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Abstract
Background: Mathematical modeling and analysis have become, for the study of biological and cellular processes, an 
important complement to experimental research. However, the structural and quantitative knowledge available for 
such processes is frequently limited, and measurements are often subject to inherent and possibly large uncertainties. 
This results in competing model hypotheses, whose kinetic parameters may not be experimentally determinable. 
Discriminating among these alternatives and estimating their kinetic parameters is crucial to improve the 
understanding of the considered process, and to benefit from the analytical tools at hand.

Results: In this work we present a set-based framework that allows to discriminate between competing model 
hypotheses and to provide guaranteed outer estimates on the model parameters that are consistent with the (possibly 
sparse and uncertain) experimental measurements. This is obtained by means of exact proofs of model invalidity that 
exploit the polynomial/rational structure of biochemical reaction networks, and by making use of an efficient strategy 
to balance solution accuracy and computational effort.

Conclusions: The practicability of our approach is illustrated with two case studies. The first study shows that our 
approach allows to conclusively rule out wrong model hypotheses. The second study focuses on parameter 
estimation, and shows that the proposed method allows to evaluate the global influence of measurement sparsity, 
uncertainty, and prior knowledge on the parameter estimates. This can help in designing further experiments leading 
to improved parameter estimates.

Background
Mathematical modeling has become an important tool
for analysis and prediction of metabolic and signal trans-
duction processes [1,2]. Given a biological system and
some experimental evidence, deriving a model hypothesis
that captures the essential behavior of the system under
study is a nontrivial task. Limited prior knowledge on the
involved reaction mechanisms and signaling pathways
may lead to competing structural hypotheses, whose
parameters might be completely or largely unknown.
Moreover, the model dynamics are typically strongly
influenced by the model parameters [3,4]. An accurate
parameter estimation is thus a crucial step to conclusively
discriminate between structural alternatives, allowing to

discard models for which it can be proved that no param-
etrization is consistent with the experimental evidence.

Model invalidation and parameter estimation are con-
siderably more challenging in biology than in other
experimental and engineering sciences, requiring specifi-
cally tailored methods. Experiments are usually time
intensive, expensive, and very sensitive with respect to
the environmental conditions and the used stimuli. As a
result, typically only sparse experimental data is available,
in which uncertainty may arise not only from technical
measurement limitations, but also from intrinsic and
essential features of the involved cellular processes, as e.g.
cell variability [5], cell history [6] or limited excitability
[7]. Moreover, in many cases the kinetic parameters can-
not be directly determined from experiments [8].

Parameter estimation and model invalidation are often
stated as optimization problems, in which some objective
(or cost) function is minimized over appropriate optimi-
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zation variables (e.g. the model parameters). A common
objective is the minimization of the difference between
measurement data and model prediction, evaluated by
least squares or maximum likelihood functions (see e.g.
[9]). Due to the nonlinearities typically arising in models
of biological systems, the resulting optimization prob-
lems are frequently non-convex and very hard to solve.
As a consequence, common approaches (see e.g. [10])
aim at finding locally optimal solutions, instead of glob-
ally optimal ones. As the local optimum found strongly
depends on some initial guess, such approaches are often
combined with stochastic strategies to achieve some
desired global property [11-13]. Examples are evolution-
ary algorithms [14], multiple-shooting [15], clustering
[16], and simulated annealing methods [17]. However,
finite-time convergence to a global optimum is typically
not guaranteed (see e.g. [18]), and within a fixed time
limit one might find only unsatisfying estimates, by which
the model alternatives cannot be discriminated, or no
estimate at all. Interval analysis and inversion-based esti-
mation methods (see e.g. [19-21]) can overcome some of
these limitations, and handle model nonlinearities as
encountered in biological systems. However, unless cer-
tain monotonicity conditions are satisfied, the results
obtained are often very conservative (wrapping effect), or
the computational costs too high. A rather novel
approach proposed for model invalidation is the use of
barrier certificates [22,23]. Barrier certificates are func-
tions of state, parameters and time that separate possible
model trajectories from measurement data, thus allowing
to conclusively invalidate a model. However, finding a
barrier certificate is a nontrivial task, and its existence is
not guaranteed in general. In summary, even if significant
progress has been achieved over the past decades (see
also [24]), parameter estimation and model invalidation
remain challenging problems, especially in the scope of
systems biology. In this paper we propose a set-based
framework for parameter estimation and model invalida-
tion. Instead of searching for an optimal parameteriza-
tion, we aim at directly classifying the parameter space
into regions that are consistent with the measurements
and regions that are not. A complete investigation of the
parameter space provides a valuable complement to sta-
tistical informations. It not only allows to invalidate a
model, in case no feasible parameterization is found, but
can be useful, for example, to identify knockout targets,
or for experimental design.

Our framework originates from a parameter estimation
approach presented in [25], that considers biochemical
reaction networks in which some steady state (equilib-
rium) has been reached. As stationary data is in general
not sufficient to invalidate models or to estimate parame-
ters (see e.g. [26,27]), we extend this technique to con-

sider the observed transient. Furthermore, we take into
account that not all concentrations are necessarily avail-
able by measurements, as it is frequently the case for the
transient phase of biological experiments. The resulting
approach, which can be applied to a quite general class of
nonlinear dynamical systems, allows to take uncertain
measurements into account, and can provide conclusive
proofs of model invalidation. This is achieved by refor-
mulating the model invalidation and parameter estima-
tion tasks in terms of a nonlinear feasibility problem.
Coupled with the use of a special class of infeasibility cer-
tificates obtained by semidefinite programming [28,29],
and with an effective exploration strategy, this allows to
efficiently outer-bound the set of consistent parameters.
To balance estimate quality and computational effort, we
also discuss an additional technique that improves the
efficiency of our approach by dividing the overall prob-
lem in smaller subproblems.

Methods
In this section we first review the most common model-
ing approach for biochemical reaction networks, result-
ing in nonlinear ordinary differential equation systems.
For this system class, we show how to formulate the
model invalidation and parameter estimation tasks in
terms of a feasibility problem, taking uncertain and
incomplete measurements into account. An efficient
solution approach for this feasibility problem is then dis-
cussed, and embedded into a bisection algorithm whose
goal is the classification of the parameter space into
regions that are consistent with the (uncertain) measure-
ments and regions that are not.

Biochemical Reaction Network Models
Signal transduction and metabolic networks, as well as
genetic processes, are often described in form of bio-
chemical reaction networks [3]. A biochemical reaction
network consists of a collection of reactions involving a
given set of compounds (as e.g. substrates and products,
though this distinction is somewhat artificial). As many
reactions are reversible, we consider reactions in the gen-
eral form

where p+ and p- denote the forward and the reverse

reaction rate respectively, and α1 ...  and β1 ... 

define the stoichiometric relations of the participating

compounds X1 ... . This general scheme holds for

most metabolic networks and signal transduction pro-
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cesses, as by combining such reactions one can obtain

arbitrarily connected networks.
If the compounds quickly distribute by diffusion in the

volume under study, thus resulting in uniform concentra-
tions, spatial and stochastic effects can be neglected. In
this case, the dynamics of the reaction network can be
modeled by describing the vector ν(t) of reaction fluxes
(rates) as a nonlinear function

depending on a state vector , on the reaction

parameters , and on some input signals

. For the case of biochemical reaction net-

works the state vector x(t) is the vector of concentrations

of the compounds, and input signals u(t) allow to model

environmental changes (as e.g. ligand concentrations,

external stimuli triggering a signaling cascade, or external

metabolites). Note that in some cases, e.g. for a com-

pound whose concentration is imposed from the outside,

it could also be convenient to model an input as an addi-

tional state.
For a large class of biochemical reactions, comprising

both Michaelis-Menten and Hill kinetics, using the gen-
eralized mass-action rate law [30] each reaction flux
νj(x(t), p, u(t)) can be written as

The terms Fj(x, p, u) are positive rational functions that
can be used to describe enzyme-catalyzed reactions, in
which for example only the concentrations of non-enzy-
matic substrates and products occur. These terms allow
to account for various phenomena, as e.g. saturation,
cooperativity, or hysteresis, that cannot be directly
described by the standard mass-action kinetics obtained
by setting Fj(x, p, u) = 1. The temporal evolution of the
compounds, if diffusion and convection is neglected, can
then be described by the balance equation

where N denotes the stoichiometric matrix constructed

from the pre-factors αi and βj (see e.g. [31]). An important

but often neglected fact is that, depending on the tech-

nique employed, a measurement could provide not a

direct information on the value of single state compo-

nents (concentrations), but rather some arbitrary aggre-

gate information. We will therefore distinguish between

the system state x(t) and the system output ,

which for sake of generality is defined as

Two examples of biochemical reaction networks are
described in the Results and Discussion Section.

Time Discretization
Our approach is based on a reformulation of the parame-
ter estimation and model invalidation tasks as a feasibility
problem in discrete-time. This allows to avoid deriving
the exact solution of the differential equations. A prelimi-
nary step then consists in approximating the model
dynamics as a difference equation system, e.g. by stan-
dard numerical integration methods as Euler or Runge-
Kutta discretizations. Selecting an appropriate discretiza-
tion scheme is in general nontrivial, in particular for sys-
tems admitting different time scales (stiff systems), and
requires a rigorous treatment of numerical stability that is
out of the scope of this paper (see e.g. [32] for a numerical
study on dynamical systems). Note that the discretization
error introduced can be partly compensated for by add-
ing uncertainty in the data.

We assume therefore that an appropriate discretization
scheme has been decided, and in the remainder we con-
sider integer-valued time indexes, rather than the real-
valued time points to which they correspond.

Assuming rational reaction fluxes, the discretization of
the model dynamics (2) yields a difference equation sys-
tem that can be expressed as a system of polynomial
implicit difference equations

where  and  denote respectively the

state vector (concentrations) and the input signals (stim-

uli) at the time index k ∈ �, while  is the parame-

ter vector as before. The above form assumes a

discretization scheme with a constant time-step. If a vari-
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able time-step discretization is used, one simply has to

consider a system of difference equations Gk(xk+1, xk, p,

uk) = 0 depending on the time index. Note that the use of

a variable time-step can allow in principle to overcome

some numerical problems.

We assume that the system output  at the

time index k ∈ � satisfies a similar implicit polynomial

equation in the form

and consider experimental measurements of this ideal
output yk as subject to uncertainty, as this is typically the
case in biological experiments. Note that discrete-time
models, as e.g. population models [33], can be easily for-
mulated into the implicit form (4)-(5).

Model Invalidation and Parameter Estimation Approach

Let us consider an experiment, performed on the biologi-

cal process under study, for which a collection  of mea-

surements taken at the time indexes k1 <k2 < ... <km (not

necessarily consecutive) is available, and let  denote the

collection of the corresponding applied inputs. Given a

candidate model (4)-(5), we can define the following

problems.

Model Invalidation. Show that there exists no parame-

ter vector for which the model is consistent with the exper-

imental data .

Parameter Estimation. Find the set of all parameters (if

any) for which the model is consistent with the experimen-

tal data .

Measurements, e.g. western blots, are typically uncer-

tain and subject to noise, so that the exact value of the

output yk is not known. In comparison to stochastic

approaches, where a measurement is seen as a probability

distribution, we simply assume that each measurement

 is given as a set in which the unknown output yk is

contained (as depicted in Figure 1). Indeed, measure-

ments are frequently given as intervals  with

upper and lower bounds  and . For sake of general-

ity, in the remainder a measurement  will be consid-

ered as an arbitrary (polyhedral) set.
Let the measurement collection be formally denoted as

where M = {k1,..., km} is the set of the measurement

index times. Assuming without loss of generality that the

experiment starts with the first measurement and ends

with the last one, the measurement collection  implic-

itly defines the window  of time

indexes for which the discrete-time dynamics (4) have to

be considered. As for the measurements, the applied

inputs uk could be subject to uncertainties, and are thus

given as a collection of sets

For sake of simplicity, we assume that an input is
applied at every time index k ∈ T. The extension to the
case in which inputs are only applied at some specific
time indexes is straightforward.

Given these definitions, the model invalidation and
parameter estimation problems can be more formally for-
mulated as follows.

Model Invalidation. Show that there exists no parame-

ter for which the conditions (4)-(5), , and

are satisfied for all k ∈ T.
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indicate the actual measurement boundaries.
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Parameter Estimation. Find the set of all

parameters for which the conditions (4)-(5), , and

are satisfied for all k ∈ T.

Feasibility Problem Formulation

In this section we show how to formulate and handle the

model invalidation and parameter estimation problems

for biochemical reaction networks in a unified frame-

work. Assume the experimental data ,  and a candi-

date model (4)-(5) to be given. We can gather all this

information within the following set of (semi-)algebraic

equations

where  and  denote some given con-

vex sets bounding respectively the parameters and the

concentrations. Such bounds can often be derived as

intervals by physical conservation relations (if the initial

concentrations are known), but arbitrary regions can be

assumed if only limited prior knowledge is available. The

goal of parameter estimation is to provide a better

approximation of the consistent parameters than these

initial parameter bounds.

Checking if  admits a solution or not, which we

denote as the feasibility problem, is equivalent to check-

ing whether the model is able to reproduce the measure-

ments for the given parameter set . We then clearly

have the following implication:

Property. If the feasibility problem does not

admit a solution, then there is no parameter vector 

for which the (discrete-time) model is consistent with the

experimental data , .

Moreover, it is easy to see that the set of consistent

parameters  is the set of all parameters for which the

feasibility problem admits a solution (see [34] for a formal

definition of the set of consistent parameters in terms of

orthogonal projections). Note that the set  is not nec-

essarily convex, and may be composed of disconnected

regions.

Due to the nonlinearities of the model (4)-(5), provid-

ing an exact solution to the feasibility problem  is in

general extremely hard. However, as shown in the next

section, it is possible to efficiently address a relaxed ver-

sion of the feasibility problem, where by relaxed we mean

that no feasible parameterization will be lost (no false

negative), although some infeasible parameterizations

could be erroneously regarded as feasible (false positives).

This means that there could be cases in which solving

problem  would allow to invalidate a model, while

solving the relaxed version does not. However, if the

relaxed version is infeasible then we have the guarantee

that problem  is infeasible as well, and hence that

the model is inconsistent with the experimental data.

Problem Relaxation and Infeasibility Certificates

As mentioned above, the feasibility problem  is in

general a hard non-convex problem. A more tractable

problem is obtained by relaxing the polynomial problem

 into a semidefinite program (SDP). This approach

derives from a relaxation technique proposed in [25],

based on an image convexification described in [28,35].

The technical derivation of this approach, which consists

of reformulating  as a quadratic problem and relax-

ing it into a semidefinite program, is described in detail in

the Additional file 1. A comprehensive example illustrat-

ing its application is given in the Additional file 2.

The key advantage of this approach is that semidefinite

programming can be solved efficiently (i.e., in polynomial

time in the input size). The computational effort required

in practice might pose a limit to the size of problems that

can be considered. However, we are not interested in

optimizing some objective function over the solutions of

, but rather in deciding whether a solution exists or
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not. A more efficient approach can then be obtained by

solving the Lagrangean dual of the semidefinite relax-

ation of , which we denote by , by standard

primal-dual interior-point methods [36]. The Lagrangean

weak-duality property guarantees that if  is

unbounded then  is infeasible, thus providing an

efficient certificate to model inconsistency:

Property. If the Lagrangean dual is unbounded,

then there is no parameter vector  for which the

(discrete-time) model is consistent with the experimental

data , .

Exploration Strategy for Parameter Estimation

If  is bounded, then there might be parameters in

 that are consistent with the measurements. The goal

then becomes to approximate the subset  of con-

sistent parameters as best as possible. If for a given subre-

gion  the Lagrangean dual  is unbounded,

then the subregion  does not contain any consistent

parameterization and can be safely discarded. One can

then approximate  by systematically exploring subre-

gions , removing those that are inconsistent with

the measurements.
Formally, we aim at deriving the set

Note that all consistent parameters are clearly con-

tained in .

Deriving  exactly would require to consider infinite

subregions . However, restricting to any finite col-

lection of subregions yields a valid outer-approximation

of , and hence of . A simple approach to derive

such an approximation is to partition the parameter

space  and to check each partition. A more efficient

approach consists in embedding the inconsistency tests

within a bisection algorithm, so as to check whole groups

of partitions simultaneously, as illustrated in Figure 2.

Consider a given initial parameter region  and a

threshold ε for the relative precision of the parameter

estimate, and let ||Q|| denote the relative size of a subset

 with respect to . The following simple bisec-

tion algorithm explores the parameter space in a robust

and convergent manner:

Algorithm 1: Outer-Approximate 

1. If  is unbounded then exit and return 

2. If  then exit and return 

3. Partition  into  and 

4. Set : = Outer-Approximate 

5. Set : = Outer-Approximate 

6. Return 

The overall computational cost grows exponentially in

the dimension of  as well as on the threshold ε. On the

other side, the algorithm can be easily and efficiently par-

allelized. Let us remark that a simple bounding-box

approximation of the consistent parameters, which in

some cases might be sufficient, can be obtained in poly-

nomial time by separately estimating each single parame-

ter.
The complexity of the proposed method also depends

on the number of measurements considered and on the
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size of the corresponding time window. This is exploited
in the reduction strategy described in the next section,
which allows to tackle larger problems.

Complexity Reduction for a Large Number of Measurement 
Points

The key idea, as depicted in Figure 3, is to split the mea-

surement sequence  into a collection

of shorter measurement subsequences, possibly over-

lapping. Each subsequence  identifies a smaller

time window , and the corresponding feasibility

problem  is a restricted version of  with only

variables and constraints for k  Tj , which is smaller and

thus easier to solve.

It is straightforward to see that whenever any single

problem  is infeasible, then the global problem

 is infeasible as well (although the converse is not

necessarily true). More in general, the set of consistent

parameters  can be bounded by intersecting the sub-

sets  of parameters that are consistent with the mea-

surements contained in  (as depicted in Figure 4),

which in turn can be approximated with the sets 

derived with the algorithm described above. Namely, we

have that

This strategy allows therefore to obtain an estimate on

the consistent parameters even when a direct solution of

the feasibility problem  is not possible, because it is

computationally too expensive.

Results and Discussion
In the previous sections we have shown how the model
invalidation and parameter estimation problems can be
handled in a uniform framework in terms of nonlinear
feasibility problems. In this section we provide two case
studies illustrating its application. In the first one we con-
sider two simple alternative reaction schemes, namely the
Michaelis-Menten and the Henri mechanisms, and aim at
invalidating the first scheme with respect to uncertain
measurements corresponding to the second one. In the
second case study we apply the approach to an intracellu-
lar shuttling mechanism, focusing on parameter estima-
tion under uncertain and incomplete measurements.

Model Discrimination between Henri and Michaelis-
Menten Mechanisms
Let us consider a certain enzyme-catalyzed reaction, in
which an enzyme (E) and a substrate (S) join into an
enzyme-substrate complex (C) to form a final product

Y
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(P). Let the hypotheses proposed for this process be the
two models formulated by Henri in 1902 [37], respec-
tively known as the Michaelis-Menten (MM) and the
Henri (H) mechanism of enzyme-catalyzed reaction:

where pi and  are the rate constants. The relevance of

these two models is discussed in [26], in which it is also

proved that they are analytically indistinguishable in

steady state conditions, and can only be distinguished if a

transient initial dynamic is considered.
The MM reaction mechanisms are modeled according

to the law of mass action by

while for the H mechanism we obtain

Exploiting two conservation relations fulfilled by both
mechanisms, the models can be simplified into second
order systems depending only on the concentration of S
and C (see the Additional file 2). Considering a simple
first order Euler discretization scheme, and fixing the
total enzyme concentration E + C to a constant value 1,
the difference equations corresponding to the MM mech-
anism are given by

where h is the time-step of the discretization, while for
the Henri mechanism we obtain

Scenario and Setup
To show that our approach allows to prove model invalid-
ity, we assume the Henri mechanism as reference, gener-
ate measurements by sampling a simulation during the
transient phase, and use the resulting data for model
invalidation against the Michaelis-Menten model.

The discrete-time model for the Henri mechanism has

been simulated with time-step h = 0.1 seconds and

parameters  for several initial conditions

x0 = (s0, c0), deriving for each a corresponding sequence of

states xk = (sk, ck), for k = 0,...,20. Given a state sequence

(xk) and a measurement error σ, we denote by

 the corresponding uncertain

measurement sequence, with measurement sets

. To test if the

sequence  allows to invalidate the Michaelis-Menten

mechanism, we apply Algorithm 1 with precision thresh-

old ε = 5%, using as bounds for the unknown parameters

the interval set . If the result-

ing parameter set is empty, the Michaelis-Menten mecha-

nism is invalidated.
Results and Discussion
In Table 1 we report, for seven different initial conditions,
the highest measurement error σ for which our approach
allows to invalidate the Michaelis-Menten mechanism.
The measurement error decreases as the initial condi-
tions approach the steady state (recall that in the steady
state the two systems are indistinguishable [26]). Com-
paring these results with the practical measurement
errors that can be obtained in enzymological assays (see
e.g. [38-40]), invalidation can be achieved when the sys-
tem is sufficiently excited.

Parameter Estimation for a Carnitine Shuttle Mechanism
In this section we apply the proposed parameter estima-
tion approach to the carnitine shuttle mechanism, a well
known intracellular transport system for fatty acids. This
example demonstrates the influence exerted by uncer-
tainty, sparsity and incompleteness of measurements, and
by prior knowledge, on the quality of the parameter esti-
mates.
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The carnitine shuttle, as a step of mitochondrial β-oxi-
dation, is an important mechanism for fat catabolism.
The considered reaction scheme (see Figure 5) is adapted
from [41], and models a specific transport system at the
inner mitochondrial membrane involving fatty acids (FA),
carnitine (C) and Coenzyme A (CoA). An activated fatty
acid (CoA~FA) is transferred to carnitine (C) via carni-
tine-acyltransferase at the cytoplasm (reaction I). The
carnitine-fatty acid complex (C~FA) is then shuttled via a
so called antiporter into the mitochondria in exchange
for a free carnitine (reaction II). There, a mitochondrial
isoform of the carnitine-acyltransferase reactivates via
Coenzyme A (CoA) the fatty acids (reaction III). The acti-
vated fatty acid inside the mitochondria is a precursor for
β-oxidation. Note that reactions I and III are reversible.

By considering mass action kinetics and taking into
account the conservation moieties [41], the dynamic of
the shuttle system can be expressed by the following ordi-
nary differential equations

where the variables x1 ... x4 correspond to the participat-

ing compounds (as described in Table 2), the parameters

p1 ... p5 denote the (unknown) constant reaction rates, C0

and  represent the initial concentrations of carnitine

respectively outside and inside the mitochondria, and the

input u is regarded as a binary function corresponding to

�
�
x p x x p C x p u

x p x x p C x p C x x
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Figure 5 Carnitine shuttle. Scheme of the carnitine shuttling system. 
Activated fatty acid (CoA~FA) are transferred to carnitine (C) via carni-
tine-acyltransferase [I] at the cytoplasm. The carnitine-fatty acid com-
plex (C~FA) is then shuttled via a so called antiporter [II] into the 
mitochondria in exchange for a free carnitine. There, a mitochondrial 
isoform of the carnitine-acyltransferase [III] reactivates via Coenzyme A 
(CoA) the fatty acids. The activated fatty acid inside the mitochondria 
is a precursor for β-oxidation. Note that reactions [I] and [III] are revers-
ible.

I

II

IIIC

C

C∼FA

C∼FA

CoA∼FA

CoA∼FA

CoA

CoA

Table 2: Variables for the carnitine shuttle model

Symbol Specie

x1 CoA~FA (Cy)

x2 Carnitine (Cy)

x3 CoA~FA (Mi)

x4 Carnitine (Mi)

Description of the variables for the carnitine shuttle model.

Table 1: Model invalidation results for the Michaelis-Menten 
mechanism

Initial Conditions Maximum Error

substrate (s0) complex (c0) σ [%]

0.999 0.001 ±14.0%

0.990 0.010 ±13.0%

0.900 0.100 ±8.5%

0.800 0.100 ±8.0%

0.800 0.200 ±5.0%

0.700 0.300 ±2.5%

0.600 0.400 ±0.5%

Results of the model invalidation of the Michaelis-Menten 

mechanism. For each choice of initial conditions (concentration of 

substrate and complex), we report the largest error σ (in percentage) 

for which the resulting uncertain measurements  allow to 

invalidate the Michaelis-Menten model.

Y s
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active (u = 1) and inactive (u = 0, fat starvation) β-oxida-

tion. Applying Euler discretization, the difference equa-

tions for the above continuous-time model are given by

where h is the time-step, and for simplicity the time
index is given in superscript.
Scenarios and Setup
The discrete-time model has been simulated with time
step h = 5 seconds using the reference parameterization
p* and initial condition as in Table 3, with values chosen
from the literature [42,43]. To test the robustness of the
approach and study the influence of measurement quality
and availability on the resulting estimates, we compare
several experimental scenarios derived from the above
simulation. Each scenario is obtained as a combination of
the following options, as summarized in Table 4.

• Prior knowledge. Two prior knowledge options, 

denoted 3-PAR and 5-PAR, are considered. In the for-

mer, parameters p1 and p5 are known with relative 

bounds [0.95, 1.05], while parameters p2, p3, p4 are 

unknown. In the latter, all five parameters are 

unknown. For the unknown parameters we assume as 

initial bounds the relative bounds . C0 and  

are treated in the difference equations as constants, 

with values as in Table 3. Here relative bounds [lb, ub] 

for a parameter pi mean .
• Measurement density. We consider two measure-
ment density options, denoted DENSE and SPARSE. 
The former consists of two sequences of 15 consecu-
tive measurements each, taken in the transient (k = 
0,..., 14) and in the equilibrium (k = 300,..., 314) phase, 
respectively. The latter consists of two sequences of 
only five measurements each, taken in the transient (k 
= 0, 3, 5, 10, 14) and in the equilibrium (k = 300, 303, 
305, 310, 314) phase, respectively.
• Measurement errors. To analyze the influence of 
measurement errors, we consider the three options 
ERR-1%, ERR-2%, and ERR-4%, with respectively 

1%, 2% and 4% relative error (see [44,45] for examples 
of practical measurement errors compatible with our 
setup).
• Measured concentrations. The influence of incom-
plete measurements is also investigated. We consider 
four different options, denoted ALL, NOT-X3, NOT-
X4, and NOT-X3-X4, where respectively all concen-
trations, all concentrations but x3, all concentrations 
but x4, and only concentrations x1 and x2 are mea-
sured. This choice reflects the fact that the inner 
mitochondrial concentrations x3 and x4 are more diffi-
cult to measure with simple techniques.

For each of the resulting 22 × 3 × 4 = 48 different exper-
imental scenarios, the consistent parameters are esti-
mated by means of Algorithm 1, with precision threshold
ε = 5%. The solution of each Lagrangean dual in Algo-
rithm 1 takes in average approximately 2 minutes on a
standard 2.4 GHz Intel desktop with 4 GB RAM, using a
straightforward Matlab implementation (see the Addi-
tional file 2). As an example, the results in Figure 6 and 7
involved the solution of ~150 dual problems. Note that ad
hoc optimizations of the semidefinite solver can strongly
reduce the computing time (see e.g. [46]), as well as adap-
tations of Algorithm 1 to special structures, e.g. avoiding
to explore the interior of large feasible regions.
Results and Discussion
The relative bounds resulting from parameter estimation
are summarized in Figure 8 for all the considered scenar-
ios. The figure is structured in a table-like fashion, with
groups of experimental scenarios arranged from highest
information (top-left) to lowest information (bottom-
right). In each group, the bounds for the three error-mea-
surement options are reported as nested intervals, using
different colors.

The results clearly indicate that the measurement error
has a substantial impact on the estimates. With measure-
ment error ERR-1%, the unknown parameters can be
narrowed with sufficient precision for most scenarios.
Conversely, with measurement error ERR-4%, reasonable
estimates can only be obtained for the 3-PAR case, where
the additional prior knowledge compensates for the
larger uncertainty.

As for the influence of incomplete measurements,
while clearly the best results are obtained when all species
are measured (ALL), some improvements can still be
obtained with incomplete measurements, in particular
for the case NOT-X3. Note however that the bounds on
parameter p5 cannot be improved when x3 is not mea-
sured (cases NOT-X3 and NOT-X3-X4), as p5 only
appears in the difference equation of x3. Considering the
3-PAR case, it is also interesting to note that the cases
NOT-X3 and NOT-X4 have opposite effects on the esti-
mates, improving more the upper and the lower parame-

x x h p x x p C x p u

x x h p x x

k k k k k

k k k k

1
1

1 2 1 2 3 0 2 1

2
1

2 2 1 2

+

+

= + − + − +

= + −

[ ( ) ]

[ ++ − +

+ −

= + − + −+

p C x

p C x x

x x h p x x p C x

k

k k

k k k k m

3 0 2

4 0 2 4

3
1

3 2 3 4 3 0

( )

( ) ]

[ ( 44 5 3

4
1

4 2 3 4 3 0 4

4 0 2 4

k k

k k k k m k

k

p x

x x h p x x p C x

p C x x

) ]

[ ( )

( )

−

= + − + − +

− −

+

kk],

[ . , ]0 3 3 Cm
0

p lb p ub pi i i∈ ⋅ ⋅[ , ]* *



Rumschinski et al. BMC Systems Biology 2010, 4:69
http://www.biomedcentral.com/1752-0509/4/69

Page 11 of 14
ter bounds respectively. As a remark, we noted in our
tests that uncertainties with respect to x2 (the carnitine-
FA complex) have overall the largest impact on the qual-
ity of the parameters estimates.

Comparing the SPARSE and DENSE scenarios, it can
be seen that very similar results are obtained when prior
knowledge is available (3-PAR). As it can be expected,
the impact of measurement errors is in general more
noticeable for the SPARSE cases.

The bounds in Figure 8 are the single-parameter pro-
jections of the actual bounding sets obtained with Algo-
rithm 1. These sets, which provide additional information
on the correlation among the parameters, are illustrated

for the scenarios (3-PAR, DENSE, NOT-X3, ERR-1%)
and (3-PAR, DENSE, NOT-X3, ERR-2%) in Figures 6 and
7 respectively. To indicate the estimate quality, some con-
sistent parameterizations derived by Monte Carlo simula-
tions are also plotted. Note that this is a qualitative
comparison, as the probability of finding a consistent
parameterization is not uniform. Conversely, our
approach guarantees that outside of the depicted regions
there is no consistent parameterization.

In conclusion, this case study shows how measure-
ments quality affects the estimation results. Note that
some estimates might be improved by considering the
unmeasured states as additional bisection variables. This

Table 3: Simulation parameters and conditions for the carnitine shuttle model

Symbol Value Unit

5.00e-4 μMs-1

1.03e-1 μ(Ms)-1

2.36e-2 s-1

1.85e-2 μ(Ms)-1

2.50e-2 s-1

C0 0.33 μM

1.00 μM

Reference values for parameters and initial conditions for the simulation of the carnitine shuttle model. The initial conditions are given by x1 = 0, 

x2 = C0, x3 = 0 and x4 = .

p1
*

p2
*

p3
*

p4
*

p5
*

Cm
0

Cm
0

Table 4: Carnitine shuttle example: scenarios

Scenario Type Options

prior knowledge 3-PAR 5-PAR

measurement density DENSE SPARSE

measurement error ERR-1% ERR-2% ERR-4%

measured concentrations ALL NOT-X3 NOT-X4 NOT-X3-X4

Summary of the measurement and knowledge options. Each parameter estimate scenario is obtained by selecting a value for each of the options.
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however increases the computational effort, and a trade-
off has to be found. Note also that, for the 15 scenarios in
which all bounds are strictly improved, the estimates in
Figure 8 are guaranteed to hold also when considering
larger initial bounds for the unknown parameters.

Conclusions
We studied model invalidation and parameter estimation
problems for a quite general class of biochemical reaction
systems as they typically appear in systems biology, and
proposed a solution approach that yields conclusive
results even with uncertain measurements and model
parameters. Our method allows to take uncertain but set-

bounded measurable inputs and disturbances into
account. The achievable results will however depend on
the problem at hand. If for instance only few measure-
ments with large uncertainty are given, a successful result
will rely on the available prior knowledge. Let us remark
that limited identifiability with respect to measurement
and parameter uncertainties is an intrinsic limit when
dealing with guaranteed bounds.

The key to our framework is the formulation of model
invalidation and parameter estimation in terms of a non-
convex feasibility problem. For the considered class of
polynomial/rational systems, efficient infeasibility certifi-
cates are then derived by semidefinite programming
relaxation. These certificates allow to prove model inva-
lidity, and are used to outer-bound the consistent param-
eter space by means of a bisection algorithm that
systematically discards (parameter) regions that are not
consistent with the experimental data, while guarantee-
ing that no valid solution is lost. This property assures, in
contrast to other methods, the global validity of our
results. In contrast to [25], from which our work is
inspired, we allow for dynamic measurement data, which
is in general necessary for model invalidation and param-
eter estimation. Furthermore, we allow for an arbitrary
system output to be considered.

We demonstrated our approach with two examples of
biochemical processes, showing that it can perform
model discrimination and provide good parameter esti-
mates, even if only incomplete and uncertain measure-
ments are available. The examples also show that the
method allows to evaluate the influence of measurement
density, uncertainty, and prior knowledge on the parame-
ter estimates from a global perspective. Such a rigorous
analysis can help in designing experiments, or in identify-
ing which states should be measured, to obtain better
estimates. Furthermore, it can be applied to parameter
sensitivity analysis, as it has been done for the stationary
case [47], or extended to include discrete parameters as in
[48]. Experimental design and sensitivity analysis for the
dynamic case will be subject of future work. Besides
parameter estimation, the method can be easily modified
to assess the consistent model state space, so as to esti-
mate for instance the model states that cannot be deter-
mined experimentally. This is done by including the
desired states as (additional) bisection variables (see
[34,49] for further details). A major challenge that has to
be considered when applying the method is computa-
tional tractability. Even with the proposed complexity
reduction approach, which splits the data in smaller
blocks that can be processed in parallel, the computa-
tional cost for large problems might be limiting. In prac-
tice, it could be necessary to reduce the number of
bisection variables by separately exploring selections of
parameters (or even single parameters), possibly improv-

Figure 6 Carnitine shuttle example: small error scenario. Consis-
tent parameter estimate for the scenario (3-PAR, DENSE, NOT-X3, 
ERR-1%). The dots show consistent Monte Carlo parameterizations. 
The coordinate axes show values relative to the reference parameter 
p*.

Figure 7 Carnitine shuttle example: medium error scenario. Con-
sistent parameter estimate for the scenario (3-PAR, DENSE, NOT-X3, 
ERR-2%). The dots show consistent Monte Carlo parameterizations. 
The coordinate axes show values relative to the reference parameter 
p*.
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ing the estimates in an iterative fashion. It is also worth
pointing out that custom codes for semidefinite program-
ming could drastically reduce the computational time, as
suggested by recent results for automatic code generation
[46].
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