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Abstract

Background: Complex diseases, such as Type 2 Diabetes, are generally caused by multiple factors, which hamper
effective drug discovery. To combat these diseases, combination regimens or combination drugs provide an
alternative way, and are becoming the standard of treatment for complex diseases. However, most of existing
combination drugs are developed based on clinical experience or test-and-trial strategy, which are not only time
consuming but also expensive.

Results: In this paper, we presented a novel network-based systems biology approach to identify effective drug
combinations by exploiting high throughput data. We assumed that a subnetwork or pathway will be affected in
the networked cellular system after a drug is administrated. Therefore, the affected subnetwork can be used to
assess the drug’s overall effect, and thereby help to identify effective drug combinations by comparing the
subnetworks affected by individual drugs with that by the combination drug. In this work, we first constructed a
molecular interaction network by integrating protein interactions, protein-DNA interactions, and signaling
pathways. A new model was then developed to detect subnetworks affected by drugs. Furthermore, we proposed
a new score to evaluate the overall effect of one drug by taking into account both efficacy and side-effects. As a
pilot study we applied the proposed method to identify effective combinations of drugs used to treat Type 2
Diabetes. Our method detected the combination of Metformin and Rosiglitazone, which is actually Avandamet, a

drug that has been successfully used to treat Type 2 Diabetes.

Conclusions: The results on real biological data demonstrate the effectiveness and efficiency of the proposed
method, which can not only detect effective cocktail combination of drugs in an accurate manner but also
significantly reduce expensive and tedious trial-and-error experiments.

Background

A cellular system is a complex molecular network in
which proteins, DNAs, metabolites and other small
molecules interact with each other, so that the cellular
machine functions properly [1]. A subsystem or even
the whole system will be affected if one or several com-
ponents are influenced by genetic or epigenetic factors,
which is manifested in diseases. In general, many dis-
eases result from multiple genetic and environment
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factors, and cause severe dysfunction of some cellular
components, which can be exemplified by cancer and
Type 2 Diabetes. To restore the individuals with such
diseases, agents that can intervene different disease fac-
tors simultaneously are highly demanded. In the past
decades, one-target one-drug paradigm has been the
dominating drug discovery approach [2,3], which leads
to many drugs marketed but cannot treat certain com-
plex diseases sufficiently. Furthermore, if such a drug is
administered over a long time, some mutations in
patients may take place and therefore trigger drug resis-
tance. On the other hand, the possibility of developing
drug resistance will be reduced greatly if several drugs
are administered simultaneously, and such an effect can
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be seen in the cocktail treatment for HIV infection. In
other words, it is possible to discover new drugs if the
marketed drugs are combined in an appropriate way.
Since the combination drugs are based on approved sin-
gle drugs, the combination drugs will be safe with less
adverse reactions and have shown promising potential
for new drug discovery. In fact, it has been a long his-
tory to use combination drugs for treating diseases and
reducing suffering. For example, the Traditional Chinese
Medicines (TCM), especially herbal medicines, which
can be viewed as the combinations of multiple com-
pounds with synergy effects, have been used for thou-
sands of years [4]. Recently, with the development of
medicine science and pharmacology industry, combina-
tion drug is becoming the standard of care for many
complex diseases. As a result, some methods have been
proposed to identify effective drug combinations. These
methods can be grouped into two classes, i.e. computa-
tion based methods and experiment based methods.
When a drug with different dosage is administered, an
organism may respond differently and therefore the effi-
cacy of this drug may manifest differently. The dose-
response relationship is generally represented as a dose-
response curve, in which response is usually measured
as the percentage of the inhibited cell’s growth rate or
the percentage of cells that are killed by the drug. Dose-
response curve is the common basis for computation
based methods to identify effective drug combinations.
With dose-response curve in hand, one can define the
null model to describe the relationship between dose
and response of the combination drug whose members
have no interaction. Finally, based on the comparison
between the predicted dose-response curve of the null
model and a real dose-response curve of combination
drugs, synergism, additive and antagonism between
drugs can be defined accordingly. For instance, under
the assumption that two inhibitors acting on a target
through similar mechanisms, Loewe proposed an addi-
tivity model to predict the combined effect of two inhi-
bitors [5]. In this model, the combined effect of two
inhibitors are defined as an implicit function [CL]/[[;] +
[CL])/[1,], where [I;] and [I,] are the concentrations of
drugs 1 and 2 respectively, with which drug 1 or 2 alone
can inhibit a target by a specified percentage. [CI;] and
[CI,] are the amount of inhibitors 1 and 2 used in the
combination drug which inhibits target activity as the
same as single inhibitors 1 and 2. Based on this func-
tion, synergy, additive and antagonism are defined
respectively, where [CI1]/[I;] + [CL,]/[I,] > 1 implies
synergy, [CL]/[I1] + [CL]/[I,] = 1 implies additive effect,
and [CL]/[I1] + [CL])/[I,] < 1 corresponds to antagonism
[6]. By assuming that two inhibitors act through inde-
pendent mechanisms, Bliss proposed another null model
to define combined effect of two inhibitors [7]. In this
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model, the combined effect of two inhibitors is pre-
dicted as the multiplication of single inhibitors’s effect
and represented as the union of two probabilistically
independent events [6]. Recently, many researchers have
devoted themselves to extend these two models to com-
putationally search effective drug combinations [6].
Based on mass action law, Chou and Talalay unified all
existing models and proposed a general model to define
combined effect of multiple drugs [4]. In the model, a
median-effect equation was defined to describe dose-
effect relationship and a Combination Index (CI), i.e.

n
n(CI)x:ZJ_:l(D)]. /(Dx)j,, was proposed to quantify

synergism or antagonism. In the formula, (D,); is the
dose with which the j-th drug “alone” can inhibit a sys-
tem by x% and ((D);, ..., (D),) is the dose vector with
which drug combination can inhibit a system by x% .

On the other hand, some important combination
drugs have been discovered by experiments. For exam-
ple, Agrawal et al. found a combination drug for treating
Huntington disease based on experiments in Drosophila
[8]. Since combination drug is becoming the standard of
care, there are many papers describing clinical rules
about how to combine 2-3 drugs [9]. These rules are all
from clinical experience or randomized clinical trials
and have been used clinically to treat cancer, Type 2
Diabetes, bacterial, Huntington disease, and so on [10].
Compared with the computation based methods, these
experiment based methods are more reliable and can be
applied to treat patients more directly. But the combina-
tion drugs identified by this kind of methods are only
composed of 2-3 frequently used drugs due to the lim-
itation of experiment resources, thereby limiting the
space of possible combination drugs and missing many
potential combination drugs. Under the circumstance, a
high-throughput screening method was recently pro-
posed to identify effective combinations of therapeutic
compounds [11]. In [10,12], two stochastic search algo-
rithms were developed to identify effective combinations
of drugs. In these two methods, biological response
information such as the percentage of cancerous cells
being killed was utilized to detect an appropriate solu-
tion, i.e. proper dose of each drug. In [13], based on the
data quantifying the the effect of single drugs over indi-
vidual strains, a minimal hitting set based method was
proposed to identify drug combinations that can have
putative effective response to heterogeneous population
of malignant agents.

Although above mentioned methods identified many
effective drug combinations, there still exists much
room to be improved. For example, the methods men-
tioned above except clinical experience based methods
did not consider side effect of drugs explicitly or
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sufficiently while searching or evaluating drug combina-
tions. A good drug combination should have less side
effect but more efficacy. Another limitation of existing
methods is that they are blackbox-like methods to some
extent, and thereby makes it difficult to explain why the
drugs work. That is, it is largely unknown why the iden-
tified combination of drugs works while other combina-
tions not.

Inspired by rapid progress of high throughput technol-
ogy and recent research works about systems biology,
we proposed a novel network-based method to identify
effective drug combinations based on gene expression
data of individual drugs. In particular, we constructed a
background molecular interaction network, and predict
gene expression profile of one combination drug based
on microarray data of individual drugs with a new com-
putational scheme. Furthermore, we developed a new
integer programming model to identify pathways or sub-
networks affected by single drugs or combination drug
from the background network by exploiting gene
expression data. Moreover, we designed a score by tak-
ing into account efficacy and side-effect based on the
identified subnetworks affected by drugs, and quantita-
tively evaluate all possible combinations of drugs and
identify the best candidates of combination drugs. As a
pilot study, we applied the method to identify effective
combinations of drugs used to treat Type 2 Diabetes.
The results on real biological data demonstrate the
effectiveness and efficiency of the proposed method,
which can not only detect effective cocktail combination
of drugs in an accurate manner but also significantly
reduce expensive and tedious trial-and-error experi-
ments. In addition, the proposed approach can be used
to computationally predict the gene expression profiles
generated under multiple perturbations based on the
gene expression profiles by individual perturbations.

Results and discussions

In this part, we applied our method to Type 2 Diabetes
mellitus, which is one of leading complex diseases that
threat the health of human beings worldwide [14]. It is
defined by the abnormal high blood glucose level which
causes profound metabolic dysfunction. Although some
drugs have been approved by American Food and Drug
Administration(FDA) to cure it, most of them have only
single target and cannot cure this complex disease effec-
tively and sufficiently. In this paper, we applied our
method to identify effective drug combinations for treat-
ing Type 2 Diabetes.

In the data set used here, there are six approved drugs
for Type 2 Diabetes with available microarray data, i.e.
Metformin, Phenformin, Chlorpropamide, Tolbutamide,
Rosiglitazone, and Troglitazone. Since two targets of
Troglitazone are not included in the background
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network, we use the other five drugs, i.e. Metformin,
Phenformin, Chlorpropamide, Tolbutamide and Rosigli-
tazone for the drug combination prediction and test.
Metformin was approved in 1994 to treat Type 2
Diabetes. It works by decreasing hepatic gluconeogen-
esis. Rosiglitazone was approved in 1999. It works by
improving insulin sensitivity. Several years ago, the com-
bination of Metformin and Rosiglitazone, i.e. Avanda-
met, was approved to treat Type 2 Diabetes. Compared
with Metformin or Rosiglitazone clinically, Avandamet
can improve glycemic control, insulin sensitivity without
new tolerability issues in some populations under cer-
tain circumstances [15-19]. In this paper, we intend to
elucidate the mechanism underlying Avandamet and
investigate why it works better than Rosiglitazone or
Metformin, based on the proposed computational
method. In addition, we also aim to identify other
potential effective drug combinations based on our
method.

Prediction of effective drug combinations for Type 2
diabetes

There are some Type 2 diabetes related genes that have
been identified by Genome Association Analysis, such as
those deposited in OMIM database [20,21]. On the
other hand, several methods have been proposed to pre-
dict disease related genes based on differential gene
expression information. In [22], six computational meth-
ods were integrated to predict Type 2 diabetes related
genes. To assess the efficacy of drugs, we used the genes
predicted by at least five methods for Type 2 Diabetes
from the supporting information of [22]. Subsequently,
the list of Type 2 diabetes related genes obtained from
OMIM database and the list from [22] were merged. Of
the genes in the merged list, 54 genes exist in our
background network. These 54 genes constitute the
reference set of Type 2 Diabetes related genes. On the
other hand, to assess the side-effect of drugs, we used
the essential genes which are defined to be the orthologs
of essential genes found in mouse, and the list of essen-
tial genes in the mouse were obtained from MGI
(http://www.informatics.jax.org/).

Since there are no gene expression data treated with
drug combinations, gene expression profiles caused by
them were predicted based on gene expression data
treated with single drugs as described in section 5.2.
Subsequently, the subnetworks affected by single
drugs and the drug combinations were identified. The
five single drugs can make up ten possible 2th-
order combinations, that is, Rosiglitzone& Tolbutamide,
Rosiglitazone&Chlorpropamide, Rosiglitazone&-
Phenformin, Tolbutamide&Chlorpropamide, Tolbutami-
de&Chlorpropamide, Tolbutamide& Phenformin,
Tolbutamide&Metformin, Chlorpropamide&Phenformin,
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Table 1 Prediction of drug combinations
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Combination Drug Score of Combination Drug

Scores of Individual Drugs Prediction Results

Ros&Met 0.247611 (0.213158, 0.113546) +
Ros&Chl 0.219065 (0.213158, 0.173858) +
Ros&Tol 0.158606 (0.213158, 0.014646) _
Ros&Phe 0.158969 (0.213158, 0.163439) _
Tol&Chl 0.084770 (0.014646, 0.173868) _
Tol&Phe 0.082675 (0.014646, 0.173868) _
Tol&Met 0.084520 (0.014646, 0.163439) _
Chl&Phe 0.161848 (0.173868, 0.163439) _
Chl&Met 0.145706 (0.173868, 0.113546) _
Phe&Met 0.117798 (0.163439, 0.113546)

Prediction of drug combinations, in which Ros, Tol, Chl, Phe and Met are the abbreviations of Rosiglitazone, Tolbutamide, Chlopropamide, Phenformin and
Metformin respectively. + and _ denote effective combination and noneffective combination respectively. The scores listed in the table were obtained by setting

A to 0.5.

Chlorpropamide& Metformin, Phenformin&Metformin,
and Metformin&Rosiglitazone. We used the proposed
method to identify which of them are effective drug com-
binations. As shown in Table 1, according to the compari-
son of scores of subnetworks affected by drug
combinations over those of single drugs, Rosiglitazone&-
Chlorpropamide and Metformin&Rosiglitazone were iden-
tified as effective drug combinations, which have higher
scores than those of individual drugs. Actually, Metfor-
min&Rosiglitazone is Avandamet, which is an approved
combination drug, thereby verifying the effectiveness of
the proposed method. Figure 1 shows the scores of Avan-
damet, Metformin and Rosiglitazone in detail for different
A. In addition, the prediction for the combination of Rosi-
glitazone&Chlorpropamide is also reasonable because
Rosiglitazone and Chlorpropamide works by different
mechanisms. Rosiglitazone works by increasing insulin
action while Chlorpropamide works by increasing insulin
secretion. Therefore, it may work better when they are
used in combination. Of course, this prediction needs to
be further verified clinically in experiment on populations.
On the other hand, the other eight combinations were
predicted as ineffective drug combinations. Their ineffec-
tiveness also need verified clinically or experimentally.

As a demonstrated example, subnetworks affected by
Avandamet, Metformin and Rosiglitazone were shown
in Figure 2, Figure 3, and Figure 4. In the subnetwork
affected by Avandamet (combination drug), 16 Type 2
Diabetes related genes are included, and are listed in
Table 2. Table 2 also lists 7 Type 2 Diabetes related
genes affected by Metformin, and 12 such genes affected
by Rosiglitazone. With close examination of Table 2, we
found that most of the disease related genes in the sub-
networks affected by Metformin or Rosiglitazone are
also in the subnetwork affected by Avandamet, which
explains why Avandamet (combination drug) outper-
forms Rosiglitazone or Metformin to some extent. On
the other hand, the number of essential innocent genes

in the three identified subnetworks are 271, 266, and
242 respectively, which explain why Avandamet will not
introduce new tolerability issues to some extent. To
quantitatively measure the advantage of Avandamet over
Rosiglitazone or Metformin based on the identified sub-
networks, the three subnetworks were evaluated by
scheme (14). It is worth noting that scheme (14) is the
function of parameter A, which was introduced to bal-
ance the measure for efficacy and side effect. Therefore,
we changed A from zero to one while investigating
scores of the three identified subnetworks. When A was
varied from zero to one by 0.05, the objective value for
given A was recorded. Fig. 1 gives scores of three sub-
networks corresponding to three drugs when increasing
the parameter A from zero to one. It can be seen from
the figure that scores of Avandamet are always higher
than that of Rosiglitazone or Metformin regardless of
the parameter A, which agrees with the clinical conclu-
sion very well. The results show that our method can
successfully identify effective combination drug, i.e.
Avandamet, which demonstrates the efficiency of the
proposed method and also proves the necessity to
understand working mechanism of drugs from perspec-
tives of systems biology.

Assessment of the predicted drug combinations for
biological relevance

The prediction of drug combinations in this paper is
mainly based on the affected subnetworks of drugs. It is
difficult to assess biological relevance of drug-affected
subnetworks since there is no objective criterion or gold
standard to define it. Here, we performed functional
enrichment analysis to evaluate biological relevance of
subnetworks affected by drugs empirically. As an exam-
ple, the GO term [23] and KEGG pathway [24] enrich-
ment analysis were performed with hypergeometric test
on genes involved in subnetworks affected by Avanda-
met, Metformin, and Rosiglitazone respectively through
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Figure 1 The scores of three subnetworks The figure gives the scores of subnetwork affected by Avandamet, Metformin, and Rosiglitazone
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Figure 2 Subnetwork affected by Avandamet, where nodes with triangle shape, nodes with green color, and nodes with red color denote
drug target, disease gene, and essential gene, respectively.
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drug target, disease gene, and essential gene, respectively.
.

Figure 3 Subnetwork affected by Metformin, where nodes with triangle shape, nodes with green color, and nodes with red color denote

DAVID online web server [25], where the whole gen-
ome was used as background. The full list of enriched
GO terms and KEGG pathways on the three subnet-
works can be found in Additional file 1, 2, 3, 4, 5, 6.
Since there are many overlaps for enriched terms and
pathways among the three subnetworks, we only list the
representative GO terms and KEGG pathways enriched
in the subnetwork affected by Avandamet in Tables 3
and 4 respectively. It can be seen that the enriched GO

terms can be grouped into four categories. The first
class is composed of GO terms about response to stimu-
lus, which is reasonable since the drug behaves as sti-
mulus when it is administered. The second class of
enriched GO terms involve many diverse and funda-
mental biological processes, such as transcription, meta-
bolic, and so on. This gives hints that the drug may
have comprehensive effect on the cellular system. How-
ever, the exact mechanism is still not clear and needs to

drug target, disease gene, and essential gene, respectively.
.

Figure 4 Subnetwork affected by Rosiglitazone, where nodes with triangle shape, nodes with green color, and nodes with red color denote
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Table 2 Type 2 Diabetes related genes affected

Gene symbol Corresponding protein name Ros&Met Met Ros
TCF4 Transcription factor 7-like 2 Yes No Yes
MAPKSIP1 C-jun-amino-terminal kinase-interacting protein 1 Yes No Yes
NEUROD1 Neurogenic differentiation factor 1 Yes No Yes
HNF4A Hepatocyte nuclear factor 4-alpha Yes No No
IRST Insulin receptor substrate 1 Yes No Yes
IRS2 Insulin receptor substrate 2 No Yes No
AKT2 RAC-beta serine/threonine-protein kinase No Yes No
AXL Protein AXL2 Yes No Yes
ERBB2 Receptor tyrosine-protein kinase erbB-2 Yes No Yes
PCSK2 Neuroendocrine convertase 2 Yes No Yes
RBP4 Retinol-binding protein 4 Yes No Yes
SLC8AT Sodium/calcium exchanger 1 Yes No Yes
IKBKAP Elongator complex protein 1 Yes No No
SMARCA4 Probable global transcription activator SNF2L4 Yes Yes No
PMP22 Peripheral myelin protein 22 Yes Yes No
CSFIR Macrophage colony-stimulating factor 1 receptor Yes Yes Yes
RAGT V(D)J recombination-activating protein 1 Yes Yes Yes
PLCET 1-phosphatidylinositol-4,5-bisphosphate phosphodiesterase epsilon-1 Yes Yes No
SHCT SHC-transforming protein 1 No No Yes

Type 2 Diabetes related genes affected by Ros&Met, Rosiglitazone and Metformin.

Table 3 Representative enriched GO terms

ID Term P-value
0042221 response to chemical stimulus 2.74E-6
0048878 chemical homeostasis 1.94E-4
0030154 cell differentiation 1.80E-34
0012501 programmed cell death 2.19E-20
0006915 apoptosis 3.95E-20
0006796 phosphate metabolic process 8.27E-19
0043687 post-translational protein modification 1.07E-18
0009893 positive regulation of metabolic process 7.68E-17
0045449 regulation of transcription 2.33E-10
0050793 regulation of developmental process 1.17E-7
0008284 positive regulation of cell proliferation 2.26E-7
0051049 regulation of transport 7.59E-5
0007243 protein kinase cascade 2.74E-18
0007169 transmembrane receptor protein tyrosine kinase signaling pathway 297E-18
0000165 MAPKKK cascade 1.93E-11
0016055 Wnt receptor signaling pathway 3.52E-5
0007249 I-kappaB kinase/NF-kappaB cascade 3.28E-4
0008286 insulin receptor signaling pathway 8.26E-4
002026 regulation of the force of heart contraction 2.22E-4
0001525 angiogenesis 5.32E-4
0001568 blood vessel development 0.0015
0001944 vasculature development 0.002
0048514 blood vessel morphogenesis 0.003

Representative enriched GO terms on the subnetwork affected by Avandamet.
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Table 4 Representative enriched KEGG Pathways

ID Term P-value
hsa04010 MAPK signaling pathway 3.16E-11
hsa04012 ErbB signaling pathway 6.97E-9
hhsa04660 T cell receptor signaling pathway 4.33E-6
hsa04310 Wnt signaling pathway 9.34E-6
hsa04664 Fc epsilon RI signaling pathway 244E-4
hsa04910 Insulin signaling pathway 0.006

hsa05220 Chronic myeloid leukemia 1.57E-9
hsa05212 Pancreatic cancer 844E-7
hsa05215 Prostate cancer 1.59E-5
hsa05210 Colorectal cancer 3.95E-5
hsa05222 Small cell lung cancer 5.57E-5

Representative enriched KEGG Pathways on the subnetwork affected by
Avandamet.

be elucidated by biologist in future. Furthermore, some
well known signaling pathways constitute the third class
of terms. This is reasonable to consider that Type 2 Dia-
betes has close relations with signaling. Therefore, inter-
fering such signaling events may contribute to the cure
of disease when drugs are administered. For example,
Wnhnt signaling pathway is enriched in the subnetwork. A
resent research shows that Wnt signalling pathway that
is involved in normal pancreatic development is closely
related to Type 2 diabetes [26]. The enrichment of these
signaling pathways demonstrates the biological relevance
of the identified subnetwork and effectiveness of our
method to some extent. The last class of enriched terms
involve biological processes about heart contraction and
blood vessel. The toxicity description of Rosiglitazone in
the Drugbank database [27,28] (http://www.drugbank.ca/
drugs/DB00412) is that its side effects include fluid
retention, congestive heart failure (CHF), liver disease.
With further examination, we found that 13 genes in
the subnetwork affected by Avandamet are related to
heart contraction, where six genes are essential genes.
At the same time, 11 genes in the subnetwork affected
by Rosiglitazone are related to heart contraction, where
six genes are essential genes. Therefore, the enriched
terms about heart contraction can be linked to the side
effect of congestive heart failure (CHF) of Rosiglitazone
and the active component of Rosiglitazone in Avanda-
met. In future, the reason underlying the enrichment of
heart contraction related terms in the subnetwork
affected by Metformin needs to be exploited in clinic.
As for the enriched KEGG pathways, they can be further
grouped into two classes. Not surprisingly, signaling
pathways, such as insulin signaling pathway constitute
the first classes. Taken together, the GO term and
KEGG pathway enrichment analysis demonstrates the
biological relevance of identified subnetworks and the
effectiveness of our method.
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Conclusions and discussions

Due to the complexity nature of many diseases and ever
rising drug resistance, drug combination is becoming
the standard of care for many complex diseases. In this
paper, we presented a new method to identify effective
drug combinations. Different from existing methods, the
proposed method aims to identify effective drug combi-
nations from the perspective of network or systems biol-
ogy. The main idea is that subnetworks affected by the
administrated drug can be used as surrogates of overall
impact brought by the drug. Keeping this in mind, we
can compare the efficacy & side effect of the combina-
tion drug with those of single drugs by comparing their
corresponding affected subnetworks. Especially, the pro-
blem of identifying subnetworks affected by one drug
including a combination drug was formulated into an
integer programming model and solved by relaxing it to
a linear programming model. Furthermore, we defined
efficacy or side effect respectively by using the differen-
tial expression of disease genes and essential genes
under study. A new score scheme that considers efficacy
and side effect simultaneously was defined and used to
evaluate candidate subnetworks and identify effective
drug combinations. The pilot study on identifying com-
bination of drugs used to treat Type 2 Diabetes shows
that our method can successfully identify the approved
combination drug, i.e. Metformin&Rosiglitazone, and a
potential combination, i.e. Rosiglitazone&Chlopropa-
mide, which demonstrates the predictive power of the
proposed method. Furthermore, the results show that
the subnetworks identified by our model can indeed be
used as surrogates of impact brought by drug. The
results also demonstrate that the proposed method com-
plement existing methods very well. For example, our
method can identify putative drug combinations quickly
and provide guidelines for further clinical test. In this
work, we only applied our method to Type 2 Diabetes.
In the future, to verify the reasonableness and demon-
strate its power extensively, we will apply our proposed
method to identify possible effective drug combinations
for treating other complex diseases, such as cancer.
Despite the success of the proposed method, we noticed
that there are still some issues that affect its perfor-
mance and hamper its further application. Firstly, there
are few expression data treated with combination drug
available in public right now. We developed a method
to predict the gene expression variation caused by a
combination drug and used it to identify subnetworks
affected by the combination drug. However, it is possi-
ble that there exists a gap between real data and pre-
dicted one, which will affect the performance of our
method. We believe that the performance of our
method will be boosted accordingly if the expression
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data treated with combination drug are available. Sec-
ondly, the list of disease genes is far from complete and
additional disease related genes need to be found. On
the other hand, the side effect in this work is defined
based on those essential genes which have no relation to
any diseases, whereas there are no unified definition of
essential genes and the list of essential genes may be
incomplete. Therefore, the proposed score based on dis-
ease genes and essential genes may be biased. Thirdly,
when the method of predicting gene expression profile
was used to predict expression profile caused by 3th-
order or higher order combinations, expression ratio of
some genes may take negative value, which needs to be
modified during computation. In near future work, we
will modify our method to predict gene expression pro-
files caused by higher order drug combinations.
Fourthly, the indiction of drug usually includes rough
descriptions about drug’s side effect, such as headache
and so on. How to find the rough set of genes corre-
sponding to side effect and integrate this information
into the subnetwork identification model will be consid-
ered in the future.

Methods

The idea behind the proposed method is that a subnet-
work or pathway will be affected in the cellular system
after a drug is administrated. Therefore, the affected
subnetwork can be used to assess the drug’s overall
effect, and thereby help to identify effective drug combi-
nations by comparing the subnetworks affected by indi-
vidual drugs with that by combination drug. Therefore,
an integer programming model is presented to detect
subnetworks affected by drugs from a background mole-
cular interaction network that is constructed by inte-
grating protein interactions, protein-DNA interactions,
and signaling pathways. Figure 5 shows the flowchart of
our method. The details are addressed in the following.

Constructing background molecular interaction network

In this paper, protein-protein interactions, protein-DNA
interactions and signaling pathways were integrated and
used to construct a molecular interaction network.
The protein-protein interaction(PPI) data were down-
loaded from the HPRD database(2008, HPRD_
Release_7_09012007 version), where the self-interactions
and reduplicate interactions were removed. Subse-
quently, only interactions that were verified by at least
two experimental methods were reserved. As a result,
9707 interactions were extracted which involve 4707
proteins (genes). Note that we treat gene and its product
as the same hereafter. Protein-DNA interaction data
were downloaded from TRED database [29], including
1273 Protein-DNA interactions in Homo sapiens. We
also obtained signaling pathway data from the
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supporting information of [30]. These three data sets
were integrated into one molecular interaction network
that involves 5893 genes and 11726 interactions. How-
ever, only 4455 genes among these 5993 genes were
expressed in the microarray data, which were involved
in 7927 interactions. The 4455 genes and 7927 interac-
tions among them form the intermediate network. Since
some components do not connect with each other in
the network, the biggest weakly connected component
was used as the final background molecular interaction
network. The background network is composed of 3644
genes with 7731 interactions.

Predicting gene expression profiles treated with drug
combination

Before assessing the effectiveness of a combination drug,
in this subsection we present a new approach to predict
gene expression profile treated with the combination
drug based on the microarray data treated with indivi-
dual drugs. The microarray data set was downloaded
from the Gene Expression Omnibus (GEO) database
[31,32] with the accession number GSE5258. It was ori-
ginally created by Lamb et al to identify gene expression
signatures that can characterize the variation caused by
perturbations [33]. In the data set, many U.S. Food and
drug Administration(FDA) approved drugs were used to
perturb a cell line and corresponding gene expression
data were obtained. At the same time, gene expression
data of cell lines cultured with vehicle were used as
control.

There are several microarray platforms such as GPL96
and GPL3921 were represented in the data set
GSE5258. Therefore, after downloaded the raw data
from GEO, the expression values of probes of each sam-
ple were transformed into expression data of genes
based on the probe-gene mapping of the platform by
which the sample was conducted. In detail, the average
expression value of different probes corresponding to
the same gene was defined as the expression value of
that gene. Further, several gene symbols are pseudo,
which can be exemplified by HSPAIA /// HSPAIB.
They were formed by combining several true gene sym-
bols. Given this, the expression value of a specified gene
was set to be the mean of expression value of gene sym-
bols that is the same as it or include it. Subsequently,
batch with ID 2 and batch with ID 2a were merged into
a new batch. Batches composed of samples perturbed by
one single drug and their control samples were
removed. To avoid the bias brought by difference in cell
line used, in a batch, only samples conducted on cell
line MCF7 were used further. Besides, in a batch, a case
with a specified dose of drug may correspond to several
controls, which makes it difficult to compare the expres-
sion change of genes in an accurate way. We define a
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Identify Effective Drug Combination

Figure 5 Flowchart of our method Flowchart to identify effective combination drugs from high-throughput data.

new single control with its expression value set to the
arithmetic mean of expression values of individual con-
trols. Furthermore, one cell line may be perturbed by a
specified dose of drugs several times in a batch. In this
case, the gene expression data treated with the specified
dose of drug were defined as the mean of expression
data of individual cases, and the same for controls.
Finally, if there are multiple batches that include the
sample perturbed by a specified drug with specified
dose, the gene expression data treated with the dose of
drug were defined as the mean of expression data of
individual case in each batch, and the same for controls.

Since there are no ready-to-use gene expression data
treated with drug combination in the data set, we need
to predict the gene expression profile caused by drug
combination, based on the gene profiles treated with

individual drugs. Under perturbations by the combina-
tion of several drugs, the expression value of the i-th
gene can be represented mathematically as a function of
drug doses, i.e. f* (y1, ..., ¥), where y; is the dose of the
j-th drug. Based on Taylor expansion, if the value of y;,

e {1, ..., n} is near zero,fi (¥1, -+ ¥») can be approxi-
mated by
; ; o (0,...,0 o (0,...,0
F ) =1 (0,04 L0 O(00), (g
2 Yy

where f* (0, ..., 0) is the expression value of gene i
without any drug perturbation (or control case) and d f* /
0y ; is the partial derivative of f “ony ; - Therefore, the
ratio of expression value of the i-th gene perturbed with #
drugs over that of the i-th gene in the control case can be
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represented by

where £/ (0, ..., 0) = 0. For the case of individual drugs
or perturbations, the ratio of expression value of the i-th
gene perturbed only with y; = d; dose of the j-th drug
over that in the control case can be expressed by

(o,...,d;,...,0 i d.
f ( : j ):1+8f (9,...,0) ] 3)
f'(o,...,0) M f'(o,...,0)
Substituting I(0....,0) - L of (2) with
d9;  f(0,...,0)

f(0..dj,0) T

—-1) — of (3), the ratio of expression

f(0,...,0) d;
value of the i-th gene perturbed by # drugs simulta-
neously with new dose vector (y4, ..., ¥,,) over that with-

out drug can be represented further by F

F Q) S0 o S Ondy)
£(0,...,0)

It is worth noting that the above expression is based
on the assumption that all experiments start with the
same initial value (i.e. the same control case f* (0, ...,
0)) . However, in the biological experiments, it is not
easy to ensure such conditions. For example, each case
corresponds to its own control in the data set GSE5258.
Therefore, we approximately represent this relation of
the i-th gene as

Fi=I=1+(£—1)ﬁ+...+(&—
c ¢ 4 C

1)2—" @)

n n

where T is the expression value of the i-th gene in the
case treated with combination drug with dose vector (y;,
... ¥u), and C is the expression value of the i-th gene in
the control. Similarly, T; and C; are the expression value
of the i-th gene in the case treated with d; dose of the j-
th drug and that of the corresponding control respec-
tively. Clearly, (4) alleviates the problem with unidentical
initial conditions by using the ratios.

On the other hand, the saturation or nonlinear effect
should be considered when multiple drugs induce or
repress the expression of the i-th gene simultaneously.
Therefore, the representation described by equation (4)
should be modified by considering such a nonlinear
effect. The ratio of the i-th gene’s expression value trea-
ted with the combination drug over that in the control
is defined as follows:
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H T )4l 1 Yn H Tl Tn
max{min[(1+(Z-1)4],...,1+(=2-1)42)),0}, ifall=L,...,22<1
G 4 Co dy G n
T T bl T, Y, . T
—amax{(1+(Z-1)2),...,1+(=L2-1) 1)}, ifall =X,...,—>1
C Cl dl Cn dn Cl Cn
1+(£_1)h+__.+(£_1)yfﬂ, Otherwise
Cl dl Cn dn

With such a scheme, we can predict the gene expres-
sion profiles of multiple perturbations or a combination
drug, based on the gene expression profiles of individual
perturbations.

Identifying subnetworks affected by drug

When a drug is administered, the cellular system will be
perturbed, where the target molecules, e.g. genes are
first affected and the effect may subsequently propagate
through the networked system. As a consequence, a
subnetwork connecting the target molecules will be
affected significantly and lead to dysfuntion of the sys-
tem. In other words, a subnetwork of genes rather than
isolated genes are affected by a drug. With this in mind,
we develop a new method to identify the subnetwork
affected by drugs. In our work, a molecular interaction
network is represented as a graph G = (V, E, W), where
V represents the set of molecules or nodes, E represents
the set of interactions between nodes, and W is the set
of weights defined by the differential expression change
of genes. In detail, the weight of gene i is defined as

T
w; =|IogEl |, where T; is the expression value of gene i
i

in a case sample and C; is the one in a control sample.
The subnetwork affected by drug can be seen as a sub-
network consisting of genes that differentially expressed
significantly before and after drug administration. With
the weighted graph generated above, the task therefore
becomes into looking for an maximum-score subnet-
work. In literature, there are some approaches to identi-
fying subnetworks or pathways under specific conditions
[34-42]. In this work, we introduce a new network flow
model to find the maximum-score subnetwork. The net-
work flow model was originally proposed by Lee and
Dooly to model a constrained maximum-weighted con-
nected graph that finds maximum-score subnetworks of
size R with a fixed root node [43]. In this case, drug
combinations have multiple targets, which are all needed
to be included in the subnetwork to be found. There-
fore, a dummy node, namely a drug node, and addi-
tional constraints are introduced into the original
model. The model is formulated as follows:

max

1
{xi,Zil} Q_ﬁZieuwixi (5)
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subject to

Zjenzsf =R ©)
Zjevzji_z:kez’;zik:l’ ieH (7)
Z],E&Zji_zke{jzik:xi: ey (8)

D Zi<(R-K)x, eV ©)
jev
Zsie{l,...,R—K+1}, jeH (10)
Zije {0,1,...,R_K}, i,jEV (11)
x;=1, ieH (12)
x;e {0,1}, iey (13)
where S denotes dummy node, H = {H},H,, ..., Hk}
is the set of K drug targets,

V=V-H,H=HU{S},U V=V-H,H=HU{S},U is the
operator of union for two sets, and | V] is the number of
elements of V. Binary variable x; (x; € {0,1}) denotes
whether the i-th gene is included in the subnetwork.
The number of units of flow from the i-th gene to the j-
th gene is signified by Z;;. Furthermore, all the con-
straints introduced aim to ensure a connected subnet-
work with R nodes. In detail, constraint (6) means that
there are R units of flow entering the set of targets. The
constraint also aims to select R genes for the subnet-
work. The constraints (7) and (8) mean that one unit of
flow will leave the network if one gene is selected. The
constraint (9) is to ensure that there exists a path link-
ing dummy node and the selected node. Finally, the

_— 1 M e
objective function —— w;x;, , which is similar to Z
i=1

JR

score, is defined to find a subnetwork with overall
weight as large as possible.

Due to the NP-hard nature of this integer program-
ming model, we relax it to a linear programming model
in practice. The solution of the linear programming is
obtained by an open source software glpsol.exe. Due to
the relaxation, non-zero entries in variable x in solution
will define the final identified subnetwork. Therefore,
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the size of it may be higher than R more or less.
Theoretically, we should solve different models with
R varies from 1 to |V] and find the subnetwork with the
maximum score. However, one drug can just affect a
subset of genes in the network by taking into account
side-effect. Therefore, we assume that R is at most as
large as 10% of the number of nodes in the network. On
the other hand, to ensure the connectivity of the identi-
fied subnetwork, the lower bound of R is set to the
number of nodes in the shortest paths between different
drug targets. Finally, the subnetworks with the maxi-
mum score will be identified as the subnetwork affected
by the drug.

Evaluating affected subnetworks and identifying effective
drug combinations

When a drug is administered, it will affect disease
related genes and cause expression changes at transcrip-
tion level. Therefore, the weights of disease related
genes can reflect the degree of effect to some extent,
and are used by our method to define the efficacy of
drugs. On the other hand, drug will also affect other
“innocent” genes due to the connectivity and complexity
of a cellular system. If the affected “innocent” genes are
essential genes, side effect may manifest. Therefore, the
weights of essential genes in the subnetwork that have
no relation with the disease under study are utilized to
define the side effect of drugs. Clearly, one good drug
should maximize efficacy and minimize side effect,
which however are always in conflict and need to be
balanced. In this work, the two terms are balanced by a
parameter A, and an evaluation scheme for one drug is
formulated as follows:

\WA W-
Sefle%_(l_l) ZieED !

DI W
i€ BD eV

where SD denotes the set of disease genes in the sub-
network affected by a drug, BD is the set of disease
genes in the background network, and ED denotes the
set of essential genes in the subnetwork that have no
relation with the disease under study. It can be seen
that the first term actually represents efficacy while the
second one represents side-effect. Therefore, the
balanced score S, ccan reflect the overall effect of the
target drug efficiently. The subnetworks affected by both
single drug and combination drug can be evaluated by
the score defined above. If the score for a subnetwork
affected by certain combination of drugs is higher than
that of any member drugs, we conclude that the drug
combination is effective.

(14)
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Additional file 1: Enriched GO terms on the subnetwork affected by
Avandametin this file, enriched GO terms in subnetwork affected by
Avandamet were listed.

Additional file 2: Enriched GO terms on the subnetwork affected by
Metforminin this file, enriched GO terms in subnetwork affected by
Metformin were listed.

Additional file 3: Enriched GO terms on the subnetwork affected by
Rosiglitazoneln this file, enriched GO terms in subnetwork affected by
Rosiglitazone were listed.

Additional file 4: Enriched KEGG pathways on the subnetwork
affected by Avandametin this file, enriched GO terms in subnetwork
affected by Avandamet were listed.

Additional file 5: Enriched KEGG pathways on the subnetwork
affected by Metforminin this file, enriched GO terms in subnetwork
affected by Metformin were listed.

Additional file 6: Enriched KEGG pathways on the subnetwork
affected by Rosiglitazoneln this file, enriched GO terms in subnetwork
affected by Rosiglitazone were listed.
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