
interactions (multimerization and binding events). Fur-
thermore, this model is coupled to a population model,
where cell-to-cell communication introduces the spatial
dimension. Usually the models including the spatial
dimension require the use of several genes with uncou-
pled dynamics. Here we will show that a dynamical pat-
tern behavior can be generated by using genes expressing
the same concentration of proteins (up to a proportional-
ity factor).

Multifunctional behavior
Using experimentally measured parameter values (Table
1), we simulate the dynamic behavior of the system (Fig.
1c). The period of the oscillations is about 20 min, which
is 5-fold shorter than the cell doubling period (τ0 = 100
min). This period can be environmentally tuned without
genetic modifications of the circuit. We show the evolu-
tion of the frequency of oscillations (ω), normalized by
the nominal one from Fig. 1c (ω0), for different concen-
trations of IPTG (Fig. 1d), resulting in a losing of oscilla-
tions at high levels of IPTG (i >ic) due to the inactivation
of the negative loop. In addition, higher values of the
enzymatic degradation coefficient (δ) yield higher ω
because of the rapidity of the transients (data not shown).

We analyze the functional sensitivity of the system. In
Fig. 2a we plot the phase diagram showing the Hopf
bifurcation. The delay and the nonlinearity of the repres-
sive loop enhance the oscillatory behavior. Contrarily, at
high concentration of IPTG the system is stable and it can
reach bistability according to the bifurcation diagram
shown in Fig. 2b. Furthermore, we study the sensitivity of
the dynamical behavior to different kinetic parameters of
the model (Fig. 3). We have selected the most relevant
ones to study the dynamical properties of steady states
reached. We show a robust oscillatory region, which
would give strong chances for a successful mode of

action. Certainly, the ranges for the appropriate kinetic
parameter values are sufficiently large to ensure a poten-
tial biological implementation.

Firstly, we have carried out an analysis of the effect of
the transcription and degradation terms. These terms are
proportional to the plasmid copy number (C) and the
enzymatic degradation coefficient (δ), respectively. On
the one hand, in Fig. 3a we can observe oscillatory and
bistability regions. High values of C yields monostability.
However, intermediate values yields oscillations at low
levels of IPTG, whereas low values yields bistability at
high levels of IPTG. Importantly, the external addition of
high amounts of AHL enhances the oscillatory region in
detriment to bistability (Fig. 3c). This fact allows a transi-
tion between oscillations and bistability using IPTG and
AHL. To better illustrate this transition, we have per-
formed a stability analysis of the circuit, with C = 10,
using IPTG and external AHL as control parameters (Fig.
4). The map shows four different regions: bistable at high
levels of IPTG and low of external AHL, oscillatory at low
IPTG and high external AHL, and monostable in the
other two cases. On the other hand, the circuit is monos-
table for low values of δ, oscillatory for intermediate val-
ues and low levels of IPTG, and bistable for high values
and high levels of IPTG (Fig. 3b). Analogously to the pre-
vious case, the external addition of AHL enhances the
oscillatory region for high values of δ, thus allowing a
transition between the oscillatory and bistability regimes
(Fig. 3d). Additionally, in Fig. 3e, we show how the delay
(T) is necessary to reach the oscillatory regime. In that
sense, the minimal required delay is about 4 minutes (for
the nominal values of the kinetic parameters shown in
Table 1). In this work we have considered a delay of 5.5
minutes, based on the estimation of the unlooping kinetic
constant in 0.18 min-1 [22]. According to Fig. 3f, coopera-
tive binding between LacI4 and (LuxR:AHL)2 (Ω > 1)
enhances the oscillatory regime, whereas competitive

Table 1: Kinetic parameters used in the spatiotemporal transcription model. 

Parameter Ref. Parameter Ref.

α = 125 nM/min [35] θY = 10 nM [10]

Λ = 75 nM [26] θX = 5 nM [22]

δ = 300 nM/min [26] θI = 15 μM [23]

L0 = 4.1 [23] T = 5.5 min [22]

K1 = 100 nM [2] K2 = 10 nM [2]

K3 = 55 nM * K4 = 300 nM *

κ = 10 nM/min [32] η = 2000 min-1 [33]

δA = 0.002 min-1 [30] λA = 1 min-1 [30]

Nm = 105 cells/nL * D = 10-3 mm2/min [10]

In this work, we consider C = 50, σ = 1, τ0 = 100 min-1, φ = 100, and Ω = 1. *This value was estimated from the literature.
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binding (Ω < 1) makes the system stable. In the natural
case of LacI4 and CRP2:cAMP, the value of Ω was esti-
mated in 10.3 [23]. Moreover, in Figs. 3g, h we analyze the
protein-DNA binding coefficients for the two TFs of the
circuit (θX for LacI4 and θY for (LuxR:AHL)2). They have
antagonistic effects for the dynamical behavior of the cir-
cuit, that is, lower values of θX and higher of θY enhance
oscillations. This fact increases the experimental chances
to implement such a circuit, since LacI is considered a
strong repressor and the activation capacity of LuxR will
not be decisive for the proper function of the circuit.

Interestingly, our circuit does not need further genetic
manipulation to change the behavior regime. Environ-
mental signals control the dynamics leading a fully tun-
able circuit, since by varying the concentration of IPTG
and AHL we can change the dynamical regime. Accord-
ing to our model, this minimal genetic unit can display
complex dynamics. The integration in a single circuit of
the ability of oscillating and having memory may have
important applications in Synthetic Biology.

Synchronization of oscillations
As we have a population of biological clocks coupled
through a diffusive molecule, it is very interesting to ana-
lyze the onset of synchronization of such oscillators. We
address this at local level, without considering spatial fea-
tures. The equilibrium between the extra and intracellu-
lar species is much faster than their diffusion in the
medium, thus it is reasonable to uncouple these two
transport mechanisms to study the synchronization by
QS. Moreover, we have performed such simulations with
no IPTG in the medium. Firstly, we have considered a
heterogeneous population where each cell has a different

number of plasmidic copies (C) and enzymatic degrada-
tion coefficient (δ). Thus, these parameters are assumed
Gaussian random numbers, C = N (50, 10) and δ = N(300,
10). Poisson distributions give equal results (data not
shown). Following the frequency histograms shown in
Figs. 5a, b, QS provides a population synchronization as
the variance of the distribution with QS compared to the
case without QS is significantly smaller. This fact suggests
that genetic mutations that eventually affect the kinetic
properties of the circuit and occur in all single individuals
within the population, but in an uncorrelated way, are
compensated in terms of population. Importantly, syn-
chronization by QS relies on symmetrical distributions
around a nominal value. However, QS will fail to synchro-
nize when mutations always affect the model parameters
in the same sense.

Secondly, we have introduced an intrinsic white noise
to account for the stochasticity raised from the small
number of molecules. It is important to notice that this
noise is always present in a discrete system of molecules,
although at high number of molecules it is usually
neglected. We have not accounted for external sources of
noise. Power spectral density (PSD) analysis has been
performed showing that QS enhances regular oscilla-
tions, since in that case there is one frequency with a PSD
significantly higher (Figs. 5c, d). The global effect of AHL
together with the different temporal scales in the system,
first producing the activator then the repressor with a
delay, enables to sustain in time the oscillatory behavior
of the whole population.

Spatio-temporal patterns
The fact of having an oscillating circuit allows the obtain-
ing of patterns with dynamical behavior. The possibility

Figure 2 Stability analysis of the dynamic genetic circuit at the single cell level. (a) Oscillatory region of the system at very low levels of IPTG (i = 
0). Φ, Ψ, and Γ are defined in the main text. The bifurcation for bistability is at -Ψ/(Γ - Φ) = -1 (not shown in the Figure). (b) Bistability region of the system 
at very high levels of IPTG (i >> 1) and external AHL (a >> 1). To plot (b) we have considered a simplified model (see Methods).
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Figure 3 Sensitivity analysis of the circuit for the most outstanding parameters. The rest of the parameter values are shown in Table 1. We plot 
the steady state(s) (xss) at very high levels of IPTG, i = 103 (solid lines), and with no IPTG (dashed lines). Bifurcation of solid lines indicates the bistability 
limit condition. Bifurcation of dashed lines represents the oscillatory limit point, where we plot the maximal and minimal values of the oscillatory dy-
namics. In c, d AHL is externally introduced at very high levels.
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of producing waves in genetic systems opens the door to
the development of new types of tissue engineering that
could adapt to the environment. On the one hand, In
Figs. 6a, b we show the spatio-temporal pattern evolution
triggered by IPTG. An initial stable state of high LacI is

reached quickly and it propagates to neighboring cells
outwards in radial direction as IPTG diffuses. At large
radius we have low IPTG that gives oscillations until the
concentration of IPTG reaches the critical level (ic). This
composed structure can be viewed as a spatial pulse that
filters oscillations into constant signals. On the other
hand, in Figs. 6c, d AHL is externally introduced at high
levels to generate patterns that change with time as AHL
diffuses. The spatial structure of concentric rings dynam-
ically changes by varying the protein expression level at
each point and adding more rings. At low radius, there is
a monomodal transition from low to high expression lev-
els, indicating that the amount of AHL is above certain
threshold that controls gene expression in that region. By
assuming a non-homogeneous diffusion, we could gener-
ate non-symmetrical structures. Each cell carries an
oscillator whose period depends on the spatial location
and time.

The in vivo implementation of such a circuit and its
characterization could be the matter of further work,
beyond the scope of this study. Experimentally, a fluores-
cent protein such as GFP could be inserted into the
operon as reporter. Time-lapse microscopy could be used
to visualize fluorescence in solid-phase in a scale of vari-
ous cm in space and tens of generations in time [10],

Figure 4 Stability analysis of the circuit as a function of IPTG and 
external AHL (assumed constant). Herein, we consider a low plas-
mid copy number (C = 10). We plot the dynamical regimes of the cir-
cuit (M, monostability; B, bistability; O, oscillations) for different values 
of the external inducers.
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which would be sufficient to observe the dynamical pat-
terns. Even though, this could also be tested readily with
the use of microfluidic devices. In that way, the experi-
mental work would help to validate or refine the mathe-
matical model.

Conclusions
In this manuscript, we have shown for the first time the
design of a single trancriptional unit with a post-transla-
tional dynamics that couples spatial and temporal scales
to generate dynamical spatial structures. We have fol-
lowed a model-based design approach to obtain a mini-
mal genetic unit with multiple functionalities and
displaying certain homeostasis to both environmental
and mutational perturbations, since external fluctuations
or variations in kinetic parameters are compensated due
to QS. We have relied on nonlinear dynamics and sto-
chastic modeling to analyze our system under biological
noise. We have provided a new mechanism able to switch
from oscillatory to bistable regimes using an external

inducer and to produce complex spatio-temporal pat-
terns by using a single transcriptional unit. In addition,
this sort of small functional modules could be hierarchi-
cally assembled to generate more complex systems [24].
That these simple units are able to generate such a com-
plex behavior provides new avenues to understand natu-
ral genetic circuits by designing synthetic minimal
systems. The bottleneck in the construction of a synthetic
network consists in the number of independent tran-
scriptional units, as transcription carries the largest
source of intrinsic and extrinsic noises [25]. Although a
system consisting in a single operon would be very
appealing, it may have serious problems due to its mini-
malism unless the system is properly designed. In the
past, most authors have used at least two operons to con-
struct systems with oscillatory behavior or producing a
patterning. Although for the former, it was already known
several examples of oscillatory circuits consisting in a sin-
gle operon. That our minimal circuit can display such a
rich behavior highlights the fact that rational design tech-

Figure 6 Dynamical pattern formation. (a) Spatio-temporal diagram showing the different regimes of operation (front given by rc). (b) Dynamical 

behavior in response to an external signal of IPTG (I(r = 0, τ = 0) = 106 nM). (c and d) Spatial plot at different times (τ = 1 and τ = 3) showing the gen-
erated patterns when AHL is externally introduced but not produced (κ = 0) nor degraded (λA = 0) into the cells (A(r = 0, τ = 0) = 104 nM). We use a 
white/black scale denoting high/low concentrations.
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niques take advantage of engineering principles for con-
structing genetic circuits with specified functions.

Methods
Dynamics at the single cell level
A synthetic lactose-luciferase (lac-lux) promoter controls
the transcription of the lac repressor LacI (X), the activa-
tor LuxR (Y) and the enzyme LuxI (Z). Here, we consider
the bacterium Escherichia coli as cellular chassis, and all
proteins are assumed to be ssrA-tagged for enzymatic
degradation [26], which for a zeroth-order kinetics
enhances robustness of oscillations [27]. In addition, the
chemical IPTG (I) acts as inducer and binds to LacI
inhibiting its repressive effect; the chemical AHL (A) is
required by LuxR to activate transcription. The active
form of LacI is a tetramer (X4), whereas for LuxR it con-
sists of a dimmer of the complex LuxR-AHL ((Y:A)2). In
addition, repression by LacI tetramer induces a DNA
loop in the promoter region (1a) [28], which may intro-
duce a delay (T) into the system. The processes of tran-
scription, translation, folding and multimerization could
also induce a delay, but this is neglected in this work.
Indeed, transcription in eukaryotes dictates a delay
because of splicing [16]. However, this is not the case in
prokaryotes. Herein, we assume that the reaction
between two tetramers for making the DNA loop is not
reversible, given that the looping structure remains even
for low levels of LacI [22].

Furthermore, here we assume a fast mRNA dynamics
(as the quasi-steady state is roughly reached in 5 min)
[29]. The total concentrations of the three proteins (X, Y
and Z) remain proportional, then we reduce the model to
a single variable. The dynamics of the regulatory model is
given by

where C is the plasmid copy number, α the nominal
transcription/translation rate, δ and Λ the kinetic con-
stants of the ClpXP protease, μ the cell growth rate, and σ
the ratio activator/repressor (X = σY = σZ, being (1 + 2σ)X
the total protein amount). LacI-mediated DNA loop
enhances the autorepression. This is incorporated into
the model by introducing an additional repressive term
proportional to a looping constant (L0). In case of no
loop, L0 = 0. Moreover, this repression can be modulated
by (LuxR:AHL)2, as it occurs with CRP2:cAMP in the nat-
ural lac promoter [23]. The functional form of the regula-
tory factor f has been previously studied [23,28] and is
given by

where θX is the binding coefficient of LacI4-DNA, θI of
LacI-IPTG2, θY of (LuxR:AHL)2-DNA, and 1/φ accounts
for the basal transcription rate. The parameter Ω
accounts for the potential interaction of LacI4 and
(LuxR:AHL)2 in the DNA loop. In case of no interaction,
Ω = 1. In addition, the synthesis rate of AHL is assumed
proportional to LuxI, and we consider that cells express
the enzyme AiiA which degradates AHL [30]

where κ is the synthesis constant of AHL by LuxI, δA the
thermodynamic degradation constant of AHL, and λA the
degradation rate by AiiA.

The multimerization kinetics (at a given total cellular
amount of AHL) is given by

where kl/-l are the forward/reverse kinetic coefficients (l
= 1, 2, 3, 4). By exploiting the different time scales in the
dynamics and neglecting the amount of DNA-bound pro-
tein, we can define the dimensionless variables as x = X1/

θ with , i = I/θI, y = Y1/(K4θY)1/2, and a

= A/K3. Notice that y and a depend on x. The reactions
for multimerization can be assumed much faster than the
ones for transcription and translation. Then the system
(4) is reduced to the steady state. Being that, we obtain

, Y:A = Y1A/K3, and

, with Kl = k-l/kl.
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Furthermore, the total amounts of LacI and LuxR are X
= X1 + 2X2 + 4X4 and Y = Y1 + Y:A + 2(Y:A)2 respectively.
For simplicity in the notation, we denote X as a function
of the dimensionless variable x,

, and

. In addition, we assume that the total
amount of AHL is approximately equal to the free one,
then it turns out that

. Being that,

Y:A = 0 when A = 0 and  at

very high levels of A. For the following, we denote xT = x(t
-T). Time is also re-scaled by cell division, τ = μ0t/ln(2) =
t/τ0.

Accordingly, the regulatory and degradation factors
read, respectively, as

Spectral analysis

We define 

and . Then, the differential equation

(1) reads

for a constant value of i. We denote ,

 and , where these variables are

evaluated in the steady state (xss). The steady state satis-

fies . Being Δx = x -xss, using
first-order perturbations we can write

Thereby, the equation of eigenvalues (λ) is λ = Φ -Γ +
Ψe-λT [31]. Let us define the following variables

 and U2 =(Γ - Φ)T to simplify the results of the
spectral analysis. The oscillatory boundary condition is
given by λ = jω, being j the imaginary unit. Then we

obtain , the analytical
equation for the Hopf bifurcation. On the contrary, the
bistability boundary condition implies λ = 0, then we
obtain U1 = -1. To further analyze the bistability of the
system, we simplify the model at high levels of IPTG and
externally introduced AHL. Without lost of generality, a

dynamics governed by  captures the

principal features of the system, where α' ~Cα, θ' ~σ2 K4
θY/θ2, δ' ~δ, and Λ' ~Λ.

Numerical integration and stochasticity
To illustrate this point, let us consider a molecular system
governed by the following general differential equation

, where X is the protein amount.
The transcription term is highly nonlinear and accounts
for the system delay (T). In our case, the function f
depends on both X(t) and X(t -T). For the enzymatic deg-
radation, we have to notice that, as Λ is a low value, this
becomes zeroth-order for high values of X, while first-
order when X is close to 0.

The delay-based system can be numerically integrated
following

To solve this equation we use the MATLAB routine
dde23.

To account for molecular noise we use the Langevin
approach [25]. We introduce an intrinsic white noise into
the model
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where η (t) is a random fluctuation with �η (t)� = 0 and �η
(t)η (t')� = δ (t- t') (Dirac delta). This equation was solved
using the specified routine and considering a constant
noise in the integration interval (Δ t)

where ξ is a Gaussian-distributed random number with
mean 0 and standard deviation .

Dynamics at the population level
LuxI catalyzes the production of AHL which can be
pumped to the medium facilitating a cell-to-cell commu-
nication (i.e., QS) [32]. We also account for the dynamics
of the intracellular and extracellular (labeled with sub-
script e) concentrations of IPTG and AHL, and for the

cell population (N, with ) together with the
spatial role in solid medium. The diffusion, the intracellu-
lar and the extracellular dynamics are given by

where η the equilibrium constant of the membrane
transport of IPTG and AHL [33], v = V/Ve the ratio of vol-
umes, D the diffusion (assumed linear and homogeneous)
coefficient, and Nm the maximum cell capacity of the
medium. Being the transport through the cell membrane
fast, it turns out that I � Ie and Ae � QA with

Since AHL is quickly degraded and Q � 1 in a large
population, we can take the quasi-steady state A = κZ/λ A
when AHL is not externally introduced. In addition, we
neglect the movement of cells when replicating because
even for τ = 100 this displacement would be ~0.1 mm.

Then, integrating the molecular and population mod-
els, the reaction-diffusion dynamics of the dimensionless
cellular system is governed by

where the space is normalized by D. Solving the partial
differential equation for IPTG diffusion in time and radial
space (r) [34], the signaling pattern reads

where r0 is the radius of the initial drop of IPTG (here
assumed 1 mm) and I0 is the modified Bessel function.
Since for a given concentration of IPTG (ic) the system is
not oscillatory, we obtain, using the equation (14), the
spatio-temporal limit

where, for small values of r0 (r0 <<Dt), we have assumed

that .
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