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Abstract

stronger association with biological functions.

throughput experimental data at the gene network level.

Background: The ability to construct biologically meaningful gene networks and modules is critical for
contemporary systems biology. Though recent studies have demonstrated the power of using gene modules to
shed light on the functioning of complex biological systems, most modules in these networks have shown little
association with meaningful biological function. We have devised a method which directly incorporates gene
ontology (GO) annotation in construction of gene modules in order to gain better functional association.

Results: We have devised a method, Semantic Similarity-Integrated approach for Modularization (SSIM) that
integrates various gene-gene pairwise similarity values, including information obtained from gene expression,
protein-protein interactions and GO annotations, in the construction of modules using affinity propagation
clustering. We demonstrated the performance of the proposed method using data from two complex biological
responses: 1. the osmotic shock response in Saccharomyces cerevisiae, and 2. the prion-induced pathogenic mouse
model. In comparison with two previously reported algorithms, modules identified by SSIM showed significantly

Conclusions: The incorporation of semantic similarity based on GO annotation with gene expression and protein-
protein interaction data can greatly enhance the functional relevance of inferred gene modules. In addition, the
SSIM approach can also reveal the hierarchical structure of gene modules to gain a broader functional view of the
biological system. Hence, the proposed method can facilitate comprehensive and in-depth analysis of high

Background

High throughput technologies to accurately profile the
transcriptome have been the major thrust of modern
systems biology [1,2]. Based on the premise that co-
expressed genes and/or closely interconnected proteins
are more likely to be related to a particular biological
function, researchers have made an effort to identify
groups of genes, called modules [3], to gain a better
understanding of the biological system of interest. Early
attempts in building such gene modules depended pri-
marily on the co-expression property of genes [4-8].
Combining gene expression with protein-protein inter-
action data greatly expanded the modules and in some
cases enhanced the functional association of modules
[9-15]. Although gene expression and protein interac-
tion information have been used in constructing gene
modules, these approaches have not taken advantage of
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the vast amount of knowledge accumulated about gene
annotation/function. Therefore, these approaches would
not be expected to be maximally effective in construct-
ing modules with strong association to biological func-
tions [16,17].

Recently, the concept of semantic similarity, which
was developed for and used in the field of natural lan-
guage processing [18-20] has been applied to analyze
gene ontology terms and used to predict and confirm
protein functions and interactions [21-24]. Wang et al.
[25] developed a Gene Ontology (GO) [26] structure-
based measure to quantify semantic similarity between
individual terms as well as genes and showed the advan-
tage of using semantic similarity in organizing complex
biological terms.

We postulated that the direct incorporation of seman-
tic similarity based on GO annotation could significantly
enhance the construction of biologically meaningful
gene modules which have strong associations with
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known biological functions. We have therefore devel-
oped SSIM (Semantic Similarity-Integrated approach for
Modularization), to integrate various gene-gene pairwise
relationships including similarity measures based on GO
biological process (BP) annotation of genes, gene expres-
sion pattern, and protein-protein interaction informa-
tion. The integrated information is then used to group
genes into modules using affinity propagation [27]. Affi-
nity propagation is a clustering method that does not
use pre-selected centers for clustering, instead it gener-
ates exemplars that best represent a group of data
points, in this case genes, by considering all similarities
between pairs of data points and testing all data points
as potential exemplars. A group of data points that have
the same exemplar can then be considered to be in a
cluster. The modules generated by SSIM are found to
be more significantly and specifically associated with
biological functions than the results obtained from two
methods, Module Analysis via Topology of Interactions
and Similarity Sets (MATISSE) [12] and Interaction
Component Models for Gene modules (ICMg) [14].

Results and discussion

MATISSE was originally evaluated using the expression
information of 1990 osmotic stress-associated genes in
yeast and ~69,000 yeast protein interactions. ICMg was
tested with a slightly smaller set of osmotic stress-asso-
ciated genes and using a different set of protein interac-
tion data (see methods). MATISSE also adapted a
strategy to generate connected modules by including
information from genes that are not in the original
selected gene set, referred to back nodes [12]. ICMg
focused on the information within the set of selected
genes only.

To compare and evaluate the performance of SSIM,
we analyzed the same datasets used in MATISSE and
ICMg studies (MATISSE dataset and ICMg dataset).
Since  MATISSE and ICMg used probabilistic
approaches to optimize the construction of gene mod-
ules, the inferred connections and number of modules
could vary in each run. To obtain the number of mod-
ules for comparison, MATISSE was executed 20 times
as described [14], which yielded the median number of
gene modules of 24 for both datasets. ICMg was then
also executed 20 times with a fixed number of modules
at 24. For SSIM, we adjusted the preference value to
obtain the same number of modules (see methods).

Semantic similarity-integrated approach for
modularization (SSIM) generates functionally relevant
gene modules

GO enrichment analysis with statistical testing such as
Fisher exact test was the most commonly used approach
to evaluate the functional association of individual gene
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modules. A low p-value between a gene module and a
GO term would imply a strong association of the mod-
ule with the specific biological function represented by
the term. Since SSIM integrates semantic similarity of
GO BP (biological process) terms in gene module con-
struction, it is expected to have a better GO enrichment
performance compared to other methods. Therefore a
different annotation scheme, MIPS FunCat [28], which
is independent of GO, was also used to evaluate the
functional associations of gene modules.

For a given significance level, the number of modules
enriched with at least one annotation term and the
number of annotation terms enriched in at least one
module are referred as specificity and sensitivity [13].
For each method, the sensitivity and specificity were cal-
culated and summarized into a measure of functional
enrichment, an F-measure defined as F = 2 x Sensitivity
x Specificity/(Sensitivity + Specificity) [13]. Note that
the ratio of modules enriched with at least one annota-
tion term (i.e. specificity) might be also expressed as
precision. The results from SSIM showed better func-
tional enrichment significance (F-measure) for MIPS
FunCat annotations (as well as GO and GO BP terms)
than other methods (Figure 1 and Additional File 1).
ICMg gave comparable results to SSIM, whereas
MATISSE showed lower performances in terms of both
sensitivity and specificity. This could be due to a con-
straint on the size of the modules (a default parameter
with no more than 100 genes per module was used in
this study, but it is adjustable by user) and the addition
of back nodes (genes that were not in the initial set of
genes but were later included to make connected gene
modules) in MATISSE.

To further evaluate the overall functional enrichment
performance from the three different methods, semantic
similarity between the terms and the shortest paths of
the terms to the root (e.g. GO:0008150, biological pro-
cess) were investigated (see methods). If enriched terms
were closely related to each other (coherency) and were
far away from the root in GO hierarchy (depth), they
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Figure 1 Functional enrichment analysis results. The functional
enrichment performance of each method was evaluated using
three different annotation datasets, all GO terms, GO BP terms and
MIPS FunCat terms. The results were summarised using F-measure
(Y-axis, see text). Results for MATISSE and ICMg were obtained using
the mean values of 20 runs.
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may reveal more specific and detailed biological func-
tions. Enriched GO terms associated with the modules
from SSIM have higher average semantic coherency,
which measures how enriched GO terms are coherent
in terms of semantic similarity, and comparable depth
relative to other methods (see method and Additional
file 2).

SSIM produces modules with strong functional
association and high expression homogeneity

We also investigated the homogeneity of gene expres-
sion profiles and topological connectivity of modules
generated by three different methods using average
Pearson correlation as well as average clustering coefti-
cient [29] of genes within the same module. As shown
in Figure 2, for both datasets, SSIM and MATISSE
yielded modules with similar levels of expression homo-
geneity and topological connectivity while ICMg pro-
duced modules composed of densely connected genes
with poorly co-expressed profiles.

This finding also suggests the possibility of using
SSIM as a tool to explore gene regulatory networks
since genes with similar expression profiles are com-
monly co-regulated [4,7,30-33]. Notably, the study con-
ducted by Ulitsky and Shamir [12] indicates that
modules generated by random sampling of genes with
sufficient network connectivity could give favorable
topological properties and functional enrichment results,
but with much lower expression homogeneity. This
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Figure 2 Expression homogeneity and topological connectivity
of modules. Expression homogeneity and topological connectivity
of a module were calculated using average Pearson correlation
among genes in the module and average clustering coefficient of
the network generated by the genes, respectively. Average
expression homogeneity and connectivity over all modules were
shown for each method. For MATISSE and ICMg, mean and
standard deviation over 20 runs were taken.
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implies that significant GO enrichment results for gene
modules might be obtained by chance if we just consid-
ered topological connectivity of genes; thus, additional
criteria such as gene expression homogeneity must be
used to ensure the reliability of functional association
for gene modules.

For a given number of modules, the SSIM approach
seems to generate gene modules with better functional
association and higher correlations in their expression
homogeneity. For example, one of the ICMg modules
(ICMg module 23) shared a large portion of genes with
two modules generated by SSIM (SSIM module 4 and
10) (see methods and Additional File 3, Table S1). The
GO terms enriched in the ICMg module 23 implicated
two biological functions, “transport” and “lipid biosyn-
thetic process” while in SSIM, the two functions were
separated into two different modules, module 4 and 10,
with much higher functional association (lower p-value)
and expression homogeneity (Figure 3 and Additional
file 3, Table S2 and S4).

SSIM can be used to reveal the hierarchical structure of
gene modules

To compare the efficiency of constructing gene modules
with different algorithms, we have used a fixed number
of modules (24 modules in this study). In SSIM, a larger
preference value of affinity propagation [27] means that
every gene is more likely to be an exemplar of a module
(module center), which would produce a large number
of modules composed of highly similar genes in terms
of integrated similarity and allow us to view the system
in detail. A smaller preference value would generate
fewer modules which offer a broader, less detailed over-
view of the system. This implies that SSIM can also be
used as a tool to generate a functional hierarchy of gene
modules by virtue of using semantic similarity. As an
example, we applied the SSIM approach to a MATISSE
dataset with a wide range of preference values and
chose three sets of modularization results with 12, 18
and 37 modules (see Additional file 4) to illustrate the
hierarchical structure of gene module generated by
SSIM. Figure 4A shows that large-size modules obtained
from a smaller preference value were hierarchically
decomposed into smaller modules using a larger prefer-
ence value. As an example of the hierarchical structure
of gene modules generated with SSIM using different
preference values, one of the module obtained from the
“12-module set” representing various “transport” func-
tions is split into two groups, based on the membership
of “18-module set”, showing slightly different expression
profiles. One of the two groups from the “18-module
set” is further divided into two smaller groups based on
“37-module set”, which further stratify the “transport”
function into protein and ion transport (Figure 4B).
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Figure 3 Comparison between modules identified by ICMg and SSIM. One of the modules identified by ICMg method (ICMg module)
shares a number of genes with two separate modules identified by SSIM (SSIM module A and B). Expression profiles of genes in three modules
were shown on the left and protein-protein interaction network was shown in the middle. Genes shared by ICMg and SSIM modules are
indicated by pink and light blue nodes, and ones exclusively belong to ICMg, SSIM module A and SSIM module B are depicted by white, red
and blue nodes, respectively. In the right panel, enriched GO BP terms (p < 1 x 10°) and their uncorrected p-values for each module are

GOIb GO Term P-value
GO:0006810  transport 4.75E-30
GO:0055085  transmembrane transport 1.59E-14
GO:0015031  prolein fransport 3.78E-12
GO:0018193  peptidyl-amino acid modification 383E-10
GO:0008888  ER to Golgi vesicle-mediated transport 5.89E-09
GO:0015848  organic acid transport 1.00E-08
‘GO:0006817  phosphate transport
GO:0016192  vesicle-mediated transport

7.90E-06
1.12E-05

GO:0008811__ion transport 1.25E-05
GO GO Term P-value

GO:0008810  transport

GO:0008610  lipid biosynthetic process
GO:0018193  peptidyl-amine acid modification
‘GO:0006696  ergosterol biosyrthetic process

8 72E-09
1.26E-06
2.66E-06
8.33E-06

G0:0009100 _ glycoprotein metabolic process 9.57TE-05
GO GO Term P-value

GO:0016126  sterol biosynthetic process
GO:0008694  steroid biosynthetic process

1.03E-18
501E-18
288E-17
526E-17
247E-15
1.28E-10

GO:0008696  ergosterol biosyrthetic process
GO:0008610  lipid biosynthetic process
‘GO:0006066  alcohol metabolic process
GO:0044255  cellular lipid metabolic process
1.86E-10
7.59E-09
1.03E-07
3.25E-06
2.33E-05
8.11E-06

GO:0043094  cellular metabolic compound salvage
GO:0008628  lipid metabolic process
GO:0008152  metabolic process

GO:0008299  isoprenocid biosynthetic process
GO:0055114  ovadation reduction

GO:0008633 fatty acid bi process

Extension of the module identified by SSIM approach
Suppose that we have information about a set of genes
U and thereby choose a subset V as genes of interest to
be used to construct gene modules. The remaining
genes (V°), where V UVE = U/ and V NV€ = g, are gener-
ally not considered in constructing gene modules. How-
ever, the genes in V° might have many interactions with
the genes in gene set V and potentially provide impor-
tant information in representing the biological function
of the constructed modules. Such information can be
incorporated by including these genes in V< using a
module extension procedure (see methods). As an
example, one of the modules identified by SSIM (using
the MATISSE dataset) had 72 genes representing func-
tions related to “cell cycle”. The addition of 55 neigh-
boring interconnected genes from V that were not in
the initial gene list V increased the significance level of
enriched GO BP terms and the average clustering coefti-
cient from 0.0648 to 0.2934 (see Additional File 5).

SSIM can be used to reveal biological processes involved

in complex disease

The recently described gene networks involved in prion
disease model was a significant development in the
advance of systems biology [34]. It demonstrated the
value of constructing gene networks to reveal biological
processes involved in this complex disease. The study
analyzed gene expression profiling results from several
different experimental conditions and time points for
prion disease animal model. A set of roughly 300

differentially expressed genes (DEGs) that were common
to different experimental conditions (mouse strains and
prion types) was identified from these analyses. These
DEGs were first classified by GO annotations, then
hand-curated and assigned into different gene networks
based on functional enrichment results and prior knowl-
edge of the genes. Additional non-differentially
expressed genes were also included to complete and
illustrate the functionality of the networks. It was sur-
prising to find that the pathogenesis of prion disease
can be largely explained by only four major networks:
PrP5¢ replication and accumulation, microglial and
astrocytic activation, synaptic degeneration, and neuro-
nal cell death [34]. Genes in these four networks are
involved in proteolysis and lipid metabolism for PrP*¢
replication and accumulation network, immune
responses for microglial and astrocytic activation net-
work, mitochondrial dysfunction and apoptosis for neu-
ronal cell death network, and transcription-related
function, intracellular signal transduction and ion trans-
port-related function for synaptic degeneration network.

To test the feasibility of using SSIM in complex dis-
ease analysis, the same set of genes used in the prion
network construction was fed into SSIM. A total of 16
gene modules were obtained and they could largely sub-
sume into the four larger manually generated networks
previously described (see Table 1 and Additional File 6).
For example, modules 1 and 3 contain a total of 36
genes that are highly associated with lipid metabolism
and proteolysis based on GO BP enrichment result,
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Figure 4 Hierarchical structure of modules generated by SSIM approach. Using different preference values, three sets of modules (12, 18
and 37 modules) were obtained (see Additional file 4) and the membership of genes over the three module sets was expressed as a matrix
form. When gene i and j belong to the same module and the membership is conserved in any one, two and three sets, the element of matrix
in ith row and jth column is set to 1 (red, least conserved over the sets of modules), 2 (orange) and 3 (yellow, most conserved), respectively. If
two genes are not in the same module, the corresponding element in the matrix has a zero value (black). Hierarchical clustering result of the
matrix was shown in (A). Most orange and yellow squares are subsets of red squares along the diagonal, which means that a large module is
hierarchically split into several smaller modules according to the change of preference values. (B) As an example, the decomposition of a large
module (red square) identified in “12-module set” into smaller modules obtainable in “18-" and “37-module set” is shown with the expression
profiles of genes and enriched GO BP terms. A module representing general transport function (12-module set) is stratified into modules
specifically related to protein and iron ion transport (37-module set).
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Table 1 Similarity between modules identified by SSIM and four major prion subnetworks

Module Genes in the module PrP*¢ accumulation Microglial activation Neuronal cell death Synaptic degeneration
1 21 16 (76%) 5 (24%) 2 (10%) 0 (0%)
2 27 7 (26%) 21 (78%) 1 (4%) 1 (4%)
3 15 12 (80%) 0 (0%) 3 (20%) 0 (0%)
4 37 5 (14%) 5 (14%) 10 (27%) 20 (54%)
5 42 16 (38%) 14 (33%) 13 (31%) 4 (10%)
6 33 1 (3%) 1 (3%) 12 (36%) 24 (73%)
7 34 5 (15%) 22 (65%) 9 (26%) 2 (6%)
8 37 6 (16%) 0 (0%) 9 (24%) 24 (65%)
9 49 2 (4%) 7 (14%) 37 (76%) 6 (12%)
10 41 19 (46%) 19 (46%) 8 (20%) 2 (5%)
11 39 7 (18%) 29 (74%) 5 (13%) 4 (10%)
12 43 2 (5%) 13 (30%) 18 (42%) 12 (28%)
13 46 19 (41%) 38 (83%) 2 (4%) 0 (0%)
14 57 5 (9%) 36 (63%) 17 (30%) 7 (12%)
15 67 5 (7%) 2 (3%) 23 (34%) 49 (73%)
16 60 5 (8%) 0 (0%) 2 (3%) 54 (90%)

For each module, the number and the proportion of genes corresponding to prion subnetworks are shown. Since some genes are involved in multiple

subnetworks, the row-wise summation of proportions may exceed 100%.

which almost completely recapitulate the key nodes
involved in PrP*¢ accumulation network. In addition to
the modules related directly to the four reported net-
works, SSIM also suggested processes involved in tissue
remodeling such as actin cytoskeleton organization
(GO:0030036), angiogenesis (GO:0001525), multicellular
organismal development (GO:0007275) and cell differen-
tiation (GO:0030154) might also be involved in the pro-
gression of prion disease. We will conduct more
detailed network analyses with SSIM using prion disease
datasets including the comparison between different
incubation times, host strains, and infectious agents,
since this preliminary study agrees well with the manu-
ally constructed networks.

Conclusions

In this report, we have proposed and demonstrated a
new approach, Semantic Similarity-Integrated approach
for Modularization (SSIM), for inferring biologically
meaningful gene modules. The SSIM method integrates
various gene-gene pairwise similarity information
obtained from gene expression profiling results, protein
interactions and GO annotations to construct gene
modules. We showed that gene modules generated by
SSIM gave higher specificity with stronger association
with biological functions based on the assessment of
GO and MIPS annotation terms.

Since SSIM is based on pairwise similarity values of
genes, there is room for further improvement by inte-
grating additional quantitative similarity measures. For
example, GO semantic similarity of other categories
(molecular function (MF) and cellular component (CC))

or newly developed semantic similarity measures [35-37]
can also be used. In addition, different clustering algo-
rithms can also be used to enhance the construction of
gene modules. The evaluation and comparison between
various gene pairwise similarities and clustering methods
will be interesting to explore in the future.

We have also demonstrated the ability to use SSIM to
uncover the hierarchical structure of gene modules, i.e.
hierarchical association and dissociation of modules at
different levels of functional detail. This would allow us
to gain a systematic understanding of a given biological
system. When some genes are excluded from the set of
selected genes (often differentially expressed genes) due
to marginal expression changes or for other reasons, the
module extension procedure adapted in SSIM can incor-
porate them and increase the functional interpretability
of gene modules without sacrificing the statistical signif-
icance of functional association of gene modules.
Although a similar approach has been used in other stu-
dies [12,15], the effect of network extension on func-
tional association of gene modules has not been
evaluated carefully in those methods.

Even though tools to construct gene modules have
been developed, they have been mainly applied in data-
sets from relatively simple model organisms
[4,5,9,11,13,14]. The SSIM performed well not only with
the dataset from yeast, but also with a much more com-
plicated dataset, the prion disease mouse model. Gene
modules from SSIM effectively recaptured the manually
constructed key networks described in prion disease,
and also revealed new processes that might also be
involved in the disease development. Our results suggest
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the SSIM approach can quickly infer gene modules with
coherent biological meaning and thereby accelerate sys-
tems biology studies in complex diseases.

Methods

Reference datasets and methods

We used 133 expression profiles representing the osmo-
tic shock response of Saccharomyces cerevisiae in var-
ious conditions [38]. Ulitsky and Shamir [12] selected
1990 genes and curated ~69,000 protein interactions for
MATISSE. Parkkinen and Kaski [14] used 1771 genes
and ~10,000 interactions for ICMg. While 1771 genes
are a subset of 1990 genes, ~10,000 interactions are not
exactly a subset of ~69,000 interactions since they used
a different approach to curate yeast protein interaction
data. Both of the datasets were used to compare and
evaluate the performance of all three different methods.
We used implementations of MATISSE (Java software)
and ICMg (R-package) with their default parameters.
These datasets (MATISSE data and ICMg data) and
implementations were downloaded at http://acgt.cs.tau.
ac.il/matisse and http://www.cis.hut.fi/projects/mi/soft-
ware/ICMg, respectively.

Similarity measures
Building gene modules can be viewed as the grouping
genes of interest according to their pairwise similarity
values. Pearson correlation between each pair of genes
(gene i and gene j), was used as expression similarity, e;.
From the global protein-protein interaction network,
pairwise topological similarity (z;) was obtained using
topological overlap matrix [39] which was initially devel-
oped to identify gene modules in E. Coli metabolism. It
reaches the maximum value of 1 when there is a direct
connection between two genes and has the value
between 0 and 1 when two genes are not linked but
share some direct neighbors. If there is no direct con-
nection between two genes and no direct neighbors
shared by them, ¢;; has the minimum value of 0. GO
semantic similarity between two genes (g;;) was com-
puted by the metric proposed by Wang et al. [25] which
took the characteristics of GO hierarchy into account
and overcame drawbacks of previous semantic similarity
measures [18-20]. g; has the value of 0 for two genes
with no similarity and 1 for genes having identical GO
annotations. Although GO semantic similarity can be
computed for three categories of GO terms, biological
process (BP), molecular function (MF) and cellular com-
ponents (CC), we used the similarity of GO BP terms in
this study. An overview of GO semantic similarity can
be found in Pesquita et al. [40].

To combine three similarity measures, they were
assumed to be independent of each other, which is
probably a good first approximation since they were

Page 7 of 9

derived from different information sources. First, for
expression similarity, the empirical cumulative density
function, F(E) could be estimated from all e; values,
where E = {e;; | i = 1,.., n-1,j = i+1,.., n, and n = total
number of genes of interest} and the probability of hav-
ing the similarity less than or equal to e;;, Pr(E<e;)
could be obtained from F(e;). With this method, a large
e;; value from highly similar pair of genes has a high
probability - close to one. The probabilities for t;;, Pr
(T<t;) and g, Pr(G<g;) could be obtained similarly to
e;. Next, the joint probability was calculated by simply
multiplying three probabilities in accord with the inde-
pendence assumption, i.e. Pr(E<e;, T<t;, G<g;) = Pr
(E<e;)-Pr(T<t;) Pr(Gsg;). This is then used as a compo-
site similarity measure.

Clustering method

Affinity propagation is a clustering algorithm using the
concept of message-passing [27]. It was modeled using a
factor graph [41] with two types of messages between
data points (in this study the points were genes) that
were derived from the max-sum algorithm in the factor
graph. First consider all data points as potential cluster
centers and then find high quality cluster centers and
their members by updating messages. The detailed
description of the method can be found in [27,42]. Since
affinity propagation takes non-positive real-valued simi-
larities as input, the combined similarity was converted
into S;; = Pr(E<ey;, T<t;, G<g;)-1, S;e [-1,0]. The only
parameter affecting the number of clusters is the “pre-
ference” which represents how “preferable” each data
point is as a cluster center. We used a globally shared
preference for all genes and found a proper value for
the comparison study in order to produce the same
number of modules as other methods, so that the com-
parisons could be made. We used authors” MATLAB
implementations of affinity propagation http://www.psi.
toronto.edu/affinitypropagation.

Gene ontology enrichment analysis

Gene ontology data were downloaded from GO consor-
tium (http://www.geneontology.org, OBO v1.2 format)
and MIPS FTP site (ftp://ftpmips.gsf.de/catalogue/anno-
tation_data, FunCat v2.1 last modified on 5/25/2008).
Yeast gene association with gene ontology and gene
information data were obtained from the NCBI reposi-
tory on 2/17/2010 and 9/5/2010, respectively. P-value of
enriched annotation term was obtained by one-sided
Fisher exact test without multiple testing corrections.
The number of enriched annotation terms in at least
one module at a given significance level (i.e. p < 1 x 10
%Y and the number of modules enriched with at least
one annotation term at the level were counted and used
for computing sensitivity and specificity, respectively. In
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Additional File 1, these numbers were expressed as
functions of p-values (p = [10™, 107,.., 10™°)).

Coherence and depth of enriched gene ontology terms

For each method used in the comparison study,
enriched GO BP terms in ith module having uncor-
rected p-values less than 1 x 10 were chosen. All pair-
wise semantic similarities between the terms, ggp i (j =
1,..., m;-1 and k = j+1,... m;, where m; = the number of
chosen terms from ith module) were calculated by
Wang'’s approach [25] and the depth of each term, dgp;
(j = 1,... m;) was obtained using the shortest path to the
root term (GO:0008150 biological process) in GO hier-
archy. We could obtain representative coherency and
depth of enriched GO BP terms for the ith module by
Ggpi = 2/m(mi-1)-E;%; gppjx and Dpp; = 1/m;%; dpp,
respectively (i = 1,..., total number of modules identified
by the method). Mean values of Ggp and Dgp over all
modules were defined as average coherency and depth
of enriched GO terms and shown in Additional File 2.

Comparison of the modules identified by different
methods

For MATISSE and ICMg, due to their probabilistic nat-
ure, it is not possible to make a unique assignment of
genes into modules. Instead, the most likely assignment
can be identified using consensus matrix of which ele-
ment at ith row and jth column represents how many
times gene i and gene j are grouped into the same mod-
ule among 20 runs. Using hierarchical clustering of the
consensus matrix, the assignment of genes into 24 mod-
ules was obtained and used for the comparison between
ICMg module and SSIM modules (see text and Addi-
tional File 3).

Extension of a module
A module identified by SSIM can be extended according
to the following procedure.

Step 1. find neighbor genes which have direct inter-
actions with more than one gene in the module, but
are not in the selected gene set. Sort them in des-
cending order based on the number of interactions
with genes in the module

Step 2. for the top scoring neighbor gene, GO
semantic similarities between the gene and all genes
in the module were calculated

Step 3. if the mean value of the similarities com-
puted in Step 2 is larger than the mean semantic
similarity among genes in the module, the neighbor
gene is added to the module

Step 4. go back to Step 2 until the genes are all
classified
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This procedure imposes a priority to the neighbor
genes having many connections with genes in the mod-
ule (Step 1) and minimizes the involvement of irrelevant
neighbor genes by increasing average semantic similarity
of the module at every addition of a relevant neighbor
gene (Step 3). Although we only used semantic similar-
ity between the neighbor gene and genes in the module
due to the limitation of expression profiles, expression
similarity can be also added to Step 2 and 3 when gene
expression of neighbors are available.

Additional material

Additional file 1: Additional enrichment results. The number of
enriched modules, number of annotation terms and F-measures (GO, GO
BP and MIPS FunCat) were shown as functions of p-value. Results for
MATISSE and ICMg were obtained using the mean and standard
deviation values of 20 runs.

Additional file 2: Coherency and depth of significantly enriched GO
BP terms. Average expression coherency and depth of significantly
enriched GO BP terms in the modules identified by different methods
were calculated as described in the method section. Large coherency
and depth values mean that GO BP terms enriched in the same module
are semantically similar and associated with specific functions,
respectively. For MATISSE and ICMg, mean and standard deviation over
20 runs were taken.

Additional file 3: Summary of the modules identified by three
different methods. The assignments of 1990 genes in MATISSE data
into 24 modules identified by SSIM, MATISSE and ICMg were summarized
in Table S1 (see methods). GO BP enrichment results of the modules
obtained from SSIM, MATISSE and ICMg were also shown in Table S2, S3
and S4, respectively.

Additional file 4: Results of SSIM method over a wide range of
preference values. The number of modules and average expression,
topological and semantic similarities of the modules were expressed as
functions of preference.

Additional file 5: An example of the extension of a module

Additional file 6: An application of SSIM to prion network datasets
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