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Abstract
Background: Modeling a dynamical biological system is often a difficult task since the a priori unknown parameters of 
such models are not always directly given by the experiments. Despite the lack of experimental quantitative 
knowledge, one can see a dynamical biological system as (i) the combined evolution tendencies (increase or decrease) 
of the biological compound concentrations, and: (ii) the temporal features, such as delays between two concentration 
peaks (i.e. the times when one of the components completes an increase (resp. decrease) phase and starts a decrease 
(resp. increase) phase).

Results: We propose herein a new hybrid modeling framework that follows such biological assumptions. This hybrid 
approach deals with both a qualitative structure of the system and a quantitative structure. From a theoretical 
viewpoint, temporal specifications are expressed as equality or inequality constraints between delay parameters, while 
the qualitative specifications are expressed as an ordered pattern of the concentrations peaks of the components. 
Using this new hybrid framework, the temporal specifications of a biological system can be obtained from incomplete 
experimental data. The model may be processed by a hybrid model-checker (e.g. Phaver) which is able to give some 
new constraints on the delay parameters (e.g. the delay for a given transition is exactly 5 hours after the later peak of a 
gene product concentration). Furthermore, by using a constraint solver on the previous results, it becomes possible to 
get the set of parameters settings which are consistent with given specifications. Such a modeling approach is 
particularly accurate for modeling oscillatory biological behaviors like those observed in the Drosophila circadian 
cycles. The achieved results concerning the parameters of this oscillatory system formally confirm the several previous 
studies made by numerical simulations. Moreover, our analysis makes it possible to propose an automatic investigation 
of the respective impact of per and tim on the circadian cycle.

Conclusions: A new hybrid technique for an automatic formal analysis of biological systems is developed with a 
special emphasis on their oscillatory behaviors. It allows the use of incomplete and empirical biological data.

Background
Usual experimental approaches studying living systems
behaviors focus on various and complementary biological
components e.g. a set of genes that encodes a set of pro-
teins. These components interact together within a net-
work. The set of these interactions can be abstracted in a
gene regulatory network (GRN), which is the major bio-
logical framework for investigating dynamical biological
behaviors (see Fig. 1 for illustration). For long, due to the
large number of unknown biological parameters (i.e.
numerical values of dynamical features related to bio-
chemical reactions), modeling the gene regulatory net-

work behavior was a difficult task. Several approaches try
to overcome the lack of parameters values by proposing
dedicated qualitative modeling approaches (see [1,2] for
overview and [3] for review). They all consider the gene
interaction as the cornerstone to represent a biological
behavior. It summarizes a protein production that acti-
vates or represses the target gene. From a computational
viewpoint, these modeling approaches exploit the struc-
ture of the network (e.g. interlocked feedback loops)
rather than the numerical values of biological compound
concentrations. Among the qualitative modeling tech-
niques, approaches based on Piecewise-Affine Differen-
tial Equations (PADEs) [4] or the René Thomas's
formalism [5] gave astonishing results when applied on
concrete biological systems. As shown in [6,7], these
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techniques correspond to a class of hybrid systems [8] for
which we can apply existing powerful techniques for the
verification and the control of these hybrid systems. In
particular, they permit an automatic investigation of
qualitative properties of the genetic regulatory networks
[9].

In addition to these modeling features, the last decade
saw the emergence of new experimental techniques like
micro-arrays [10] that monitor the gene expressions over
time. It highlights the recurrent biological interest for
biological temporal properties that takes place in all bio-
logical scales. Therefore, a new class of hybrid systems,
dedicated to biological system modeling, must take into
account a new parameter: the time delay. Note that such a
parameter was often neglected before, despite docu-
mented variations of specific products over time. The
time delay represents a unique opportunity to refine
existing qualitative models by showing qualitative prop-
erties that verify experimental temporal constraints.
Conversely, it emphasizes a need for a modeling that
includes both qualitative properties, arisen from the bio-
logical network structure, and delays associated with the
dynamics of genes or gene products. For this purpose, we
propose herein a new hybrid modeling technique. We
aim at providing a novel tool for the biological commu-
nity that allows to directly use the qualitative and partial
temporal experimental data. Obviously, such modeling
does not claim to substitute for existing modelings, but
remains a preliminary approach for investigating complex
biological system. As a major feature, it abstracts the
structure of the network, i.e. positive and negative feed-
back loops, by focusing on the variation of signs of the
gene products following given qualitative behaviors. In
this qualitative abstraction, we add some constraints on
delays for a natural refinement of the qualitative behavior.

This paper introduces such a hybrid modeling tech-
nique. This section highlights connections between our
modeling technique and other state-of-the-art modeling
approaches, and shows the principle of the modeling. The
section methods gives a formal description of the hybrid
modeling approach, with a special emphasis on qualita-
tive and temporal constraints. The theoretical framework
is illustrated on a simplistic system composed of two
genes (Fig. 1). Finally, the section results and discussion
proposes an application of the hybrid modeling on a bio-
logical system of reference: the circadian cycle of Droso-
phila melanogaster. This system is particularly well-
studied for its temporal properties and hence represents a
suitable benchmark for testing our modeling approach
and showing reachable biological insights.

Context and Related Works
Several qualitative modeling approaches, like those using
PADEs [4] or discrete abstractions (either boolean
abstraction [11] or multivalued abstraction [12]), share
similar characteristics but come from different theoreti-
cal backgrounds. Discrete abstractions exclusively focus
on qualitative data (interlocked feedback loops), which
easily lead to determinate parameters values. At the
opposite, PADEs systems qualitatively summarize quanti-
tative information to overcome the estimation of parame-
ters that are difficult to obtain. Recently, many works [13-
15] demonstrate the promising properties of modeling
approaches that incorporate temporal features. Their
theoretical frameworks basically use a qualitative model-
ing that is extended into a hybrid (continuous and dis-
crete) modeling. Among them, Siebert and Bockmayr
[15] resume the Thomas's modeling approach [12] and
add temporal notions when discrete qualitative parame-
ters are known. It is endowed with a delicate refinement
of the discrete dynamics based on temporal parameters.
They consider the interval of delays to go from a level n to
a level n ± 1 for a given variable. Furthermore, they use
timed automation in their modeling which do not allow
to consider evolution speeds different from 1. On the one
hand, this leads to simple and more efficient model-
checking algorithms but, on the other hand, the states
graph they get is more complex since they have to deal
with distinguished variables standing for either positive
or negative or even null evolution rate. Another study
proposed by Batt et al. [14] adapts a timed automata
approach [16] and extends it from boolean to multivalued
discrete states. With their formalism, the authors clearly
distinguish the genes and their products. Each gene is
represented as a boolean function of all the genes prod-
ucts. The genes products are featured by their concentra-
tion discretised levels and their constant evolutions
(positive or negative but never null) is a function of their
gene (active or not). The action of the gene on the con-

Figure 1 A two genes interaction network. Description of a two 
genes (x, y) interaction network. The gene x produces the protein X 
that activates the transcription of genes y. It implies a production of the 
protein Y that represses the transcription of the gene x.
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centration level of its product is delayed according to
given delays intervals. Ahmad et al. [13] build models that
encompass the consecutive and cumulative increasing
and decreasing phases in hybrid automata. Starting from
the discrete states graph emerging from the René Thomas
approach, they replace each state by a "location" featured
by the evolution of all the genes. These authors do not use
delays intervals, thus their delays produce deterministic
trajectories.

Both timed and hybrid modeling approaches use time
intervals in their transitions system, but failed at investi-
gating large networks since the achieved models are
quickly too complex for a standard analysis. Our present
hybrid modeling technique does not arise from an exist-
ing modeling framework. Nevertheless, our model analy-
sis keeps close to the qualitative analysis of a continuous
system. For example, there exists a methodology pro-
posed by [17] that derives a qualitative description from
ODE systems by a study of the derivative signs. There is
also the constraints analysis for large gene regulatory net-
works proposed by Siegel and co-workers [18]. Their
mathematical framework allows to test the compatibility
between differential data and knowledge on interactions
and then to propose a solution when incompatibility is
revealed.

Principle of our Hybrid Modeling
As a major assumption, we consider the biological quali-
tative behavior as the cornerstone of our modeling. By
qualitative behavior, we mean the chronological sequence
of ordered concentration peaks, rather than their actual
concentration values. These peaks have timing properties
as well. The knowledge of these properties emerges from
experiments but remains often partial. We propose to
combine them with the qualitative properties for a better
understanding of the system behaviors (see Fig. 2).

Since we focus on the bioproduct peaks, the discrete
states, that stand for the time phases separating two such
peaks, can be represented by tuples of boolean variables.
Each boolean variable - named derivative sign - depicts
the behavior of a given gene by showing the increasing
time or decreasing time of its protein production. For
illustration, in Fig. 3, we have (x, y) = (+, -) which is,
among others, a state standing for an increase of the con-
centration of the product of x (i.e. corresponding to pro-
tein X) and a decrease of the concentration of the product
of y (i.e. protein Y).

Since we are taking into account discrete states for
which we are not interested in the actual concentration
levels, our hybrid modeling approach does not use the
notion of threshold. In the absence of strong assumptions
about the interactions of the system, we assume that any
interaction can potentially change at any time the deriva-
tive sign of the evolution of the target. At this step, the

model encompasses behaviors that may not actually take
place in the actual executions of the system. They will
now be trimmed using temporal constraints. Indeed, our
hybrid modeling approach takes into account temporal
schedulings, which introduce the notion of time between
two successive peaks, since such schedulings rely upon
the respective durations of the increase or decrease
phases. Thus, it gives some results that are estimations of
times to increase and to decrease for each biological vari-
ables.

The parameters of our hybrid modeling technique
stand for some temporal data in the form of delays, that
are not functions of the discrete states. Thus, each transi-
tion from one discrete state to another one is defined
over a range of delays that build an interval of the possible
values of the actual delays. Hence, the transitions
between the discrete states are not deterministic. For
illustration, in Fig. 2, the increasing time t+x is included in

a given interval [ , ]. The boundaries of these inter-
vals constitute the set of the temporal parameters values
of the hybrid modeling. The number of parameters is

dx
+ Dx

+

Figure 2 An example of concentration variation. Concentration 

variation of a gene x.  (resp. ) represents the maximal de-

creasing delay of x (resp. the minimal decreasing delay of x).  (re-
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Figure 3 An example of partition into discrete states. Concentra-
tion variation of the system depicted in Fig. 1 with Y-concentration for 
dashed curve and X-concentration for other. Such a behavior corre-
sponds to the qualitative cycle (+, -) T (+, +) T (-, +) T (-, -) T (+, -).
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therefore a linear function of the number of variables
used in the system. Notice that the number of parameters
being quite small, it allows to investigate large gene regu-
latory networks.

Furthermore, by specifying qualitative dynamics, one
may obtain parametric results. They correspond to the
constraints between the values of the delay parameters of
the system. Because the transitions of the hybrid model-
ing are not deterministic, these parametric results are
necessary but not sufficient conditions.

Results and Discussion
Implementation and Use
The TEM framework presented in this paper was imple-
mented in a software under the name "GUI-TEM" [Addi-
tional file 1: Fig. 2] shows the GUI of this tool) with
CeCILL license (French free software license compatible
with the GNU GPL) and it is available with its manual on
request http://sites.google.com/site/jonathanfromentin/
logiciels. The program, written in Java, is multi-platform
and provides via its graphic interface, a user friendly tool
for analyzing biological models with no specific exper-
tises of the underlying model-checkers (i.e. HyTech [19]
or PHAVer [20]). The protocol to model a given biological
system using the TEM approach is the following:

1. Find out the relevant variables of the system (genes
and proteins) and their respective interactions.
2. Build the untrimmed TEM via an automatic con-
struction using "GUI-TEM".
3. Provide the known timing specifications (i.e. spe-
cific temporal constraints resulting from TEM model
such as the structural constraints).
4. Provide the qualitative behavior to be analyzed (i.e.
the known chronological sequence of ordered con-
centration peaks).
5. Analyze and get the results as timing constraints.

Drosophila Circadian Cycle TEM
The originality of our hybrid modeling approach mainly
lies in the use of temporal constraints. Biological models
may be separated in two classes. Some models focus on
equilibrium behaviors, whereas others point out the
oscillatory behaviors of the components. Due to their
sensitivity to the parameters estimations, the second class
of models tends to be uneasy to analyze. Among them,
the most-studied system for its temporal properties is the
circadian cycle. A circadian cycle is an oscillation with a
period of approximately 24 hours. The complex biologi-
cal processes underlying this natural rhythm - which
takes place in a wide range of organisms - can be summa-
rized by a set of interactions between specific genes. Sev-
eral models describe the circadian clock of Drosophila
cells using Ordinary Differential Equations. Among them,
the one proposed by Leloup and Goldbeter [21] shows a

particular accuracy with experimental knowledge (i.e.
amplitude of oscillations, time series of mRNA and pro-
tein concentrations). For all these features, we consider
the model of the drosophila circadian clock as an accu-
rate benchmarking for testing our modeling approach.
Based on biological assumptions of Leloup and Gold-
beter, and following the above protocol, we build the IRS
corresponding to the circadian clock model (see Fig.
4(a)). Nevertheless, this model does not exploit in a
proper manner the few constraints supplied in the article
of Leloup and Goldbeter [21]. Indeed, their biological
assumptions mainly deal with the whole concentration of
protein PER (Pt) and the whole concentration of protein
TIM (Tt), that are not represented as distinct biological
components in the IRS. Since the biological components
PER0 (resp. unphosphorylated protein TIM), PER1 (resp.
monophosphorylated protein TIM) and PER2 (resp. bis-
phosphorylated protein TIM) correspond to a simple
phosphoric chain reaction that leads to the complexation
of proteins PER (resp. TIM), we consider this chain as a
single biological compound that abstracts all forms of
PER proteins (resp. TIM - see Fig. 4 for details). From
these assumptions, we obtain an IRS (depicted in Fig.
4(b)), that leads to a qualitative graph composed of 64
discrete states and 284 discrete transitions (see supple-
mentary materials for details). This model is then auto-
matically analyzed with GUI-TEM.

Analyzing the Circadian Constraints
By nature, the circadian clock system provides oscilla-
tions over a 24 hours period. Hence, we analyzed at first
elementary circadian cycle where variables MP and MT
are in phase and stand for one high peak and one low
peak. This cycle is (+, +, ...) T* (-, -, ...) T* (+, +, ...), with T*
describing a finite sequence of discrete transitions (where
the first variable is MP and the second variable is MT
(other variables are not specified and can take any value)).
Furthermore, each discrete transition is related to a set of
temporal properties.

Secondly, following the Leloup and Goldbeter assump-
tions [21], we chose to analyze a period close to 24 hours
in conditions of constant darkness. We thus add a clock
named hperiod, initially null in the discrete state (+, +) and
finally at 24 in the same discrete state. We also take into
account temporal biological constraints similar to those
formulated in the Leloup and Goldbeter study [21]:

• A high peak of CN occurs 5 hours after the high
peaks of MP and MT. It implies from a modeling view-
point, trimming the TEM by adding -- on the guard of
the discrete transition corresponding to the high peak
of CN -- the conditions sign(MP) = - and sign(MT) = -
(i.e. the later peaks of MP and MT were high peaks),

http://sites.google.com/site/jonathanfromentin/logiciels
http://sites.google.com/site/jonathanfromentin/logiciels
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and the conditions  = 5 and  = 5 (i.e. the
delay to execute the transition is exactly 5 hours after
the later peaks of MP and MT).
• High peaks of Pt and Tt occur 3 hours after the high
peaks of MP and MT. It implies from a modeling view-
point, trimming again the TEM by adding -- on the
guard of the discrete transition corresponding to the
high peak of Pt or Tt -- the conditions sign(MP) = - and
sign(MT) = - (i.e. the later peaks of MP and MT were

high peaks), and the conditions  = 3 and  = 3
(i.e. the delay to execute the transition is exactly 3
hours after the later peaks of MP and MT).

These model specifications imply three constraints that
are necessary for the existence of such a cycle:

The set of constraints shows several features. First, the
constraints (cl) are interpreted as follow: the high peak of
CN comes 5 hours after the high peak of MP and MT, so
the decreasing of MP and MT must be able to hold on at
least 5 hours. In the opposite, the low peaks of MP and MT

would come before the high peak of CN. Secondly, the
combination of (cl) and (c2) shows that, after the peak of
CN, the decreasing of MP and MT must hold on a delay
shorter than the decreasing delay of CN. Thus, for an
accurate circadian cycle, the specifications of Leloup and
Golbeter imply that the low peaks of MP and MT precede
the low peak of CN (see Fig. 5). Finally, (c3) clearly exhibits
a linkage between the periods of MP and MT. Since, the
decrease of MP impacts the period of MT and, conversely,
the decrease of MT impacts the period of MP.

Beyond this general analysis of the hybrid model, fur-
ther investigations are possible when one focuses on a
cycle of interest like those given in [21]. In this purpose,
we indicate the exact occurrence of the concentration
peaks of MP and MT. It gives place to four distinct cycles
and related constraints, summarized in Table 1, that rep-
resent a qualitative variation (i.e. succession of peaks) of
the biological products. For each constraints, there exists
one disjunction (in the form A|B, see [Additional file 1])
that emphasizes two distinct regions allowing the exis-
tence of the cycles. It means that there are two different
sets of possible runs leading to the given dynamical
behavior. One of them is less constrained (i.e. the term A
is less stressed). This particular region is the one that
occurs in the larger set of possible runs. It is, hence,
potentially more informative. First, Table 1 shows that

hMP
hMT

hMP
hMT

D D

D d D d

D D d

M M

C M C M

M M

P T

N P N T

P P

− −

− − −

+ −

≥ ≥

≥ − ≥ −

+ ≥

5 5 1

5 5 2

and c

and c

( )

( )

MM M M MT T T P
D D d− + − −+ ≥

⎧

⎨
⎪⎪

⎩
⎪
⎪ and c( )3

Figure 4 Interaction and Reaction Systems (IRS) for the Leloup and Goldbeter's model. Interaction and Reaction Systems for the Leloup and 
Goldbeter's model where the labeled arrows are interactions (positive (+) or negative (-)) and where the non-labeled arrows are reactions. The left 
part represents the IRS. The right part represents the IRS after simplification where Pt and Tt stand for the total of proteins PER and TIM, as used in our 
analysis.

nuclear PER-TIM
complex (CN )

tim mRNA (MT )

per mRNA (MP )

TIM0 (T0)

PER0 (P0)

TIM1 (T1)

PER1 (P1)

TIM2 (T2)

PER2 (P2)

PER-TIM
complex (C)

(a)

−

−

+

+

nuclear PER-TIM
complex (CN )

tim mRNA (MT )

per mRNA (MP )

TIM (Tt)

PER (Pt)

PER-TIM
complex (C)

(b)

−

−

+

+



Fromentin et al. BMC Systems Biology 2010, 4:79
http://www.biomedcentral.com/1752-0509/4/79

Page 6 of 11
only the constraints (c3) are different between the four
cycles. These new constraints (c3) are stronger (i.e. more

restrictive) since  is bounded by  instead of

 + , or  bounded by  instead of 

+ . Secondly, Table 1 shows that only the occur-
rences order of the low peaks of MP and MT is consequen-
tial, since the cycles (1) and (2) give the same constraints
(and respectively the cycles (3) and (4)). If the low peak of
MP precedes the low peak of MT, then the decreasing
delay of MP must be shorter (or identical) than the
decreasing delay of MT (see Fig. 6). Similarly, if the low
peak of MT precedes the low peak of MP then the decreas-
ing delay of MT must be shorter (or identical) than the
decreasing delay of MP. All these constraints are consis-
tent with the simulations obtained from the literature.

Towards Biological Insights
The previous constraints take place in all simulations and
we propose to discuss here their biological meanings.

First of all, all above constraints focus on decreasing
activities of biological components only. The parameters
of greater impact are thus related with the degradations
or the repressions. It emphasizes their huge impact on the
circadian dynamical behavior. In particular, this result is
highly important for setting kinetic parameters of contin-
uous models as modeled by Leloup and Goldbeter [21].

(c1) shows that the longest decreasing delays of per and
tim mRNA must not be shorter than five hours.

(c2) indicates that the longest delay to degrade the com-
plex in the nucleus, plus five hours, must not be shorter
than the shorter decrease of per and tim mRNA. The
combination of both constraints implies a per and tim
mRNA productions anterior to the complex production
in the nucleus (c.f. Fig. 5). This fact is biologically obvi-
ous, but was not part of the initial TEM parameters con-
straints (i.e. initial biological assumptions). Therefore, it
shows an elementary consistency of our model with basic
biological knowledge. Furthermore, it indicates that the
used biological assumptions are sufficient enough to
describe other biological features, that one may call bio-
logical artefacts inherent to the model.

Another result concerns the PER TIM complexation.
Both proteins form a complex that represses per and tim
genes in the nucleus. For theoretical reasons mentioned
above, TEM do not abstract such a biological process.
The complex compound is hence built using two distinct
reactions (i.e. instead of a complexation that must deal
with the stoechiometry). Interestingly, TEM analysis
exhibits the constraint (c3) that refers to the period of
both tim and per mRNA (i.e. sum of delays associated
with the increase and the decrease). The tim and per
periods are respectively constrained by the shorter
decreasing delay for per mRNA and tim mRNA. These
constraints clearly state of the impact of PER and TIM on
each other: both genes and their products are bound
linked by their period, despite the lack of actual complex-
ation in our model. Moreover, it emphasizes that such
coupled behaviors are driven by the two negative feed-
back loops of CN instead of the complex itself.

Each qualitative cycle mentioned in Table 1 implies
temporal constraints. The cycles (1) and (2) in this table
must satisfy one: the longest decreasing delay of tim
mRNA must not be shorter than the shorter decrease of
per mRNA. Similarly, the cycles (3) and (4) exist when the
longest decreasing delay of per mRNA is not shorter than
the shorter decrease of tim mRNA. These constraints
relies on the phase synchronicity of the per and tim
mRNA. They show that these mRNA degradation rates
drive the qualitative scheduling of high peaks over time.
For illustration, whatever the scheduling of tim and per
mRNA high peaks is, a degradation of tim longer than
that of per mRNA implies a low peak of tim mRNA after
that of per mRNA (see Fig. 6). Once again, the degrada-
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tion appears as one of the key factors to control the quali-
tative oscillatory behaviors.

Limitations
The major limitation of TEM relies on the limits of the
model-checker itself. For practical purposes, the memory
space used for the transitions and states recording is high
and can not exceed more than a few ten thousand units.
Future theoretical developments may overcome these
limitations. Pending, we propose practical solutions that
reduce the size of the hybrid models:

• Consider only a single delay instead of an interval of
delays.
• Consider only the clocks and delays of the relevant
variables. Thus, only the discrete dynamics of non-
pertinent variables are kept. Tautologies on the
guards and the invariants may be used instead of con-
ditions on these delays.

Computational limitations may be overcome by using
platforms of computing, as GenoCluster (see the site
http://www.genouest.org), that provides distributed
reachability algorithms [22].

Conclusion
We presented here a subclass of Linear Hybrid Automata,
named Temporal Evolution Model (TEM). This approach
is an accurate first step for modeling living systems with
incomplete knowledges. It takes into account (i) a qualita-
tive description of the signs of derivatives, and (ii) the
quantitative temporal properties associated with biologi-
cal productions. These two particular knowledges are
notably essential to describe biological behaviors over
time, as observed in recent experimental approaches.
Thus, based on our hybrid modeling, a qualitative valida-
tion of a model consists in finding a peaks scheduling that
is consistent with experiments. In addition, TEM pro-
vides the opportunity to reason automatically on the tem-
poral properties that are associated with the peaks
scheduling. It thus gives a natural refinement of the qual-
itative validation by showing necessary constraints on
delays to achieve a specific qualitative transition, like
those observed in the oscillatory behaviors.

In comparison with the other biological hybrid model-
ings, TEM needs less parameters. The qualitative behav-
iors are represented only using an interaction system that

Table 1: Qualitative cycles of interest where T* describes a sequence of discrete transitions and where the first variable is 
MP and the second variable is MT (other variables are not specified and can take any value).

Cycle ID Qualitative Cycle Necessary constraints

1 (+, +, ...) T* (+, -, ...) T* (-, -, ...) T* (+, -, ...) T* (+, +, ...)

2 (+, +, ...) T* (-, +, ...) T* (-, -, ...) T* (+, -, ...) T* (+, +, ...)

3 (+, +, ...) T* (+, -, ...) T* (-, -, ...) T* (-, +, ...) T* (+, +, ...)

4 (+, +, ...) T* (-, +, ...) T* (-, -, ...) T* (-, +, ...) T* (+, +, ...)
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focuses on the derivative sign variation. This abstraction
implies the lost of precise quantitative description (as
provided by qualitative thresholds in PADEs), while it
allows as well the modeling of larger systems.

We illustrated the potential of our hybrid modeling by
the investigation of the Drosophila circadian model. The
modeling results are consistent with previous simulations
and the literature [21]. These results did not require the
parameter settings in a arbitrary way. The investigation of
the Drosophila circadian model illustrates the dual per-
spective that comes from our approach: (i) helping exper-
imental biologists by showing the consequences of their
assumptions and (ii) leading modelers to refine their
models by trimming unnecessary parameters.

Methods
Interaction and Reaction System
We describe a nonlinear dynamical system as being an
interaction and reaction system, called IRS, that is
defined as follows:

Definition 1 (Interaction and Reaction System
(IRS)) An interaction and reaction system (IRS) is a tuple
(V, I, R) where

• V is a finite set of biological components.
• I  V × α × V is a finite set of interactions labelled
with α  {+, -} that is the sign of the interaction. (υ, α,
υ')  I is therefore the interaction of υ on υ', called acti-
vation if α = + and inhibition otherwise.
• R  V × V is a finite set of reactions. (υ, υ')  R is
therefore the reaction of υ moving into υ'.

Notice that the positive auto-regulations (i.e. interac-
tions in the form (υ, +, υ)) have no impact on the hybrid
model, since such interactions do not change their signs
of derivatives. For example, in Fig. 1, the interaction and
reaction system is  = (V, I, R) such that V = {x, y}, I =
{(x, + y), (y, -, x)} and R = ?. Notice again that the expres-
siveness of such a system is not limited by this elementary
syntax. For example, a reaction (υ, υ') that requires the
presence (respectively the absence) of a component υ" not
consumed, can be represented by the reaction (υ, υ') and
the interaction (υ", +, υ') (respectively (υ", -, υ')). Further-
more, there is at least two way to represent a notion of
complexation. The first way represents the complex such
as a variable of the system. For example, if the compo-
nents υ and υ' form a complex that acts positively on υ"
then the system provides the reactions (υ, υυ'), (υ', υυ') and
the interaction (υυ', +, υ"). The second (and less precise)
way duplicates the interactions and reactions for each
component of the complex. Thus, following the example
shown above, the reactions of the system become (υ, υ")
and (υ', υ").

Timed Model Design
Based on the previous definition of Interaction and Reac-
tion Systems, we build Temporal Evolution Models
(TEM), which are a subclass of the Linear Hybrid Autom-
ata (LHA).

Nevertheless, for practical concerns, we will later write
TEM systems as hybrid automata, since we want to
achieve parametric model-checking analysis (with tools
as HyTech [19] or PHAVer [20]). Up to our knowledge,
currently, there are no such tools available for analysing
parametric timed automata.

Given a set of variables X, let C(X) be the set of con-
junctions of constraints in the form of x  c with x  X, c

 ? and   (≤, =, ≥}.
Definition 2 (Temporal Evolution Model (TEM)) A

Temporal Evolution Model (TEM) is a tuple  = (L, l0, H,
E, Inv) where

• L = {(s1,...,sn) | si  {+, -}} is a finite set of discrete
states (discrete states) and n is the number of vari-
ables.
• l0  L is the initial discrete state.
• H is a finite set of real-valued variables (i.e. the
clocks of the system with derivative wrt. time equal to
1).
• E  L × C(H) × 2H × L is a finite set of edges. (1, μ, P,
l')  E is therefore the transition from the discrete state
l to the discrete state l', with the guard μ and the set P
of clocks to be reset upon transition firing.
• Inv  C(H)L maps an invariant to each discrete state.

For the running example, we get the following TEM, as
represented in Fig. 7.

P

D

Figure 6 Gene product concentration variations for the TEM of a 
specific cycle. Gene product concentration variations for the TEM of 
the circadian cycle shown in Fig. 4(b), in accordance with the first qual-
itative cycle in Table 1. Thus, since the low peak of MP precedes the low 
peak of MT, then the decreasing delay of MP must be shorter than the 
decreasing delay of MT (i.e. α <β).

0 times

concentration

α

β

MP

MT

CN
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• L = {(+, +), (-, +), (-, -), (+, -)},
• l0 = (+, -) (arbitrarily chosen, since we focus our
modeling application on the oscillatory behaviors, all
discrete states are good candidates for a starting dis-
crete state.),
• H = {hx, hy},
•

 and
•

.
The dynamics of the hybrid system are depicted

according to both discrete and continuous features that
are explained below.
Discrete structure (meaning of the discrete states and 
transitions)
The discrete structure of the TEM is represented by the
finite set of discrete states. Let l = (s1,...,sn) be a discrete
state with n the number of variables and si  {+, -} the sign
of the derivative of xi. Thus, for each variable x, there are
two possible sign values that may be either + (which
means that x products an activity currently increasing) or
- (which means that x products an activity currently
decreasing), and the cardinality of the set of all the possi-
ble discrete states is 2n. We are mainly interested in the

time spent in each discrete state where the evolution of
each variable stays unchanged. For example in Fig. 1, the
discrete state (+, -) shows that x increases while y
decreases.

The transition from one discrete state to another, is a
discrete transition labelled with a guard μ such as h ≥ p,
where h is a clock and p a parameter of the hybrid system.
A discrete transition stands for a concentration peak of a
variable. Thus, the finite set of discrete transitions
describes the qualitative dynamics of the system.
Continuous structure (chronometric parameterization)
The continuous structure of the TEM is represented by a
set of continuous states. A continuous state is defined as a
discrete state l together with a tuple of real-valued clocks
ν = (h1,...,hn). Such clocks evolve with the time. Their evo-

lutions are defined by  and they are constrained

by invariants. The clock of a specific discrete state must
always verify the invariants of this discrete state. Invari-
ants are conjunctions of constraints, such as h ≤ p where
h is a clock and p is a parameter of the hybrid modeling.
For example, the invariant of a discrete state (s1,..., sn) is

Both guards and invariants are constraining clocks. For

example, if the invariant of the discrete state l is 

and the guard from l to l' is , then the system
stays in l during a delay that belongs to the interval

[ ] before it reaches l'. Consequently, each vari-
able x is associated with 4 parameters that are the bound-

aries of two delay intervals: [ , ] meaning a delay
interval where x activity increases and, respectively,

[ ] where x activity decreases. Fig. 8 shows such
parameters with the gene product concentration varia-
tions. According to the TEM building, we have, for each

variable x, the following structural constraint: 0 ≤  ≤

 with α  {+, -}.
Building the set of Discrete Transitions from an IRS
At first, we assume that a discrete transition can take
place only for at most one switch of variable (at a given
time). A discrete transition can exist between two dis-
crete states l = (s1,...,sn) and l' = (s'1,...,s'n) if (?j such that sj ≠
s'j. and ?k ≠ j, sk = s'k). Thus, the rules for building the dis-
crete transitions from the IRS are the following:

• A reaction (xi, xj) such that si ≠ sj implies a discrete

transition (l, hj ≥ , hj  0, l').

E h d h h d hx x x y y y= + + ≥ ← − + − + ≥ ← −+ +{(( , ),{ },{ },( , ))(( , ),{ },{ },( ,0 0 −− − −

← + − + − ≥ ←− −

)),(( , ),

},{ },( , )),(( , ),{ },{ },d h h d hx x y y y0 0 (( , ))}+ +

Inv h D h D h D h Dx x y y x x y y= + + ≤ ≤ − + ≤ ≤ − −+ + − +{(( , ),{ , }),(( , ),{ , }),(( , )),{ ,

}),(( , ),{ , })}

h D

D h D h D

x x

y x x y y

≤

+ − ≤ ≤

−

− + −

dh
dt

i = 1

i n
i i

sh D i

∈
∧ ≤
[ , ]

.
1

h Di xi
≤ a

h di xi
≥ a

d Dx xi i
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dx
+ Dx

+

d Dx x
− −,

dx
a

Dx
a

dx
s

j

j

Figure 7 An example of Temporal Evolution Model (TEM). TEM of 
the network shown in Fig. 1. For each discrete state (like (+, +)), there is 

a constraint called invariant (hx ≤  &hy ≤  for (+, +)). For each 

discrete transition (like (+, +)  (-, +)), there is both a reset of a clock (hx 

 0 for (+, +)  (-, +)) and a constraint called guard (hx ≥  for (+, +)  

(-, +)).
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• A reaction (xi, xj) such that si = + implies a discrete

transition (l, hi ≥ , hi  0, l').

• An interaction (xi, +, xj) such that si ≠ sj implies a dis-

crete transition (l, hj ≥ , hj  0, l').

• An interaction (xi, -, xj) such that si = sj implies a dis-

crete transition (l, hj ≥ , hj  0, l').

Runs of a TEM
Definition 3 (Runs of a TEM) Any run of a TEM (L, l0,
H, E, Inv) is an infinite sequence of alternating discrete
and timed transitions where

• a discrete transition (l, ν) T (l', ν') takes place if and
only if ?(l, γ, P, l')  E such that the guard γ is true for
the value ν (γ(ν) = true); we keep the value ν of x,
except after a reset (ν'(x) = ν(x) if x  R and 0 other-
wise); and the invariant must be true in the target dis-
crete state (Inv(l') (ν') = true).

• and a timed transition takes place with
a clock valuation function ν' = ν + t if and only if ?t' 
[0, t], Inv(l)(ν + t) = true.

For example, let 7 and 12 be the initial values of the
clocks x and y. Thus, ((+, +), (7,12)) is the initial continu-

ous state of the TEM in Fig. 7. After a delay of  - 7, it
becomes possible to go in the discrete state (-, +) since

the guard (hx ≥ ) of the discrete transition ((+, +), ( ,

 + 5)) T ((-, +), (0,  + 5)) is evaluated to true. From

this initial continuous state, it is also possible to stay in

the discrete state (+, +) during a maximal delay of  - 7.

In the discrete state (+, +), the value  of the first clock
is the latest delay so that the discrete transition ((+, +),

( ,  + 5)) T ((-, +), (0,  + 5)) may be fired and

the invariant hx ≤  be not violated.

Major Features of the TEM
Time between two Concentration Peaks
The minimal (respectively maximal) time between two
concentration peaks of the same variable x is directly

given by the parameters ,  (respectively , )
or a linear expression of these parameters.

Furthermore, the time between a peak p of a variable x
and a peak p' of another variable may be given by the
clock hx if hx is not reset during this time (because of the
occurrence of another peak of x). Hence, the temporal
constraints, which have to be checked, are in the guard of
the discrete transition which coincides with the peak p'.

In a most general way, it is possible to use a new clock
for the time elapsing between two peaks. The discrete
transition, which stands for the peak p, has to reset the
clock and the guard of the discrete transition, associated
with the peak p', contains the temporal constraints.
Equilibrium State
By nature, this hybrid modeling is particularly suitable for
describing oscillatory dynamics. For this reason, we do
not consider null variation signs representing the perfect
equilibrium state. The only times where a sign of evolu-
tion is null, coincides with a peak of concentration (i.e. a
discrete transition). Nonetheless, from the biological
point of view, our modeling framework assumes an equi-
librium state by the following abstractions:

• an equilibrium state can be viewed as an oscillation
with an extremely weak amplitude.
• In one discrete state (s0,...,sn), a concentration speed
can be extremely or asymptotically slow. To deal with

such a case, we write ?i,  = +∞. This interpreta-
tion is necessary for a modeled system where discrete
states without outgoing discrete transition may be
reached.
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