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Abstract

Background: Integrated networks hold great promise in a variety of contexts. In a recent study, we have
combined expression and interaction data to identify a putative network underlying early human organogenesis
that contains two modules, the stemness-relevant module (hStemModule) and the differentiation-relevant module
(hDiffModule). However, owing to its hypothetical nature, it remains unclear whether this network allows for
comparative transcriptome analysis to advance our understanding of early human development, both in vivo and
in vitro.

Results: Based on this integrated network, we here report comparisons with the context-dependent transcriptome
data from a variety of sources. By viewing the network and its two modules as gene sets and conducting gene set
enrichment analysis, we demonstrate the network’s utility as a quantitative monitor of the stem potential versus the
differentiation potential. During early human organogenesis, the hStemModule reflects the generality of a gradual
loss of the stem potential. The hDiffModule indicates the stage-specific differentiation potential and is therefore not
suitable for depicting an extended developmental window. Processing of cultured cells of different types further
revealed that the hStemModule is a general indicator that distinguishes different cell types in terms of their stem
potential. In contrast, the hDiffModule cannot distinguish between differentiated cells of different types but is able
to predict differences in the differentiation potential of pluripotent cells of different origins. We also observed a
significant positive correlation between each of these two modules and early embryoid bodies (EBs), which are
used as in vitro differentiation models. Despite this, the network-oriented comparisons showed considerable
differences between the developing embryos and the EBs that were cultured in vitro over time to try to mimic in
vivo processes.

Conclusions: We strongly recommend the use of these two modules either when pluripotent cell types of
different origins are involved or when the comparisons made are constrained to the in vivo embryos during early
human organogenesis (and an equivalent in vitro differentiation models). Network-based comparative
transcriptome analysis will contribute to an increase in knowledge about human embryogenesis, particularly when
only transcriptome data are currently available. These advances will add an extra dimension to network
applications.
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Background
Molecular and genetic interaction networks have proven
to be useful in a variety of contexts. They can poten-
tially be used to predict gene functions [1], to predict
perturbation phenotypes [2] and genetic modifier loci
[3], to identify human disease genes and drug targets
[4], to increase the statistical power in human genetics
[5,6], and to study pathogen/virus-host crosstalk [7,8],
to name just a few examples. Typically, they are con-
structed through the integration of multiple data sources
such as expression data and interaction data [9-12]. The
motivations for building such networks include the fol-
lowing: (i) from a biological perspective, genes are
assumed to be interconnected into cohesive networks
that control a certain biological process and (ii) from a
methodological perspective, the integration of multiple
layers of information is more likely to identify biologi-
cally relevant signals than analysis of either data source
alone. Therefore, these integrated networks hold great
promise for explaining the control mechanisms that
underlie particular physiological and developmental
processes.
In humans, embryogenesis is a complex process that

consists of several sequential developmental events: fer-
tilization, blastulation, gastrulation, and organogenesis
[13]. Although several studies have attempted to under-
stand the molecular networks that control early embryo-
genesis (the oocyte and preimplantation stages) [14-18],
the extent to which these developmental events can be
explained by their underlying networks is still unknown.
The molecular profiling of human organogenesis is
increasingly becoming the focus of considerable research
[19-21]. Recently, we have reported the first comprehen-
sive transcriptome analysis of early organogenesis, which
ranged from Carnegie stages 9 (S9) to 14 (S14) [20].
Through the in-depth data mining [22-24] and compari-
sons with mouse embryos [25] and human embryonic
stem cells (hESCs) [26-28], we have found sets of genes
that are important for the initiation and maintenance of
early human organogenesis. With further integration of
interaction data [29-34], we have also shown that the
coordination of early human organogenesis is probably
under the control of a shared molecular network, or a
human organogenesis network (hORGNet; see Addi-
tional File 1). Preliminary analysis has revealed that this
network contains a stemness-relevant module (hStem-
Module) and a differentiation-relevant module (hDiff-
Module). Given the hypothetical nature of this network
[19,20], additional research is warranted to further
explore its potentials for characterizing early human
organogenesis. It also remains unclear whether this net-
work can be extended to describe the other stages of
human organogenesis. Because the network is inherently

associated with two modules, there is a great need to
clarify the circumstances in which it can be used as a
reference for evaluating the stem potential versus the
differentiation potential.
To do this, we started with our previously identified

network (i.e., the hORGNet and its two modules,
hStemModule and hDiffModule) [20]. The network itself
is associated with the intrinsic features of expression
information from early human organogenesis and well-
curated interaction information from existing human
interactome resources. The genes in this network are
collectively informative as a molecular signature of this
developmental window, similar to the concept of using
disease-perturbed networks as a basis for understanding
disease initiation and progression [35]. With this net-
work at hand, we applied gene set enrichment analysis
(GSEA) to perform expression-based inspections of the
hORGNet and its two modules in different, yet repre-
sentative developmental contexts, including human
organogenesis, various human stem cell types, and a
hESC-derived embryoid body (EB) model. These com-
parisons demonstrate the ability of this integrated net-
work to improve our coarse-grained understanding of
early human development, both in vivo and in vitro.

Results
The comparative transcriptome analysis pipeline using an
integrated network during early human organogenesis
(hORGNet)
The procedures for network-orientated comparisons are
illustrated in Figure 1. Briefly, transcriptome data from a
variety of developmental contexts are available from
public databases such as NCBI GEO [36]. In this study,
we focused on three representative developmental con-
texts, including human embryos [20,21], the stem cell
matrix (a transcriptome dataset of various human stem
cell phenotypes [37]), and EB models [38,39]. By viewing
the genes in the hORGNet collectively as a signature (or
gene set) of early human organogenesis, we were able to
apply GSEA analysis [40] to explore the possibility of
using the hORGNet to re-interpret these context-speci-
fic transcriptome data. To do this, we first ranked the
gene lists based on Linear Models for Microarray Data
(LIMMA) supervised analysis of these context-specific
transcriptome data [41]. Next, we performed GSEA ana-
lysis to determine the degree to which genes in the
hORGNet (and its two modules, hStemModule and
hDiffModule) were overrepresented at the top or bot-
tom of the ranked list of genes. We used this rank-
based comparative approach because it has been proven
to be highly reproducible and interpretable [42]. GSEA
reports several useful statistics for interpreting the
results, including a normalized enrichment score (NES)
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and a false discovery rate (FDR) [40]. The former
indicates a positive or negative correlation, while the lat-
ter indicates the statistical significance. By analyzing
transcriptome data from the stem cell matrix, EB mod-
els and human embryos, we found that the hORGNet
and its two modules can advance our understanding of
early human development, both in vivo and in vitro.

The two modules of the hORGNet capture the expression
patterns of early human organogenesis
Previously, we have constructed a hORGNet based on
both expression and interaction information [20].
Preliminary analysis indicates that the hORGNet is prob-
ably inherited with the Yin-Yang crosstalk of a stemness-
relevant module (hStemModule) and another differentia-
tion-relevant module (hDiffModule). Prior to the applica-
tions to other developmental processes, we first asked
whether the hORGNet and its two modules were asso-
ciated with the gradual loss of the stem potential and the
increased diversity of the differentiation potential during

development. To address this question, we conducted
GSEA analysis of the hORGNet and its two modules
using transcriptome data of human embryos from Carne-
gie stages 9 (S9) to 14 (S14) [20]. The GSEA results
showed that the hStemModule enrichments monotoni-
cally shifted from the most positive at S9 (NES = 3.196;
FDR = 0) to the most negative at S14 (NES = -2.809; FDR
= 0), whereas the hDiffModule showed more dynamic
changes during early human organogenesis (Figure 2A).
Recently, another study has reported a transcriptome
analysis of human embryos during weeks (wk) 4-9 [21].
As shown in Figure 2B, the GSEA results showed that
the hStemModule enrichments decreased gradually from
a significant positive correlation at wk 4 (NES = 2.750;
FDR = 0) to no significant correlation during wk 5-7
(FDR > 0.05) to a significant negative correlation at wk 8
(NES = -1.980; FDR = 0) and at wk 9 (NES = -1.530; FDR
= 0.023). A significant negative correlation between the
hDiffModule and wk 4 human embryos was also observed
(NES = -1.640; FDR = 0.005). Beyond wk 4 (i.e., out of the

Figure 1 Schematic flowchart illustrating the network-oriented comparisons using transcriptome data in a variety of developmental
contexts. Gene set enrichment analysis (GSEA) takes the hORGNet (and its two modules, hStemModule and hDiffModule) as a gene set and
determines the degree to which genes in the gene set are overrepresented at the top or bottom of a ranked gene list. The ranked gene lists
are predefined by a LIMMA supervised analysis of three representative context-specific transcriptome datasets, including human embryos,
stem cell matrix, and EB models. The right panel illustrates the hypothetical results of GSEA analysis. Genes in a gene set tend to be at the
top ("Significant positive”), at the bottom ("Significant negative”) or randomly distributed ("Null”) over a predefined ranked gene list. The
normalized enrichment score (NES) reflects the degree to which genes in a gene set are overrepresented at the top or bottom of the ranked
gene list. A positive NES (e.g., 2.00) indicates overrepresentation at the top of the ranked gene list, whereas a negative NES (e.g., -2.00)
indicates overrepresentation at the bottom. The significance of the overrepresentation corresponding to each NES can be assessed by false
discovery rate (FDR).
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developmental window S9-S14), however, we found there
was no significant correlation between the hDiffModule
and human embryos (see the bottom panel in Figure 2B).
Taken together, analysis of this developmental window
(S9-S14) of early human organogenesis and the beyond
suggests that the hStemModule may in general reflect the
gradual loss of the stem potential, while the hDiffModule
reflects the dynamic changes in the differentiation poten-
tial that are required for proper differentiation at each
stage of this developmental window.

The hStemModule is a general indicator that
distinguishes different cell types in terms
of the stem potential
Stem cell matrix is a database for transcriptome data
from various cultured cells including pluripotent, multi-
potent and differentiated cell types [37] (for details see
Methods, and shown in Additional File 2). We first used
the stem cell matrix to test whether the hStemModule
is indicative of the stem potential in these varied cell
types. As shown in Table 1 (also see Additional File 3),

Figure 2 GSEA of the hORGNet and its two modules (hStemModule and hDiffModule) using transcriptome data during human
organogenesis. (A) Human embryos from Carnegie stages 9 (S9) to 14 (S14). (B) Human embryos during weeks (wk) 4-9. The normalized
enrichment score (NES) reflects the degree to which the hORGNet (in red), the hStemModule (in green) and the hDiffModule (in blue) are
overrepresented at the top (reflected by a positive NES) or bottom (indicated by a negative NES) of a ranked gene list predefined by expression
data from each stage. Statistically significant NES enrichments (i.e., FDR < 0.05) of NES are highlighted with bold and italic text.

Table 1 GSEA of the hStemModule for the stem cell
matrix.

Cell types1 NES2 FDR3 Correlation3

ePSC 2.132 0.000 Positive**

tPSC 1.899 0.000 Positive**

iPSC 2.658 0.000 Positive**

ePSC_NSC -1.909 0.000 Negative**

tPSC_Nlin -0.820 0.888 Null

fNSPC -2.478 0.000 Negative**

HANSE -1.843 0.000 Negative**

BM_MSC -1.754 0.000 Negative**

HUVECS -2.216 0.000 Negative**

ePSC_EB 2.020 0.000 Positive**
1ePSC = embryonic pluripotent stem cells, tPSC = teratocarcinoma pluripotent
stem cells, iPSC = induced pluripotent stem cells, ePSC_NSC = embryonic
pluripotent stem cell-derived neural stem cells, tPSC_Nlin = teratocarcinoma
pluripotent stem cells differentiated into dopaminergic neural lineage, fNSPC
= fetal neural stem cell or primary fetal neural precursor cells, HANSE = adult
surgery neural precursors, BM_MSC = bone marrow mesenchymal stem cells,
HUVECS = umbilical vein endothelial cells, ePSC_EB = embryonic pluripotent
stem cell-derived embryoid bodies; 2 (+) NES for positive correlation, (-) NES
for negative correlation; 3Significance for correlation: *FDR < 0.05, **FDR <
0.01, and ‘Null’ for no significant correlation.
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the application of GSEA to the stem cell matrix showed
that the hStemModule was significantly and positively
correlated with pluripotent cells including embryonic
pluripotent stem cells (ePSC; NES = 2.132; FDR = 0), ter-
atocarcinoma pluripotent stem cells (tPSC; NES = 1.899;
FDR = 0) and induced pluripotent stem cells (iPSC; NES
= 2.658; FDR = 0). In contrast, no correlation or negative
correlation was observed with other multipotent and dif-
ferentiated cell types (Table 1). Furthermore, the iPSCs
were more likely to be associated with the hStemModule
than either the ePSCs or the tPSCs (Table 2 and Addi-
tional File 4; see Discussion). More surprisingly, the
hStemModule was also positively correlated with
embryonic pluripotent stem cell-derived embryoid bodies
(ePSC_EB; NES = 2.020; FDR = 0) (Table 1). To exclude
the possibility of artifacts associated with the above
observation, we chose another set of transcriptome data
from an early stage EB (3.5 days) that was derived from
two hESC lines (H1 and H9) [38] as an independent vali-
dation. The GSEA results again indicated that there was
a significant positive correlation between the hStemMo-
dule and early EBs: NES = 1.686 and FDR = 0 for H1-
derived EBs and NES = 1.667 and FDR = 0 for H9-
derived EBs (Table 3 and Additional File 5). These results
clearly demonstrate the discriminative power of the
stemness-relevant module in distinguishing cultured cell
types of various stem potentials.

The hDiffModule is seemingly able to predict differences
in the differentiation potential among pluripotent cells of
different origins, but not among differentiated cells of
different types
Next, we used the stem cell matrix to examine whether
the hDiffModule could be used to evaluate the differen-
tiation potential among different cell types. Our previous
work [20] showed that the hDiffModule is largely com-
posed of differentiation-associated genes that are regu-
lated during early human organogenesis. Because those
genes are under-expressed in hESCs (i.e., are part of the
consensus differentiation gene list defined in [27]), the
hDiffModule is expected to negatively correlate with
hESCs. Indeed, we observed a significant negative

correlation between this module and both ePSCs (NES =
-2.234; FDR = 0) and embryonal carcinomas, or tPSCs
(NES = -1.490; FDR = 0), but did not observe a correla-
tion between this module and most of differentiated cell
types (Table 4; see Discussion). We unexpectedly found
that the DiffModule was positively correlated with the
iPSCs, the pluripotent cells of non-embryonic origins
(NES = 1.373; FDR = 0.029). Consistent with this result,
we also found a significant positive correlation between
the hDiffModule and iPSCs vs. ePSCs (NES = 2.434;
FDR = 0) and iPSCs vs. tPSCs (NES = 1.847; FDR = 0)
(Table 5; see Discussion). Similar to the hStemModule,
the hDiffModule was also positively correlated with ePS-
C_EB (NES = 2.793; FDR = 0) (Table 4); this observation
was repeated with a separate dataset (Table 6). Notably,
in vitro EB differentiation models consistently showed a
positive correlation with the hDiffModule, the hStem-
Module, and the hORGNet made up by these two
modules (Additional Files 3 and 5). This suggests the
possibility of further characterizing relationships between
the developing embryo and the in vitro differentiation
models that are intended to mimic in vivo events.

The hORGNet-based characterization of relationships
between early human organogenesis in vivo and
hESC-derived EBs in vitro
To further explore the usefulness of the hORGNet (and
its two modules) in characterizing relationships between

Table 2 GSEA of the hStemModule based on pair-wise
comparisons among pluripotent cell types of different
origins.

Pair-wise comparisons1 NES2 FDR3 Correlation3

iPSC vs. ePSC 1.752 0.000 Positive**

iPSC vs. tPSC 1.519 0.003 Positive**

tPSC vs. ePSC -0.518 1.000 Null
1ePSC = embryonic pluripotent stem cells, tPSC = teratocarcinoma pluripotent
stem cells, iPSC = induced pluripotent stem cells; 2 (+) NES for positive
correlation, (-) NES for negative correlation; 3Significance for correlation: **FDR
< 0.01, and ‘Null’ for no significant association.

Table 3 GSEA of the hStemModule for ESC
(H1 and H9)-derived EBs.

Cell types1 NES2 FDR3 Correlation3

H1_ESC 1.389 0.010 Positive*

H1_EB 1.686 0.000 Positive**

H9_ESC 1.966 0.000 Positive**

H9_EB 1.667 0.000 Positive**
1H1_ESC = embryonic stem cell line H1, H1_EB = H1-derived embryoid
bodies, H9_ESC = embryonic stem cell line H9, H9_EB = H9-derived embryoid
bodies; 2 (+) NES for positive correlation, (-) NES for negative correlation;
3Significance for correlation: *FDR < 0.05, **FDR < 0.01.

Table 4 GSEA of the hDiffModule for the stem cell matrix

Cell types1 NES2 FDR3 Correlation3

ePSC -2.234 0.000 Negative**

tPSC -1.490 0.009 Negative**

iPSC 1.373 0.029 Positive*

ePSC_NSC 1.232 0.092 Null

tPSC_Nlin 1.194 0.255 Null

fNSPC -1.768 0.000 Negative**

HANSE -1.170 0.111 Null

BM_MSC 1.204 0.130 Null

HUVECS -1.307 0.041 Negative*

ePSC_EB 2.793 0.000 Positive**
1,2,3The same as in Table 1.
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early human organogenesis in vivo (S19-S14) and the EB
models in vitro, we used a time-course of transcriptome
data from SHhES1-derived EBs at days 8, 13 and 18 [39]
to perform GSEA of the hORGNet and its two modules
(Figure 3A). First, we found that the 8-day EB was com-
parable to S11 (Additional File 6); both were positively
correlated with the hStemModule and negatively corre-
lated with the hDiffModule. This is consistent with the
timing of the in vitro model, which mimics complex in
vivo events. Second, a positive correlation with the
hDiffModule was observed for the 13- and 18-day EBs,
which probably reflects the sustained differentiation in
vitro (the bottom in Figure 3A). The hStemModule
experiences a shift from the positive correlation seen in
the 8-day EB (NES = 1.648; FDR = 0) to the negative
correlation seen in the 18-day EB (NES = -1.443; FDR =
0.010), indicating the loss of the stem potential (the
middle in Figure 3A). Third, the GSEA results with
respect to the hORGNet showed a tendency towards an
increased correlation between the hORGNet and the in
vitro EB model, partially supporting the idea of sus-
tained differentiation in this in vitro EB model (the top
in Figure 3A). Therefore, the GSEA analyses suggest a
resemblance between the 8-day EB and S11 with regard
to both the stem and differentiation potentials, and also
suggest that the sustained differentiation in vitro in 13-
and 18-day EBs could explain their lack of correspon-
dence to any embryonic stage after S11 (see Discussion
for details). To vividly display these relationships
between the early human organogenesis in vivo and this
EB model in vitro, we performed a principle component
analysis (PCA) on the expression matrix of the member
genes in the hORGNet during early human organogen-
esis and during EB differentiation. As illustrated in Fig-
ure 3B, two distinct trajectories were revealed, one

representing the developmental trajectory in vivo during
early human organogenesis and the other representing
the sustained differentiation in vitro in the SHhES1-
derived EB model. The positions along each of the tra-
jectories probably reflect the developmental nature of
the embryos and the sustained, differentiating nature of
the EB model, respectively. These two different trajec-
tories clearly show considerable differences between the
developing embryos in vivo and the EB cultures over
time in vitro.

Discussion
The different behaviors of the two modules are
consistent with the very nature of human embryogenesis
During embryogenesis in humans, early embryonic cells
progressively confine their lineage commitment by chan-
ging their developmental potential, i.e., their ability to
develop into multiple distinct cell types [13]. Cell fate
specification during development was first described by
C. Waddington as the epigenetic landscape [43], which
has recently gained popularity with the advent of cell
reprogramming [44-47]. In addition to the Waddington
landscape, embryonic cells being committed to descen-
dants can also be viewed as a result of a Yin-Yang-like
crosstalk between two key aspects of the developmental
potential: the stem potential and the differentiation
potential. The former is assumed to maintain the stem-
ness properties, while the latter is crucial for specifying
the proper differentiation. Together, they act together in
harmony to ensure the successful implementation of
embryogenesis. The two modules (i.e., the hStemModule
and the hDiffModule) in the hORGNet might meet the
needs of these two respective roles. The GSEA analysis
in Figure 2 shows that the expression patterns of genes
in these two modules correlate well with our current
knowledge about the development potential of early
embryonic cells: a gradual loss of stemness and a conco-
mitant diversity of cell types. Therefore, it is logical to
speculate that the monotonous behavior of the hStem-
Module is the necessary outcome of the gradual loss of
the stemness during the embryogenesis. The dynamic
changes of the hDiffModule, however, could be required
for proper differentiation in a stage-specific and con-
text-dependent manner. The different behaviors of these
two modules are the biological basis of their utility, as
demonstrated in this study, for distinguishing various
cell types (Tables 1, 2, 3, 4, 5 and 6) and characterizing
the relationships between embryogenesis in vivo and dif-
ferentiation models in vitro (Figure 3).

The two modules differ in their power to distinguish
cultured cells of different types
Choosing a single, yet comprehensive transcriptome
dataset (called the stem cell matrix [37]) of various

Table 5 GSEA of the hDiffModule based on pair-wise
comparisons among pluripotent cell types of different
origins.

Pair-wise comparisons1 NES2 FDR3 Correlation3

iPSC vs. ePSC 2.434 0.000 Positive**

iPSC vs. tPSC 1.847 0.000 Positive**

tPSC vs. ePSC 1.085 0.556 Null
1,2,3The same as in Table 2.

Table 6 GSEA of the hDiffModule for ESC (H1 and H9)-
derived EBs.

Cell types1 NES2 FDR3 Correlation3

H1_ESC -2.412 0.000 Negative**

H1_EB 1.608 0.000 Positive**

H9_ESC -2.072 0.000 Negative**

H9_EB 1.833 0.000 Positive**
1,2,3The same as in Table 3.
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cultured cells as an input may reduce the potential tech-
nical biases that could otherwise be introduced when
using different types of detection methods from different
labs. Processing the stem cell matrix revealed the differ-
ences in the discriminative power of the two modules.
The hStemModule consistently distinguished cell types
of various stem potentials (Table 1). In contrast, the
hDiffModule appeared to be unable to distinguish differ-
entiated cells of different types (Table 4), although it
provided useful clues for pluripotent cells of different
origins (for a detailed discussion, see the next subsec-
tion). Their differences in discriminative power can be
partially explained by the expression patterns of their
member genes in hESCs compared to many differen-
tiated cell types [27]. In our previous work [20], we have
showed that the hStemModule is enriched for stemness-
relevant genes that are consistently over-expressed in
hESCs, while the hDiffModule contains differentiation-
relevant genes that are consistently under-expressed in
hESCs. In other words, we know for sure that the genes
in the hStemModule should be consistently expressed in
hESCs. However, the genes in the hDiffModule may be
expressed in one or more types of differentiated cells
that we cannot identify with certainty, and the hDiffMo-
dule itself is therefore not informative regarding differ-
entiated cells of different types.

Differences and similarities of the two modules in
distinguishing pluripotent cells of different origins
Pluripotent cells were first isolated from embryonic
sources, such as ePSCs from the inner cell mass of the

blastocyst [48] and tPSCs from embryonal carcinoma
[49]. As a new source of pluripotent cells, iPSCs are
generated from non-pluripotent cells (typically somatic
cells) that are genetically reprogrammed to an ePSC-like
state [50-53]. Initially, iPSCs were thought to be quite
similar to their embryonic counterparts, but recent stu-
dies have suggested substantial differences between
them at both the gene expression [54] and the epige-
netic levels [55]. In this study, we showed that the
hStemModule positively correlates with all types of plur-
ipotent cells (Table 1), whereas the hDiffModule is
negatively correlated with the pluripotent cells of
embryonic origins other than iPSCs (Table 4). This dif-
ference may be meaningful. In terms of the stem poten-
tial, all pluripotent cells should share the characteristics
of pluripotency. However, with regard to the differentia-
tion potential, the pluripotent cells of embryonic origins
completely repress the expression of differentiation-
associated genes, while iPSCs derived from the differen-
tiated cells may inevitably retain an imprint from their
origins despite being reprogrammed to a fully pluripo-
tent state. Apart from this difference, we also observed
the similarities between the two modules when compar-
ing pluripotent cells of different origins. Compared with
the pluripotent cells of embryonic origins (ePSCs and
tPSCs), iPSCs showed a significant positive correlation
with each of the two modules (Tables 2 and 4).
Although the exact implication remains unclear, this
may reflect the unique nature of iPSCs; their stemness-
and differentiation-contexts may be more similar to
those of the hStemModule and the hDiffModule than

Figure 3 The hORGNet-based characterization of the relationships between early human organogenesis and an SHhES1-derived EB
model. (A) GSEA of the hORGNet (in red) and its two modules, the hStemModule (in green) and hDiffModule (in blue) for time-course
transcriptome data from SHhES1-derived EBs at days 8, 13 and 18. Each graph shows the distribution pattern of a gene set over the ranked gent
list, together with statistics report (i.e., NES and FDR). (B) The PCA of the expression matrix of genes in the hORGNet across the SHhES1-relevant
EB models and early human organogenesis. The solid line denotes the in vivo developmental trajectory during early human organogenesis, and
the dotted line indicates the sustained differentiation process in the SHhES1-derived, in vitro EB model.
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those of pluripotent cells of the embryonic origins.
Future studies will clarify these observations in a wet
experimental setting.

Recommended circumstances for using the two modules
In addition to the above situation involving pluripotent
cells of different origins, we suggest that the following a
priori knowledge will be indispensable for using two
modules as a monitor of the stem potential versus differ-
entiation potential, especially for the hDiffModule (and
the hORGNet). Owing to the stage-specific and context-
dependent nature of the hDiffModule (Figure 2), it is
only valid when the comparisons are constrained to the
S9-S14 developmental window or the equivalent in vitro
differentiation processes (such as the EB models in
Figure 3) that recapitulate the in vivo cues of this devel-
opmental window. The stage-specific nature of the
hDiffModule (and thus the hORGNet) does not necessa-
rily mean that it is unsuitable for characterizing the
S9-S14 or the equivalent models. Genes in the hDiffMo-
dule show both reduced and increased expression pat-
terns from S9 to S14 (see in our previous study [20]),
and the positive or negative correlation from the GSEA
analysis implies the extent of expression changes
required for proper differentiation at each stage. The
stage-specific expression profiles of the hDiffModule-
containing genes are indicative of each stage, and their
correlations (no matter being positive or negative) all
have statistical significance as shown in Figure 2A.
Together with the hStemModule, the hDiffModule gives
the hORGNet as a specific signature for each stage dur-
ing early human organogenesis from S9 to S14. Addi-
tionally, it raises the possibility of using the hORGNet
to understand relationships between early human orga-
nogenesis in vivo and EB models in vitro.

Implications of the differences between the in vivo and
in vitro developmental trajectories captured by the
hORGNet
The observations of (i) the resemblance between 8-day
EB and S11 and (ii) the divergence of 13- and 18-day
EBs away from the subsequent developmental stages (i.
e., S12-S14), have several implications. First, hESCs dif-
ferentiated in vitro into EBs can mimic events that
occur in vivo both before and after the embryonic
implantation [56,57], even extending to S11 at least in
terms of the stem and differentiation potential. Second,
the prolonged differentiation in culture raises concerns
over the limitations of in vitro EB models. The EB at
days 13 and 18 tended to be positively correlated with
the hDiffModule, which is probably due to the sustained
expression of the same subsets of differentiation-asso-
ciated genes that make up the hDiffModule. However,
in in vivo embryos, different subsets of differentiation-

associated genes from the hDiffModule were expressed
at each of the different stages, even though the overall
correlations between the hDiffModule and stages S13/
S14 also remained significantly positive. This selective
expression of hDiffModule genes in the developing
embryos in vivo and the sustained expression of hDiff-
Module genes in EBs cultured in vitro could explain the
two different trajectories as revealed in Figure 3B.
Finally, the two overlapping, yet different trajectories
observed in this study will warrant the use of this inte-
grated network and its two modules in future studies on
human embryogenesis, both in vivo and in vitro. This
network will be particularly useful for those studies that
focus on evaluating the stem potential versus the differ-
entiation potential.

Conclusions
Using a previously proposed integrated network (hORG-
Net) and its two modules, the stemness-relevant module
(hStemModule) and the differentiation-relevant module
(hDiffModule), we illustrate its utility by analyzing tran-
scriptome data from a wide variety of developmental
contexts (Figure 1). This analysis provides new insights
into early human development, both in vivo and in vitro
(Figures 2 and 3; Tables 1, 2, 3, 4, 5 and 6). These
advances add an additional dimension to network appli-
cations. We strongly recommend the use of this net-
work and its two modules for the circumstances (i)
when pluripotent cell types of different origins are
involved and (ii) when the comparisons are constrained
to the in vivo embryos during early human organogen-
esis or to the equivalent in vitro differentiation pro-
cesses. As the transcriptome data coverage for human
embryos improves, we anticipate that even more precise
relationships will be revealed using similar network-
based comparative transcriptome analyses.

Methods
A putative molecular interaction network during early
human organogenesis
In our recent work [20], we performed a transcriptome
analysis of human embryos from Carnegie stages 9 (S9)
to 14 (S14), which covers the first third of organogen-
esis. Further integration of this expression data with
interaction information allowed us to identify a putative
molecular interaction network that coordinates early
human organogenesis (termed hORGNet). A preliminary
analysis revealed that the hORGNet is composed of two
relatively distinct modules, a stemness-relevant module
(hStemModule) and a differentiation-relevant module
(hDiffModule). Here, we further evaluate the utility of
this hypothetical network and its two modules for char-
acterizing the stem potential versus the differentiation
potential in various developmental contexts (see below).
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Sources of transcriptome data from a variety of
developmental contexts
The stem cell matrix [37] was obtained from NCBI GEO
(GSE11508). It contains transcriptome data from the
cultured stem cells in the context of a wide variety of
pluripotent, multipotent and differentiated cell types.
Based on the published cluster results of core dataset
samples (further restricted by sample information, such
as source tissue, cell type, differentiation state and line-
age of the cells), 136 out of the 219 samples were
extracted and annotated as belonging to one of 10 clus-
ters. Samples within each cluster displayed similar
expression profiles as revealed by a component plane
presentation integrated self-organizing map (CPP-SOM)
[58,59]. These clusters, each associated with biological-
and profile-similar characteristics, included embryonic
pluripotent stem cells (ePSC), induced pluripotent stem
cells (iPSC), teratocarcinoma pluripotent stem cells
(tPSC), embryonic pluripotent stem cell-derived neural
stem cells (ePSC_NSC), teratocarcinoma pluripotent
stem cells differentiated into dopaminergic neural line-
age (tPSC_Nlin), fetal neural stem cell or primary fetal
neural precursor cells (fNSPC), adult surgery neural pre-
cursors (HANSE), bone marrow mesenchymal stem cells
(BM_MSC), umbilical vein endothelial cells (HUVECS)
and embryonic pluripotent stem cell-derived embryoid
bodies (ePSC_EBs).
Transcriptome data for early stage EBs (3.5 days)

derived from two human ESC lines (H1 and H9) were
obtained from a published study [38], and a time course
transcriptome dataset from the SHhES1-derived EBs at
days 8, 13 and 18 was obtained from a previously pub-
lished report [39]. Two genome-wide expression data-
sets for human embryos at six successive time periods
(days 20-32) [20] and at six interval-longer time points
(weeks 4-9) [21] were obtained from NCBI GEO using
the accession numbers GSE1887 and GSE15744,
respectively.

Gene set enrichment analysis (GSEA) of the hORGNet and
its two modules
GSEA [60] is a computational method for determining
whether an a priori defined set of genes (e.g., those
genes in the hORGNet) shows statistically significant,
concordant differences between two biological states (e.
g., one embryonic stage compared to the average of all
human embryo stages). We used GSEAPreranked to
determine the degree to which genes in the hORGNet
(and its two modules, hStemModule and hDiffModule)
were overrepresented at the top or bottom of a prede-
fined list of ranked genes. The ranked lists of genes
were predefined according to transcriptome data sources
as mentioned above in the previous subsection. These
gene lists were ranked by means of LIMMA supervised

analysis [41], which uses linear models and empirical
Bayes methods to assess differential expression. GSEA
calculates an enrichment score (ES) to reflect the
enrichment of a gene set at the top (a positive ES) or
bottom (a negative ES) of a ranked list of genes.
Accounting for differences in the gene set size, GSEA
also reports a normalized enrichment score (NES) for
comparing results across different gene sets. The signifi-
cance of the enrichment associated with each NES can
be assessed by estimating the false discovery rate (FDR
[61]). The detailed explanations for these GSEA statis-
tics can be found in the original paper [40].
For the stem cell matrix, LIMMA supervised analysis

was used to determine the ranked gene lists between
the assigned cluster and the remaining clusters (or
between the assigned cluster and another cluster), fol-
lowed by GSEA of the hStemModule and the hDiffMo-
dule. Similar analysis was also applied to transcriptome
data of H1/H9-derived EBs. Regarding human embryos
at stages S9-S14, SHhES1-derived EB at days 8, 13 and
18, and human embryos at weeks 4-9, LIMMA was
applied to predefine the ranked gene lists between each
time point against the average of all time points. GSEA
results (i.e., NES and FDR) are detailed in Additional
Files 3, 4, 5 and 6. An FDR of 0.05 or lower was
accepted as indicating statistical significance for NES
(positive or negative).

Additional material

Additional file 1: The content of hORGNet. This table lists genes
contained in the hORGNet and its two modules, a stemness-relevant
module (hStemModule) and a differentiation-relevant module
(hDiffModule).

Additional file 2: CPP-SOM of the stem cell matrix. Out of the 219
samples in the stem cell matrix, 136 were extracted according to
published cluster results and sample information (e.g., source tissue, cell
type, differentiation state and lineage of the cells). They were grouped
into 10 clusters, each associated with biological- and profile-similar
characteristics. The transcriptome profiles are visualized by Component
plane presentation integrated self-organizing map (CPP-SOM). Each
presentation illustrates a sample-specific transcriptome map, in which all
of the up-regulated (represented by neurons in red), down-regulated
(represented by neurons in blue) and moderately regulated (represented
by neurons in yellow and green) genes are well delineated. All the
presentations are linked by positions. The colours bar stands for
expression values (log ratio with base 2), with brighter colours denoting
the higher values.

Additional file 3: GSEA using the stem cell matrix. GSEA of the
hORGNet and its two modules (hStemModule and hDiffModule) using
transcriptome data from the stem cell matrix.

Additional file 4: GSEA for comparing pluripotent cells of different
origins. GSEA of the hORGNet and its two modules (hStemModule and
hDiffModule) was performed for pair-wise comparisons between
embryonic pluripotent stem cells (ePSC), teratocarcinoma pluripotent
stem cells (tPSC), and induced pluripotent stem cells (iPSC). Notably,
when compared to ePSCs and tPSCs, iPSCs are more likely to be
associated with the hStemModule (in terms of the stemness potential)
and the hDiffModule (in terms of the differentiation potential),
respectively.
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Additional file 5: GSEA using transcriptome data of early stage EBs.
GSEA of the hORGNet and its two modules (hStemModule and
hDiffModule) was performed using transcriptome data of early stage EBs
(3.5 days) derived from two human ESC lines (H1 and H9). Notably, GSEA
results indicated significant positive correlations between the
hStemModule/hDiffModule and early EBs.

Additional file 6: Comparisons of GSEA results. GSEA results with in
vivo early human organogenesis (S11-S14) (A) and in vitro EB model (8
d, 13 d and 18 d) (B) were compared. Based on NES profiles, 8-day EB is
matched to the S11 (framed in pink), which is consistent with the timing
of this in vitro model that mimics complex in vivo events. The
expression-based positive correlation between the hDiffModule and 13-
day (and 18-day) EB probably reflects the in vitro sustained differentiation
of the in vivo S11, which is further inferred from the tendency toward
increased correlation between the hORGNet and the in vitro EB model.
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