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Abstract
Background: Biological systems process the genetic information and environmental signals through pathways. How 
to map the pathways systematically and efficiently from high-throughput genomic and proteomic data is a 
challenging open problem. Previous methods design different heuristics but do not describe explicitly the behaviours 
of the information flow.

Results: In this study, we propose new concepts of dissipation, saturation and direction to decipher the information 
flow behaviours in the pathways and thereby infer the biological pathways from a given source to its target. This model 
takes into account explicitly the common features of the information transmission and provides a general framework 
to model the biological pathways. It can incorporate different types of bio-molecular interactions to infer the signal 
transduction pathways and interpret the expression quantitative trait loci (eQTL) associations. The model is formulated 
as a linear programming problem and thus is solved efficiently. Experiments on the real data of yeast indicate that the 
reproduced pathways are highly consistent with the current knowledge.

Conclusions: Our model explicitly treats the biological pathways as information flows with dissipation, saturation and 
direction. The effective applications suggest that the three new concepts may be valid to describe the organization 
rules of biological pathways. The deduced linear programming should be a promising tool to infer the various 
biological pathways from the high-throughput data.

Background
Pathways play important roles in the biological systems,
forming the basis of various biological phenomena, e.g.
regulation of gene expression, metabolic pathways, signal
transduction and cell cycle control. That how to map the
pathways that connect a source and its target from the
high-throughput genomic and proteomic data is a chal-
lenging but very important question in the post-genome
era.

Biological pathways consist of various bio-molecular
interactions, e.g. protein-protein interactions, protein-
DNA interactions, protein-RNA interactions, RNA-RNA
interactions and small-molecule-protein interactions.
Since the protein-protein interactions and protein-DNA
interactions are available genome-widely for model

organisms whereas other types of interactions are very
rare, the interactions discussed in the article are limited
to protein-protein and protein-DNA interactions.

The pathways include both the endogenous genetic
information processing pathways and the exogenous
environmental signal transduction pathways. The genetic
information processing pathways are mediated by pro-
tein-DNA, protein-RNA, RNA-RNA and protein-pro-
tein interactions. And the source and target can be
identified by the expression quantitative trait loci (eQTL)
mapping experiments. In the eQTL mapping studies, the
expression levels of genes are treated as quantitative traits
and the genetic loci of these phenotypes are mapped by
integration of genome-wide genotyping and gene expres-
sion profiling [1]. The genetic loci regulate the expression
of their target genes through pathways. The environmen-
tal signals are generally transmitted to the downstream
transcription factors by receptors or second messengers.
We only consider the pathways mediated by protein-pro-
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tein interactions because the second messengers are sel-
dom measured accompanying with the genome-wide
gene expression profiling. In this type of study, the source
can be a receptor embedded in the plasma membrane
and the target a response transcription factor in the
nucleus. Recently great interests have been arisen in
eQTL mapping and observing of the changes of gene
expression after external stimulating [2-5]. These studies
bring forward plenty of biological questions, especially
how to infer the pathways for a given source and its tar-
get. With the development and applications of high-
throughput technologies, e.g. yeast two-hybrid systems,
ChIP-Chip technology and gene expression microarrays,
abundant data of the protein-protein interactions, pro-
tein-DNA interactions and gene expression profiles are
available. These data provide an opportunity to infer the
pathways computationally.

Several methods have been proposed to infer the path-
ways connecting a specific pair of source and target from
the interactions and gene expressions data, e.g. the Color
Coding Method [6], Netsearch [7] and the integer linear
programming model[8,9]. These methods use different
heuristics to find meaningful biological pathways. The
Color Coding method assigns a confidence value to each
interaction by using logistic regression based on the gene
expression and interaction data. It searches the whole
network to find paths of a fixed length with the highest
score, which is defined as the product of the confidence
values assigned to its interactions. Netsearch provides a
new statistical method to score the paths of a certain
length based on clustering of gene expression data. These
two methods both require predefining the pathway struc-
ture and pathway length. However, for unknown path-
ways it is hard to get this type of information in advance.
The integer linear programming model proposed by
Zhao et al. does not require predefining the pathway
structure or length[8]. It searches the network to find a
subnet with the highest weight sum that connects the
source with the target. The weight of each edge is
assigned based on the confidence scores of the interac-
tions or the correlation coefficients of genes from gene
expression data. This method has a disadvantage that it
cannot always guarantee the connectivity of the inferred
pathways by confining the degrees of nodes in the path-
ways. A revised version of the integer linear program-
ming model incorporates the concept of network flow,
but it is used only to guarantee the connectivity and con-
trol the number of proteins involved in the pathways and
the network flows on the edges are not related to the heu-
ristics[9]. Another disadvantage of this method is that it
is hard to get the exact solution because the integer linear
programming problems are NP-hard. The methods men-
tioned above use different heuristics to guide the identifi-
cation of biologically meaningful pathways. But the

heuristics are not so straightforward. And all of these
methods infer the pathways only from the protein-pro-
tein interactions.

The biological pathways are special types of informa-
tion channels to transmit and process either genetic
information or environmental signals in nature. Tu et al.
use the random walk technique to simulate the informa-
tion flow and build up a computational model to infer the
causal gene and the related pathways underlying the
eQTL associations[10]. Suthram et al. replace the ran-
dom walk with the electric current and solve the "dead
end" problem of the random walk, improving the accu-
racy of the pathway inference[11]. These two methods
can handle not only the protein-protein interactions but
also the protein-DNA interactions. So they can infer the
gene regulatory pathways. However, they originally are
designed to infer the causal genes at the eQTL of a spe-
cific transcript. It still requires other path-searching algo-
rithms to infer the underlying pathways. For example,
Suthram et al. search the shortest and the most weighted
paths and treat them as the biological pathways. More
importantly, the irrelevant paths between a source and its
target are always assigned positive scores by either the
random walk method or the electric current method.
This is just like the "dead end" case, which damps the
scores of the significant pathway.

In this study, we abstract the problem of the pathway
inference as a question to search the paths transmitting
the maximal information flow. Dissipation, saturation
and direction, the basic attributes of the information flow,
are proposed to depict the information flow behaviours
in the bio-molecular networks. The whole approach is
formulated as a linear programming problem. The results
indicated that dissipation naturally educed a path with
the highest product of the values assigned to its edges,
which was the same as the objective pathway sought by
the Color Coding Method [6]. But our method did not
require the predefinition of the pathway structure or
length. The combination of dissipation and saturation
defined a subnetwork between the source and the target.
The subnetwork neither was the linear paths sought by
the Color Coding Method[5] and Netsearch[7] nor over-
scored the irrelevant paths. The direction information of
the interactions was easily incorporated by confining the
flow directions. Consequently protein-DNA interactions
can be incorporated and genetic information pathways
can be inferred by our approach. The information flow
naturally guarantees the connectivity of the predicted
pathways. Experiments on the real data to interpret the
yeast eQTLs associations and to infer the yeast MAPK
signalling pathways based on interaction and gene
expression data showed that the results were consistent
with current biological knowledge curated by KEGG [12].
The effectiveness of our method suggests that the infor-
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mation-flow based model with dissipation, saturation and
direction may provide an excellent framework to model
the biological pathways. The linear-programming formu-
lation makes sure that this method can be solved effi-
ciently and applied to the large interactome. This
approach should serve as a promising tool to mine high-
throughput genomic datasets.

Results
Overview of the information flow model with dissipation, 
saturation and direction
Our method aims to infer the pathways from the bio-
molecular interaction network and gene expression data
by maximizing the information flow the target receives
with the constraints of dissipation, saturation and direc-
tion. Gene expression data contain the dynamic informa-
tion of cellular responses to various conditions. The bio-
molecular network is edge-weighted by calculating the
Pearson correlation coefficients based on the gene
expression data, the same as the electric current
method[11]. Given a source and its target, the objective is
to maximize the information flow the target receives. A
set of constraints were added according to balance, dissi-

pation, saturation and direction (Figure 1). Balance
defines the constraints on the nodes. It requires that the
source only sent out the information flow but did not
receive, that the target only receives, and that the out flow
of each intermediate node is less than or equal to the
input flow at the same node. Dissipation, saturation and
direction give the constraints on the edges. The informa-
tion flow decays on each edge according to the dissipa-
tion index defined by the edge weight. Each edge has a
capacity limit and saturation would occur when an infor-
mation flow larger than the capacity limit flows through
that edge. Some edges with directions only allow the
information flow along the specified directions. The
capacity limits are introduced because the specific struc-
tures, physic-chemical properties and the network-topo-
logical positions of the bio-molecules determine the
types and amounts of the information they could trans-
mit. The capacity limits cause the saturation and thus the
pathways are of forks. We simulated the saturation effect
by a stochastic searching method due to the absence of
the specific details of the bio-molecules and the interac-
tions. The formulations and details of the model are in
the methods section below. We will refer to our method
as IFDSD (Information Flow based method with Dissipa-
tion, Saturation and Direction) for convenience below.

Application to the yeast signal transduction pathway 
inference
The yeast MAPK signal transduction pathways are often
used to test the effectiveness of the pathway inference
algorithms [5,7-9]. We also applied our model to predict
the yeast pathways and compared it to the other methods.

The DIP Core dataset of yeast protein-protein interac-
tions was downloaded at July 8th, 2008 [13]. Only the
physical interactions are retained to infer the signalling
pathways. Totally 4770 interactions of 2334 proteins were
selected. The gene expression data is downloaded from
the NCBI GEO database with Accession Number
GDS104 [14,15]. It contains the gene expression data of
seven time points during the sporulation (0, 30 min, 2
hrs, 5 hrs, 7 hrs, 9 hrs and 11 hrs). A weight was assigned
to each interaction by calculating the absolute value of
the Pearson correlation coefficient of the two interacting
genes. The final weighted interaction network is used at
last.

First, we applied our method to predict the phero-
mone-induced MAPK signaling pathway (Figure 2A).
Given the source protein Ste3 and the target protein
Ste12, we applied our approach to the weighted network
with K = 10, N = 5, where K and N are the parameters of
the stochastic searching method (see the methods section
for details). The result (Figure 3B) naturally includes the
backbone of the MAPK pathway revealed by the Color
Coding method (Figure 3A) but here we did not require

Figure 1 A schematic diagram of the information-flow model 
with dissipation, saturation and direction for pathway inference. 
A. Simplified example of the pathway inferring problem. The paths 
composed of green nodes and edges are the inferred pathway where-
as the blue nodes and edges are predicted to be not relevant. The 
edge thickness denotes the capacity limit of each edge. B. Constraints 
imposed on the edges and the nodes. B1. The source only sends infor-
mation flows out. The total amount is given by I0. B2. The information 
flow dissipates on each edge, illustrated by the thickness of the edge. 
B3. There is a capacity limit on each edge. B4. The information only 
flows in the direction of the interactions. B5. The amount of the input 
flow should not be less than the amount of the output flow at each in-
termediate node. B6. The target only receives information flows in. The 
goal is to maximize the total information flow that the target receives.
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the prior information of the path length. Based on the
backbone, the MAPKKK (Ste11), MAPKK (Ste7) and
MAPK (Fus3) were identified sequentially. Eight out of
the twelve intermediate proteins in the pheromone-
responsive MAPK pathway were predicted accurately.

The integer linear programming method proposed by
Zhao et al.[8,9] (termed as ILP for convenience) can also
identify subnet directly. But their heuristic is to find the
most weighted subnet in which the degree of each inter-
mediate node is larger than 2. So their method is not sen-
sitive enough to pick out the poorly-weighted
interactions (Figure 3C). The electric current based
method (termed as EC) was also used to infer the yeast
MAPK pathways. Since the EC method also assigned pos-
itive weight to the irrelevant edges, the predicted pathway
would be as big as the whole network if all the positively-
weighted edges were retained. A threshold was set to fil-
ter the irrelevant edges. The pathway from Ste3 to Ste12
predicted by the EC method recalled more true positive
proteins of the pheromone-induced MAPK pathway but
also included more irrelevant proteins (Figure 3D).
What's more serious is that most of the "intermediate"
proteins had only one edge, which means they no longer
were intermediate. But this would not happen in the
results of IFDSD and ILP.

Four additional proteins are included in the pathway
predicted by IFDSD. AKR1 is included in every predicted
pathway because in the used protein-protein interaction
data STE3 interacts only with AKR1. IQG1 is an essential
protein required for determination of budding pattern.
TEM1 is a GTP-binding protein of the Ras superfamily
involved in the termination of the M-phase. It controls
the dynamics of actomyosin and septin during cytokine-
sis. CLN1 is a G1/S-specific cyclin protein and plays an
important role in cell cycle control. Because the gene
expression data we used were generated during the yeast
sporulation whereas sporulation and normal cell growth
are two mutually exclusive developmental processes,
interactions of these proteins with MAPK pathways iden-
tified by our method may suggest how MAPK pathways
and proteins involved in the control of cell cycle act in
concert. But they may also result from the incomplete-
ness and noises of the protein-protein interaction net-
work.

The correlation coefficient of the expression profiles of
two genes is often used to weight the edges of bio-mole-
cule networks. Tu et al. use the co-expression measure to
calculate the probability of random walks[10]. Suthram et
al. use the co-expression measure as the electric conduc-
tance[11]. In our model we still use this measure to assign
the dissipation indices. Intuitively, the efficient informa-
tion transmission requires the sender and its direct
receiver co-exist temporally. And the stoichiometry of the
interactions also makes the co-expression requests. The
efficiency of information transmission would be poor
otherwise. We added a random control to highlight the
effectiveness of this weighting scheme by maintaining the
whole structure of the original network but assigning the
edge weights randomly. The results suggested that the co-

Figure 2 The yeast MAPK signalling pathways deposited in KEGG 
[24]. A. The pheromone-induced yeast MAPK pathway from Ste3 to 
Ste12. B. The yeast MAPK pathway induced by hypotonic shock from 
Mid2 to Rlm1. C. The yeast MAPK pathway induced by high osmolarity 
from Sln1 to Hog1. D. The starvation-induced yeast MAPK pathway 
from Ras2 to Ste12.

Figure 3 The predicted yeast MAPK pathways induced by phero-
mones. A. The shorted path from Ste3 to Ste12 which is also the result 
of the Color Coding method with the path length as 5. B. The pathway 
predicted by the information flow method with dissipation, saturation 
and direction. C. The pathway predicted by the integer linear program-
ming model[8]. D. The pathway predicted by the electric current meth-
od[11]. Red: the source or the target; green: proteins appeared in the 
yeast pheromone-induced MAPK pathway from Ste3 to Ste12 in 
KEGG[24]; Blue: false positive proteins.
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expression weighting scheme improved the precision and
recall rate significantly (see Additional File 1: Figure S1,
p-value = 0.0486).

Another three MAPK pathways of the yeast were also
predicted based on the same edge-weighted network and
four merits were compared among IFDSD, ILP and EC
(Table 1). First, we compared the connectivity of the pre-
dicted pathways. IFDSD always generated connected
pathways no matter what parameters were selected.
However, the connectivity of the pathways predicted by
ILP and EC depends on their parameters because their
parameters can filter the less-weighted edges (see Addi-
tional File 1: Figure S2, S3, S4 and S5). If the parameters
are very small, the connectivity of the predicted pathways
is guaranteed but the irrelevant edges are included. It
decreases the precision and specificity. Otherwise, a
increasing precision would harm the connectivity of the
pathways. Second, IFDSD and ILP always generated path-
ways in which the intermediate nodes between the source
and the target had two or more edges. But EC can not
guarantee that the predicted pathway has this property.
By making sure the connectivity of the predicted path-
ways, we computed the precision and recall rates of the
three methods on the four MAPK pathways. Here, the
precision means the proportion of true positive proteins
in the protein list of the predicted pathways. The recall

rate means the proportion of the correctly-predicted pro-
teins in the protein list of the actual pathways. The results
suggested that the EC method performed best if we did
not consider the connectivity and "intermediate" request.
If the "intermediate" condition must be satisfied, the
IFDSD method outperforms the ILP method.

Application to the yeast gene regulatory pathway inference
Unlike the signal transduction pathway that is composed
mainly of the interactions of proteins and terminates at
transcription factors, pathways mediating the eQTL asso-
ciations are composed of both protein-protein interac-
tions and protein-DNA interactions. The genetic
regulatory information should be transmitted from pro-
teins to the DNA level. To test the performance of our
method on this type of pathways, we used it to infer the
pathways that mediate the genetic information process-
ing pathways from Gpa1 to Prp39. The genomic locus of
Gpa1 is identified to be an eQTL of Prp39 in yeast [16].
GPA1 is analyzed to be the causal gene at that locus [10].

Prp39 is a component of the RNA splicing complex,
which is necessary for the stable interaction of mRNA
precursors with the snRNP components of the pre-
mRNA splicing machinery [17]. Linkage analysis indi-
cates that expression variation of Prp39 is significantly
associated to a locus on chromosome VIII and Gpa1 is

Table 1: Comparison of IFDSD, ILP and EC on the yeast MAPK pathways.

Source Target Method Connectivity Intermediate Precision Recall

Ste3 Ste12 IFDSD Yes Yes 0.67 0.71

ILP Depend on λ Yes 0.56 0.36

EC Depend on cutoff No 0.48 0.79

Ras2 Ste12 IFDSD Yes Yes 0.17 0.63

ILP Depend on λ Yes 0.16 0.38

EC Depend on cutoff No 0.16 0.75

Mid2 Rlm1 IFDSD Yes Yes 0.27 0.57

ILP Depend on λ Yes 0.18 0.57

EC Depend on cutoff No 0.29 0.71

Sln1 Hog1 IFDSD Yes Yes 0.60 1.00

ILP Depend on λ Yes 0.33 1.00

EC Depend on cutoff No 0.86 1.00

Four merits were compared among IFDSD, ILP and EC based on the yeast MAPK pathways. "Connectivity" and "intermediate" were about 
edges while precision and recall were about the nodes. Pathways predicted by IFDSD are always connected but the connectivity of the 
pathways predicted by ILP and EC depends on the parameters because they could filter the less-weighted edges. Since the nodes except the 
source and the target should transfer information from the source to the target, these "intermediate" nodes should have more than two edges 
linked to them. IFDSD and ILP always generate pathways satisfying this request whereas EC can not. Making sure the connectivity of the 
predicted pathways, the precision and recall were calculated by selecting the optimal parameters for each method on the yeast MAPK 
pathways.
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predicted to be the causal gene at that locus [10]. Given
the causal gene Gpa1 and the target gene Prp39, we
inferred the pathways mediating the genetic information
processing from an integrated network (K = 6, N = 5), in
which the flow direction was confined to be from the pro-
tein to the DNA and from the kinase to the substrate (Fig-
ure 4). The result showed that Gpa1 may regulate the
expression of Prp39 through a pheromone signaling path-
way, which is consistent with the result shown by Tu et
al.[10]. Besides the pheromone signaling pathway, our
method also identified an alternative path from Gpa1 to
Prp39 (Gpa1-Sst2-Mpt5-Cdc28-Cln2-Dig1-Prp39). Sst2
is a GTPase-activating protein for Gpa1. It regulates
desensitization to alpha factor pheromone and is also
required to prevent receptor-independent signaling of

the mating pathway [18]. Mpt5 is a member of the Puf
family of RNA-binding proteins. It binds to mRNAs
encoding chromatin modifiers and spindle pole body
components and is involved in longevity, maintenance of
cell wall integrity, and sensitivity to and recovery from
pheromone arrest[19]. Cross-talks of this pathway with
the pheromone signaling pathway may suggest the mech-
anism through which the polar bud growth and the cell
cycle are coordinately regulated.

Functional enrichment analysis of the two pathways
from Gpa1 to Prp39 indicates that they coordinate to reg-
ulate the transitions between pheromone arrest and cell
cycle (Table 2), providing an excellent evidence of the
effectiveness of our method.

Discussion
Pathways play important role in biological systems. How
to predict the pathways computationally is a challenging
important question in the post-genomic era. Given a bio-
logical network, a source and its target, and the gene
expression data, previous studies have proposed different
heuristics and designed different computational methods
to address this question. But it is unclear why these heu-
ristics, e.g. the shortest heuristic[5], the most weighted
heuristic[8,9], the random walk heuristic[10] and the
electric conductance heuristic[11], are related to the
pathway inference. In this study, we introduced dissipa-
tion, saturation and direction to describe the behaviours
of the information flows in the biological pathways and
built a new model. The new method naturally deduced
the shortest heuristic [5] but did not require the prior
information of pathway structure or pathway length. The
predicted pathway was always connected only if the
source and its target are in the same connected compo-
nent in the interactome. Dead ends would no longer
influence the predictions compared to the random-walk-

Figure 4 Pathways between Gpa1 to Prp39 predicted by our 
method. Two pathways are inferred. Pathway 1 is the pheromone sig-
naling pathway identified by both Tu et al.'s method and the informa-
tion flow model. Pathway 2 is identified only by the information flow 
model. It regulates the recovery from the pheromone arrest.

Table 2: Functional enrichment analysis for the pathways from GPA1 to PRP39 identified by IFDSD.

Pathways GO term Corrected P-value Pathway Frequency Genome Frequency

Pathway 1: Pheromone-dependent signal transduction 
during conjugation with cellular fusion

1.0285e-8 4/4, 100% 29/5819, 0.4%

Response to pheromone 7.4146e-7 4/4, 100% 101/5819, 1.7%

Filamentous growth 8.2752e-5 3/4, 75% 105/5819, 1.8%

Cell cycle arrest 8.2752e-5 2/4, 50% 12/5819, 0.2%

Pathway 2 Adaptation to pheromone during 
conjugation with cellular fusion

4.2907e-6 3/4, 75% 15/5819, 0.2%

Negative regulation of signal transduction 2.5475e-5 3/4, 75% 30/5819, 0.5%

Re-entry into mitotic cell cycle after 
pheromone arrest

4.1196e-5 2/4, 50% 3/5819, 0.0%

Negative regulation of cellular process 1.2814e-4 4/4, 100% 290/5819, 4.9%
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based method [10]. And the intermediate nodes in the
predicted pathway always have two or more edges
because the information flow was local in our model
whereas the electric-current-based method would gener-
ate intermediate nodes with one edge because the electric
current is global [11].

Dissipation and saturation are very common phenom-
ena during the signal transmission in the real world
whereas the direction is a basic attribute of information
flows. In the biological systems, these concepts should
still be effective. In fact, the molecular events underlying
cellular processes are subject to random fluctuations [20].
And non-functional interactions of proteins interfere
with the formation of functional specific complexes and
pathways[21]. The random fluctuations and the non-
functional interactions should add noise into the signal
and make the signal decay during the transmission pro-
cess. A series of complicated strategies should be evolved
to evade or even overcome the dissipation in the biologi-
cal systems. The signal transduction cascade may be one
of the strategies [22]. A recent study of the biochemical
reaction networks reveals the structural sources of the
cellular robustness[23]. It should be reasonable and
promising to infer the biological pathways by maximizing
the information flows between the source and its target
with the dissipation constraint.

The saturation phenomenon is obvious in the Internet
because everyone wants his/her bandwidth bigger. In the
biological systems, it may hide behind the heterogeneous
bio-molecules. Each bio-molecule has its specific struc-
ture, specific physic and chemical properties, specific
interactions with other bio-molecules and specific tem-
porospatial patterns. The specificity of a signalling bio-
molecule should determine the type and amount of the
information it could convey. For example, an insulin
receptor can only bind to the insulin molecules and con-
vey the signal coded in the insulin. But a more advanced
cellular order may require the cooperation of many cellu-
lar components besides the downstream of the insulin
receptor. The other parts of the advanced cellular order
would be conveyed through other signalling bio-mole-
cules, which means that saturation happened. Every sig-
nal transduction process is tightly regulated. But the
regulatory order can not be transferred through the same
information channel as the regulated signal. Otherwise
the regulation would fail. This should be another example
of saturation. A third example may be that a transcription
factor has many target genes with different affinities.
When the binding sites of the high-affinity target genes
were occupied by the specific transcription factor itself or
other molecules, it would bind the low-affinity target
genes and regulate the transcription of these genes. Due
to the stochastic nature of the biological systems, the
bindings of high-affinity and low-affinity target genes
may be simultaneous, but the trend would exist.

Dissipation, saturation and direction may provide use-
ful concepts to explore the evolutionary achievements of
the biological pathways. But predicting pathways cor-
rectly depends on the completeness and quality of the
bio-molecule networks heavily. Now only the protein-
protein interactions and protein-DNA interactions are
available genome-widely. The protein-RNA, RNA-RNA,
protein-metabolite and other types of interactions are the
same important as protein-protein and protein-DNA
interactions. The available protein-protein and protein-
DNA interactions data are still far from the ultimate real
interactome, and the dynamic details of the interactions
are unknown.

There are more than thousands of bio-molecules in the
biological networks. This brings forward a big challenge
on the computational ability. The algorithmic drawback
of an effective computational method on small networks
would be magnified dramatically. We formulated our
model as a linear programming problem because there
have been efficient algorithms to solve linear program-
ming problems of thousands of variables and thousands
of constraints. It should consider more dynamic details of
the biological systems to reach the biological reality in the
future when modelling. For example, the enzymatic reac-
tions are described by the Michaelis-Menten kinetics. It
would be more accurate to model by the Michaelis-
Menten equations than by the linear equations.

Conclusions
In this study, we proposed a new information flow based
model with dissipation, saturation and direction to pre-
dict computationally biological pathways from the bio-
logical networks. The model was formulated as a linear
programming question and applied to infer the yeast
MAPK signalling pathways and the genetic regulatory
pathways. The results suggest that our method can pre-
dict the pathways without the prior information about
the pathway structure and pathway length. It can always
guarantee the connectivity of the predicted pathways.
And it does not generate the false "intermediate" nodes.
The precision and recall rates of our method are compa-
rable with the methods that do not satisfy these proper-
ties. It can integrate various types of bio-molecular
interactions. The effectiveness of our method suggests
that dissipation, saturation and direction may provide a
useful framework to model the organization of the bio-
logical systems. The linear programming model should
be a promising tool to mine the huge biological network
dataset in the future.

Methods
The formulation of the information-flow model with 
dissipation, saturation and direction
Given a network G(V,E,D,C,T), where V is the node set, E
is the edge set, D is the dissipation index set, C is the
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capacity set and eij  T denotes the flow direction on eij is
from i to j. Let s be the source and t be the target. We
define four variables Oij, Oji, Iij and Iji for each edge eij. Oij
denotes the output flow of i from i to j. Iij is the input flow
of j from i to j. Oji stands for the output flow of j from j to
i and Iji is the input flow of i from j to i. The approach is
formulated as a linear programming model:

Subject to

where I0 is the total amount of the output flow at the
source node. Cij represents the capacities on the edge eij .
Dij denotes the dissipation index on the edge eij and Dij
refers to the set of interactions with directions, especially
protein-DNA interactions. Formulation (1) illustrates
that the objective is to maximize the received input flow
at the target node. Equations (2) and (3) determine that
the source node only sends information. And equation (4)
ascertains that the target node does not send out any
information flow. Equation (5) shows that the amount of
input flow has to be larger than or equal to the amount of

output flow at each internal node (nodes except the
source and target). Inequalities (6) and (7) require the
flow to be nonnegative. Equation (8) defines that the flow
from i to j is dissipated, that is, only part of the output
flow Oij at i was converted into the input flow Iij at j
according to the dissipation index Dij. Inequality (9) con-
fines the output flow on each edge not exceeding the
capacity limit of that edge. Equation (10) restricts the
flow only along the direction of the edge. The reverse
flow should be zero.

The stochastic searching algorithm to simulate the 
saturation effect
The linear programming model (1)-(10) infers the path-
ways given the source, the target and the whole network
G(V,E,D,C,T), where V is the set of proteins and DNAs, E
is the set of protein-protein interactions and protein-
DNA interactions, D defines the dissipation indix on each
edge, C defines the capacity of each edge, and T defines
the orientations of the interactions. V, E and T can be
easily constructed from the large-scale protein-protein
and protein-DNA interactions. D is defined by the abso-
lute value of correlation coefficients determined by using
the expression values of genes [6,8,10,11]. C can not be
assigned easily because now there is no sufficient experi-
mental information available. We design a stochastic
searching algorithm in this study to bypass the assign-
ment problem of C in practice. The algorithm is
described as follows:

1. For k = 1, set C1 large enough for each edge (e.g. I0),
solve the linear programming model (1)-(10) with
parameters G(V,E,D,C1,T) and get the solution X1 . X1
is a simple path from the source to the target.
2. For k = i(i > 1), randomly select one of the edges of
Xi-1 and denote the selected edge as p. Let Ci = Ci-1, set
the capacity of p as zero and update Ci. Solve the lin-
ear programming model (1)-(10) with parameters
G(V,E,D,Ci,T) and get the solution Xi.
3. Repeat (2) until k reaches the allowable times K.
4. XiL Xk are all simple paths. Assemble XiL Xk will get
a subnet connecting the source and the target. Set the
subnet as the last solution to the original problem
defined by (1)-(10) in which C is unknown.

The idea behind the algorithm is to search the optimal
path at first, then to search the suboptimal paths after
blocking the optimal path, and repeat this procedure. Sat-
uration is simulated through blocking the available paths.
This algorithm is likely to identify the kth optimal path
from the source to the target. The difference lies in the
simulations of saturation through blocking.

Due to the stochastic nature of the algorithm, it will run
several times, e.g. N times, and then half of the solutions

max I jt
j

∑ (1)

O Isk

k

=∑ 0 (2)

I is
i

∑ = 0 (3)

Otj

j
∑ = 0 (4)

I O j sij

i

jk

k
∑ ∑≥ ∀ ≠, (5)

O i jij ≥ ∀0, , (6)

I i jij ≥ ∀0, , (7)

I D O i jij ij ij= ∀, , (8)

O C i jij ij≤ ∀, , (9)

O e Tij ji= ∀ ∈0, (10)
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with the higher objective values are selected as the candi-
date pathways from the source to the target.

There are overall three parameters in this searching
algorithm. The first parameter is I0, which represents the
amount of information flow the source sends out. The
result is independent of the value of I0, as long as it is pos-
itive. In this study we set I0 to be 1. The second parameter
is K, the number of zeros in C, which measures the com-
plexity of the inferred pathways. The larger K is, the more
complicated is the predicted pathway (see Additional File
1: Figure S6). A pathway predicted with a smaller K is
more significant. The pathway predicted with lager K is
more complete and includes the pathway predicted with
the smaller K. The third parameter is N, which represents
the number of repetitions to counteract the random
effect in the stochastic search. The larger N is, the
robuster the prediction is. N is positively related to K. The
larger K is, the larger N should be. Experiments showed
that the solution became quickly stable when N got larger
e.g. 5 in the MAPK pathway inferring where K = 10 (see
Additional File 1: Figure S7). When this method is applied
to reveal the underlying pathways between the given
source and its target, a small K, e.g. 5, and a small N, e.g.
5, should be first tested to reveal the most significant
parts of the pathway.

Significance measurement
To measure the reliability of our method, we compare the
predictions with current knowledge of the yeast MAPK
pathways curated in KEGG [12,24] and the predicted
pathways by Tu et al. from GPA1 to PRP39 [10]. As the
pathways known so far are still incomplete, we further
test the consistence of the gene functions of the predicted
pathways using the biological process annotations in
Gene Ontology (GO) [25]. Gene ontology terms can gen-
erally reflect whether genes belong to the same biological
processes. The probability that genes of the inferred path-
ways have the same function is calculated by a hypergeo-
metric distribution implemented in BinGO [26].
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