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Abstract

Background: The investigation of network dynamics is a major issue in systems and synthetic biology. One of the
essential steps in a dynamics investigation is the parameter estimation in the model that expresses biological
phenomena. Indeed, various techniques for parameter optimization have been devised and implemented in both
free and commercial software. While the computational time for parameter estimation has been greatly reduced,
due to improvements in calculation algorithms and the advent of high performance computers, the accuracy of
parameter estimation has not been addressed.

Results: We propose a new approach for parameter optimization by using differential elimination, to estimate
kinetic parameter values with a high degree of accuracy. First, we utilize differential elimination, which is an
algebraic approach for rewriting a system of differential equations into another equivalent system, to derive the
constraints between kinetic parameters from differential equations. Second, we estimate the kinetic parameters
introducing these constraints into an objective function, in addition to the error function of the square difference
between the measured and estimated data, in the standard parameter optimization method. To evaluate the ability
of our method, we performed a simulation study by using the objective function with and without the newly
developed constraints: the parameters in two models of linear and non-linear equations, under the assumption
that only one molecule in each model can be measured, were estimated by using a genetic algorithm (GA) and
particle swarm optimization (PSO). As a result, the introduction of new constraints was dramatically effective: the
GA and PSO with new constraints could successfully estimate the kinetic parameters in the simulated models, with
a high degree of accuracy, while the conventional GA and PSO methods without them frequently failed.

Conclusions: The introduction of new constraints in an objective function by using differential elimination resulted
in the drastic improvement of the estimation accuracy in parameter optimization methods. The performance of our
approach was illustrated by simulations of the parameter optimization for two models of linear and non-linear
equations, which included unmeasured molecules, by two types of optimization techniques. As a result, our
method is a promising development in parameter optimization.
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Background
The investigation of network dynamics is a major issue
in systems and synthetic biology [1]. In general, a net-
work model for describing the kinetics of constituent
molecules is first constructed with reference to the
biological knowledge, and then the model is mathemati-
cally expressed by differential equations, based on the
chemical reactions underlying the kinetics. Finally, the
kinetic parameters in the model are estimated by var-
ious parameter optimization techniques [2], from the
time-series data measured for the constituent molecules.
While the computational time for parameter estimation
has been greatly reduced, due to the improvement in
calculation algorithms and the advent of high perfor-
mance computers, the accurate numerical estimation of
parameter values for a given model remains a limiting
step. Indeed, the parameter values estimated by various
optimization techniques are frequently quite variable,
due to the conditions for parameter estimation, such as
the initial values. In particular, we cannot always obtain
the data measured for all of the constituent molecules,
due to limitations of measurement techniques and ethi-
cal constraints. In this case, one of the issues we should
resolve is that the parameters are estimated from the
data for only some of the constituent molecules. Unfor-
tunately, it is quite difficult to estimate the parameters
in such a network model including unmeasured
variables.
Boulier and his colleagues developed differential elimi-

nation [3], derived from the Roselfeld-Gröbner base [4].
Differential elimination rewrites a system of original differ-
ential equations into an equivalent system. The rewriting
feature was applied to solve the parameter optimization
issue, especially in network dynamics including unmea-
sured variables [3,5], and in the applications, the equations
rewritten by differential elimination were utilized to esti-
mate the initial values for the parameter optimization, by
Newton-type numerical optimization.
Here, we propose a new method for optimizing the

parameters, by using differential elimination [3]. Our
method partially utilizes a technique from a previous
study [3], regarding the introduction of differential elimi-
nation into parameter optimization in a network including
unmeasured variables. Instead of using differential elimi-
nation for estimating the initial values for the following
parameter optimization, the equations derived by differen-
tial elimination are directly introduced as the constraints
into the objective function for the parameter optimization.
To validate the effectiveness of the constraint introduction,
we performed simulations in two models of linear and
nonlinear differential equations, where we assumed that
the data for only one molecule among them were mea-
sured, by using two kinds of evolutionary optimization

techniques. The accuracy of the parameter values
estimated by the objective functions with and without the
new constraints was compared. Finally, we discussed mer-
its and pitfalls of our method in terms of its extension to
more realistic and complex models.

Results
We first describe a perspective of our method, and then
the two models are analyzed to illustrate its perfor-
mance. The two models were chosen from representa-
tive kinetic models for biological phenomena at the
molecular level: one model (Model 1) is composed of
two variables, analogous to molecular binding and disso-
ciation, such as affinity binding in an antibody cross-
link, and the other model (Model 2) is composed of
four variables, analogous to a molecular reaction cas-
cade, such as phosphorylation in signal transduction.
Notably, we assumed that only one variable is measured
among the variables in the two models.

Overview of present method
The key point of this study is the introduction of new
constraints obtained by differential elimination into the
objective function, to improve the parameter accuracy.
Following an explanation of differential elimination, the
method of introducing the constraints is briefly
described.
Differential algebra aims at studying differential

equations from a purely algebraic point of view [6,7].
Differential elimination theory is a sub theory of differ-
ential algebra [3], based on Rosenfeld-Gröbner [4]. The
differential elimination rewrites the inputted system of
differential equations to another equivalent system
according to ranking (order of terms). Here, we provide
an example of differential elimination, as shown below,
according to Boulier [3,5].
Assume a model of two variables, x1 and x2, in Fig. 1,

which is described by the following system of parametric
ordinary differential equations,
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where k12, k21, ke and Ve are some constants. Here,
two molecules are assumed to bind according to
Michaelis-Menten kinetics. The differential elimination
then produces the following two equations equivalent to
the above system.
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When we define the left sides of the above system as
C1,t and C2,t, C2,t is composed of x1, its derivatives, and
the parameters obtained by eliminating x2, and C1,t is
composed of x1, its derivatives, the parameters and x2.
Note that x2 in C1,t can be expressed by x1, its deriva-
tives and the parameters in C2,t. Then, the values of C1,t

and C2,t can be calculated, if we have time-series data of
x1, and they would be zero, if all parameters were
exactly estimated. Thus, C1,t and C2,t can be regarded as
a kind of error function that expresses the difference
between the measured and estimated data.
In general, the typical objective function for evaluating

the reproducibility of an experimentally measured time-
series for a parameter set is the total relative error, E.
The parameter set is then estimated when the total rela-
tive error falls below a given threshold. However, the
immense searching space of parameter values frequently

hinders correct parameter estimation. To overcome this
problem, we introduce the constraint between the
estimate obtained by differential elimination (DE con-
straints), C, into the objective function, i.e.,

OF E C= + − ( )1 (3),

where a is a weighting factor, which is approximately
estimated by Pareto optimal solutions for E and C, and
then is manually modified (see details in Methods).

Model 1
We analyzed a network model for the binding and disso-
ciation of two molecules (Figure 2A). According to the
kinetics of the model (see also Methods), the reference
curve of one variable, xAB, was generated (Figure 2B), and
two optimization techniques, genetic algorithm (GA) and

Figure 1 Example model Two molecules bind according to Michaelis-Menten kinetics, and only one molecule, x1, can be measured.

Figure 2 Model 1: binding and dissociation. The molecular binding and dissociation of two molecules is schematically shown (A). According
to the kinetics of the model (see details in Methods), a reference curve of one variable, xAB, was generated for 0≦t≦1 with intervals of 0.01,
under the following conditions: xA(0) = 10.0, xB(0) = 20.0, xAB(0) = 0.0, kp = 0.05, km = 0.5, and tc=5.0 (B).
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particle swarm optimization (PSO), were applied to it to
evaluate the effect of the introduction of differential elim-
ination constraints (DE constraints) (see details in Addi-
tional File 1) into the objective function.
Overall, the introduction of DE constraints into the

objective function was highly effective for correctly
estimating the parameter values in both GA and PSO
(Figure 3). By using GA (Figure 3A), kp and km were
correctly estimated with the introduction, while the esti-
mation of kp failed without the introduction. Indeed, the
most frequent values estimated with the introduction
(right side of Figure 3A) were found in the bins corre-
sponding to the range between 0.045 and 0.055 for kp
and between 0.45 and 0.55 for km. In contrast, the most
frequent values estimated without the introduction (left
side of Figure 3A) were found in the range between
0.065 and 0.075 for kp, while those for km were correctly
estimated. By using PSO (Figure 3B), km was correctly
estimated with the introduction, but kp failed, while the
estimations of both parameters failed without the intro-
duction. Furthermore, another difference between the
estimations with and without the introduction is the dis-
tribution form of the estimated values, although the
numbers of trial successes in the optimization were

different with and without the introduction (see details
in Methods). As seen in Figure 3A and 3A, the values
with the introduction were sharply distributed, while
those without the introduction were widely distributed.
The introduction of DE constraints contracted the para-
meter space to facilitate the estimation of the correct
values. As a result, the parameter accuracy was
improved by the new objective function with the intro-
duction of DE constraints in Model 1.
Figure 4 clarifies the contraction of parameter space

with the introduction of DE constraints into the objec-
tive function. Indeed, the estimated values with the
introduction by using GA and PSO were concentrated
around the correct values (right side of Figure 4). In
contrast, the estimated values without the introduction
by using the two optimization techniques were broadly
distributed (left side). Although the numbers of esti-
mated parameter sets were different with and without
the introduction (see details in Methods), the distribu-
tions by using the two techniques without the introduc-
tion show weak positive correlations. This indicates that
the ratio of estimated parameter sets was approximately
kept, but the correct estimations failed, without the
introduction.

Figure 3 Estimated parameter values for Model 1 The parameter sets are estimated by using the genetic algorithm (GA) (A) and the particle
swarm optimization (PSO) (B), and in each figure, the histograms of parameter sets with and without DE constraints (right and left sides,
respectively) are shown. The bin of the histogram indicates the fraction of the number of parameters within a range (0.01 for kp and 0.1 for km)
to the total number of trial successes (200 in GA and PSO without DE constraints, and 51 and 11 in GA and PSO with DE constraints,
respectively) (see details in Methods).
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Model 2
We analyzed a network model for the molecular cascade
reaction of four molecules (Figure 5A). According to the
kinetics of the model (see also Methods), the reference
curve of one variable, x1, was generated (Figure 5B), and
GA and PSO were applied to it to evaluate the effect of
the introduction of DE constraints (see details in Addi-
tional File 2) into the objective function.
In Model 2, the introduction of DE constraints into the

objective function was also highly effective for correctly
estimating the parameter values in both GA and PSO
(Figure 6). By using GA (Figure 6A), all three parameters
were correctly estimated with the introduction (right side),
while the estimations of k31 and k41 failed without the
introduction (left side). By using PSO (Figure 6B), all three
parameters were also correctly estimated with the intro-
duction (right side), while the estimations of k41 failed
without the introduction (left side). Furthermore, the fea-
tures of the distribution forms of the estimated values were
similar to those in Model 1 (Figure 3). As seen in Figure
6A and 6B, the distribution of the estimated values with
the introduction was sharp (right side), while that without
the introduction was wide (left side). As a result, the para-
meter accuracy was also improved by the new objective
function to contract the parameter space with the intro-
duction of DE constraints in Model 2.
The contraction of parameter space with the introduc-

tion of DE constraints into the objective function is

shown more clearly in Figure 7. The features of
the parameter space in Figure 7 are similar to those in
Figure 4. Indeed, the estimated values with the introduc-
tion by using GA and PSO were concentrated around
the correct values (right side of Figure 7), while the esti-
mated values without the introduction were broadly dis-
tributed (left side). In addition, the distributions by
using the two techniques without the introduction also
show weak positive correlations, similar to the case in
Figure 4. Without the introduction, the ratio of esti-
mated parameter sets was approximately maintained,
but the correct estimations failed.

Discussion
The introduction of DE constraints into the objective
function clearly improved the parameter accuracy.
Indeed, the parameter value sets were correctly esti-
mated by the introduction of DE constraint into the
objective function, while they were falsely estimated
without the introduction. Furthermore, the parameter
sets with the introduction were sharply distributed near
the correct values in all cases, in contrast to the wide
distribution without the introduction. In general, the
derivatives included the information on the curve form
of the measured time-series data, such as slope, extre-
mal point and inflection point. This indicates that the
new objective function estimates the difference of not
only the values but also the forms between the

Figure 4 Scatter plot of estimated parameter sets for Model 1 The distributions of the parameter sets by GA and PSO are shown with and
without DE constraints (right and left sides, respectively). The black circles indicates the given parameter sets (kp=0.05 and km=0.5).
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measured and estimated data, while the standard
objective function estimates only the value difference.
Note that the DE constraint is rationally reduced from
the original system of differential equations for a given
model in a mathematical sense. Thus, our approach is
expected to be a general approach in parameter optimi-
zation for improving the parameter accuracy.
To further test the performance of the present

constraints in more realistic situations, we estimated the
same parameters sets in Models 1 and 2 in the case of

the simulated data with noise (see Methods). The
reference curves for Models 1 and 2 were generated
(Additional file 1), and the parameter sets were esti-
mated by using GA with the same procedure as the case
of the data without noise (Fig. 8). In both Models 1 and
2, the new constraints were also effective to improve the
accuracy of parameter estimations. As the same as in
Figures 4 and 7, the estimated values with the introduc-
tion were concentrated around the correct values (right
side of Figure 8), while the estimated values without the

Figure 5 Model 2: cascade reaction The molecular cascade reaction of four molecules is schematically shown (A). According to the kinetics in
the model (see details in Methods), a reference curve of one variable, x1, was generated for 0≦t≦1 with intervals of 0.01, under the following
conditions: x1(0) = 10.0, x2(0) = 130.0, x3(0) =80.0, x4(0)=170.0, k21=5.0, k31=7.0, k41=11.0, kp2 = 3.0, kp3=4.0, kp4=10.0, ke1=5.0 and ke2=3.0 (B).
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Figure 6 Estimated parameter sets for Model 2 The parameter sets are estimated by using GA (A) and PSO (B), and in each figure, the
histograms of parameter sets with and without DE constraints (right and left sides, respectively) are shown. The bin of the histogram indicates
the fraction of the number of parameters within a range (1.0 for all parameters) to the total number of trial successes (200 for all cases) (see
details in Methods).
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Figure 7 Scatter plot of estimated parameter sets for Model 2 The distributions of the parameter sets by GA and PSO are shown with and
without DE constraints (right and left sides, respectively). The black circles indicate the given parameter sets (k21=5.0, k31=7.0, and k41=11.0).

Figure 8 Scatter plot of estimated parameter sets for the simulation data with noise for Models 1 and 2 The distributions of the
parameter sets by GA for the data with noise (see details in Methods and Additional file 1) are shown for Model 1 (A) and Model 2 (B), with
and without DE constraints (right and left sides, respectively). In this estimation, only two values under the optimization condition were slightly
modified, in comparison with the case of data generation without noise: a was set to 0.995 in Model 1, and E/T was set to 0.05 in Model 2. The
black circles indicate the given parameter sets for the two models.
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introduction were broadly distributed (left side).
However, the distribution ranges of parameter values in
both models were widened in the data with noise, in
comparison with those in the data without noise. Thus,
our method may be more effective to the data curve
obtained by some pre-processing methods than intact
data, in the application of the present method to real
data including noise.
As expected, the new objective function requires more

computational time, in comparison with an objective
function with only a standard error function, due to the
increase of the functions in DE constraints. Indeed, the
computational time of our method was larger than that
of the standard method in Models 1 and 2; the compu-
tational times for the standard method and our method
were 0.4 and 2.3 hours in Model 1, and 0.03 and 0.22
hours in Model 2 (32 CPU’s of Intel(R) Xeon(R) X5550
2.67GHz). In addition to the computational time, a pit-
fall of our method is the equation size of DE constraints.
In the equivalent systems, the number of terms fre-
quently increases (see Additional file 3), and this may
result in the difficulty of the application of our method
to a complex or large model. Although we do not still
reach a clear conclusion to overcome the difficulty, two
ways can be considered. One way is an approximation
method and the other is a mathematical manipulation
method. As for the former method, in the DE con-
straints, the terms with a higher order of derivatives in
the differential equations appeared frequently in the
equivalent system (see Additional files 2 and 3). The
magnitude of the estimated values of the higher order
derivatives was relatively smaller than those of the lower
order derivatives. If the estimation of terms with higher
order derivatives can be neglected, then the computa-
tional time will be reduced. As for the latter method, we
can use some equation-simplification methods by sym-
bolic computation (personal communication from Drs.
A. Sedoglavic, F. Lemaire and F. Boulier of Lille Univer-
sity). Indeed, the size of DE constraints for the negative
feedback model with oscillation was reduced from
7.4MB obtained by the pure differential elimination in
present procedure to 0.1MB after the equation simplifi-
cation by symbolic computation (data not shown).
Further studies will be needed to shorten the computa-
tional time by the combination of the approximation
and the simplification of the DE constraints.
Furthermore, more local minima in the objective func-

tion appeared by introducing the DE constraints, also
due to the increase in the functions. Indeed, the number
of successful estimations by GA in our method was less
than that of the standard method in Model 1. To further
survey the effects of the landscape of DE constraints on
the parameter estimation, we performed parameter opti-
mization by using a gradient method, the modified

Powell method [8,9]. While the evolutionary optimization
techniques, such as GA and PSO, equip the algorithm to
jump from the trap of local minima, the gradient method
generally stop to estimate the parameter values in the
valley of the local minima. The parameter values for the
two models obtained by using the objective functions
with and without the DE constraints are shown in Fig. 9.
In Model 2, the situation was similar to the case where
the evolutionary techniques were adopted in Figs. 6 and
7. Indeed, the parameter space was clearly contracted
under the influence of the introduction of DE constraints.
In contrast, in Model 1, our method failed to estimate the
parameter values, due to the lack of an error function
below a given threshold, while the standard method suc-
ceeded with the broad parameter space. This indicates a
pitfall, in that the risk of being trapped by local minima
increases in the objective function with DE constraints,
in comparison with the risk in the objective function
without DE constraints. Thus, the introduction of DE
constraints into the objective function is more suitable
for the evolutionary optimization techniques than the
gradient based techniques.
One possible use of our method is its application to net-

work inference without known structure. Since the present
method is designed with the assumption of a known net-
work structure, the application range of our method to
network inference is naturally restricted. However, our
method can select the most possible network structure
among the networks with similar structures. Indeed, we
designed a similar procedure for evaluating the network
structures with measured data [10]. In our previous
approach, we adopted the transformation of a system of
differential equations into the equivalent system of alge-
braic equations by Laplace transformation. In this case,
the system must be linear, due to the Laplace transforma-
tion. Furthermore, the numeric optimization in the pre-
vious approach frequently faces difficulties, due to the
existence of the pole in the Laplace domain. In contrast,
these pitfalls are overcome in the present method, by
introducing the constraints by differential elimination.
This supports the application of the present method to the
model selection issue.
Various models for describing biological phenomena

are available [11]. In particular, several feedback models
are important for describing the biological phenomena
[12,13]. Although the performance of our approach for
the two representative models in biological phenomena
was tested in this study, further tests for the perfor-
mance of the DE constraint introduction remain for the
models that are important in systems and synthetic biol-
ogy. In the near future, we will report the evaluation of
our approach in the cases of various models, in addition
to the reduction of computational time and the trials of
model selection.
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Conclusions
The introduction of the constraints by using differential
elimination was effectively improved the parameter
accuracy in two models of linear and nonlinear equa-
tions, especially when we assumed that unmeasured
variables were included, by two optimization techniques.
This clearly indicates that the ability of our method for
estimating the parameter values was far superior to that
of various methods with the standard error function.
Although the present study focused on two simple mod-
els, our method is a feasible approach for parameter
estimation in network dynamics.

Methods
Analyzed models
The system of differential equations in Model 1 is
expressed as follows:

dx

dt
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We assume that the model expresses the binding and
dissociation between two molecules, and that only one
complex, xAB, can be measured.
The system of differential equations in Model 2 is

expressed as follows:
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We assume that the molecules, x2, x3, and x4, activate
x1 with linear relationships, and that only one molecule,
x1, can be measured.
The data with noise were generated by Box-Muller

method [14]. Each of data, Xe(t), is expressed as follows:

X t X t c X t Rne( ) ( ) ( )= + ⋅ ⋅ ,

Figure 9 Scatter plot of estimated parameter sets by the modified Powell method for Models 1 and 2 The distributions of the parameter
sets by the modified Powell method are shown for Model 1 (upper) and Model 2 (lower), with and without DE constraints (right and left sides,
respectively). The black circles indicate the given parameter sets for the two models.
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where X(t) is a value at time t in original curve of
Figures 2 and 5, Rn is random variable according to the
standard normal distribution, and c was set to 0.666.

Optimization techniques
Two well-known parameter optimization techniques, the
genetic algorithm (GA) [15-19] and the particle swarm opti-
mization (PSO) [20,21], were used. In the parameter opti-
mization, two thresholds were set to stop the optimization:
the average value of the error function over time points, E/
T, and the number of generations per optimization. In this
study, we performed the optimization 200 times in both
techniques, and the thresholds of E/T were set to 0.01 for
Model 1 and 0.001 for Model 2, and the threshold for gen-
eration number was set to 2000. As a result, the numbers
of successes by 200 trials were 200 without DE constraints
and 51 by GA and 11 by PSO with DE constraints, for
Model 1, and 200 for all cases for Model 2.

Introduction of the new constraints into the objective
function
The objective function in this study is composed of two
terms: one is the standard error function between the
estimated and measured data, and the other is the con-
straints obtained by differential elimination. The error
function is defined as follows: Suppose that xci,t is the
time-course data at time t of xi calculated by using the
estimated parameter values, and xmi,t represents
the measured data at time t. The sum of the absolute
value of the relative error between xci,t and xmi,t gives the
total relative error, E, as a standard error function, i.e.,

E
x x

x
i t
c

i t
m

i t
m

t

T

i

N

=
−

==
∑∑ , ,

,11

(6),

where N and T are the number of variables and the
time points, respectively: N was 2 for Model 1 and 4 for
Model 2, and T was 100.
Next we define the constraints obtained by differential

elimination. In general, differential elimination rewrites
the original system of differential equations into an
equivalent system, which means that the number of
equations is equal in both systems. Thus, we can express
the constraint by differential elimination, CDE, as the lin-
ear combination of the equations in the equivalent sys-
tem, as follows:

C Cl t

t

T

l

L

DE =
==

∑∑ ,

11

(7),

where L and T are the numbers of equivalent
equations and time points, respectively: L was 2 for
Model 1 and 5 for Model 2.

Finally, we introduce CDE into the objective function,
OF, in combination with E, as:

OF E C= + − ( )1 DE (8)

where a the a weight of two functions, which is
approximately estimated by a Pareto optimal solutions
for E and C and then is manually modified. In the present
study, a was set to 0.1 in Model 1 and 0.9999999 in
Model 2. As a result, our computational task is to deter-
mine a set of parameter values that minimize to OF.

Implementation of differential elimination
All of the symbolic computations for the differential
elimination were performed using the diffalg package of
MAPLE 10. In the performance of differential elimina-
tion, the ranking of variables was: xA ≻ xB ≻ xAB in
Model 1 and P(Pool) ≻ x4 ≻ x3 ≻ x2 ≻ x1 in Model 2.
Subsequently, we converted the form of the polynomial
equations derived by differential elimination to the Java
code by using the CodeGeneration feature in Maple 10.

Additional file 1: Reference data for Models 1 and 2According to the
kinetics of the models for Models 1 and 2, the reference data of one
variable, xAB (A), and that of one variable, x1 (B), were generated under
the same conditions as those in Figures 2 and 5.

Additional file 2: DE constraints for Model 1The equivalent equations
for Model 1 were derived from the system of differential equations by
differential elimination.

Additional file 3: DE constraints for Model 2The equivalent equations
for Model 2 were derived from the system of differential equations by
differential elimination.
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