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Decoding complex biological networks - tracing
essential and modulatory parameters in complex
and simplified models of the cell cycle
Olivia Eriksson1,3*, Tom Andersson1, Yishao Zhou2 and Jesper Tegnér3*

Abstract

Background: One of the most well described cellular processes is the cell cycle, governing cell division.
Mathematical models of this gene-protein network are therefore a good test case for assessing to what extent we
can dissect the relationship between model parameters and system dynamics. Here we combine two strategies to
enable an exploration of parameter space in relation to model output. A simplified, piecewise linear approximation
of the original model is combined with a sensitivity analysis of the same system, to obtain and validate analytical
expressions describing the dynamical role of different model parameters.

Results: We considered two different output responses to parameter perturbations. One was qualitative and
described whether the system was still working, i.e. whether there were oscillations. We call parameters that
correspond to such qualitative change in system response essential. The other response pattern was quantitative
and measured changes in cell size, corresponding to perturbations of modulatory parameters. Analytical predictions
from the simplified model concerning the impact of different parameters were compared to a sensitivity analysis of
the original model, thus evaluating the predictions from the simplified model. The comparison showed that the
predictions on essential and modulatory parameters were satisfactory for small perturbations, but more
discrepancies were seen for larger perturbations. Furthermore, for this particular cell cycle model, we found that
most parameters were either essential or modulatory. Essential parameters required large perturbations for
identification, whereas modulatory parameters were more easily identified with small perturbations. Finally, we
used the simplified model to make predictions on critical combinations of parameter perturbations.

Conclusions: The parameter characterizations of the simplified model are in large consistent with the original
model and the simplified model can give predictions on critical combinations of parameter perturbations. We
believe that the distinction between essential and modulatory perturbation responses will be of use for sensitivity
analysis, and in discussions of robustness and during the model simplification process.

Background
In recent years, numerous studies characterizing static
topological properties of molecular networks derived
from heterogeneous sources such as metabolic, tran-
scriptomic, transcription factor and protein-protein
interaction data have been published [1]. Concurrently,
several studies have revealed the dynamics of small-scale

molecular networks using innovative applications of
reverse-engineering techniques, modeling and computer
simulation of kinetic equations [2]. However, observa-
tions regarding overall parameter robustness of biologi-
cal circuits may imply that beyond the apparent model
complexity there exists, in a mathematical sense, one or
several core systems or operational principles driving
the system dynamics that are shielded by the more com-
plex original dynamical equations [3-6]. Such a dynami-
cal core is not necessarily apparent from the
connectivity graph or from the original dynamical equa-
tions. The existence of such a core has been supported
by studies employing an ensemble simulation approach
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in the analysis of various computational models [7,8].
Essentially, a large number of different parameter con-
figurations exist that produce the “same” dynamical out-
put from the system, as emphasized in a study by
Gutenkunst et al [9], whereby, using a large set of bio-
chemical models, they found a “sloppy” parameter sensi-
tivity spectra to be a universal characteristic of these
models.
To advance our understanding of molecular networks,

we need to develop methods that permit an analysis of
such underlying core dynamics. Research on model
reduction and reformulation has been at the forefront
within the systems biology community over the last few
years (e.g. [4,10-16]). Several studies have targeted the
elaborate original model using different approaches, and
have arrived at a more compact system description,
which in different ways capture some aspects of the
essence of the original model dynamics. Using model
reduction tools, the number of degrees of freedom are
reduced, while still remaining within the same model
formalism as the original model. By reformulating the
model, the original model is approximated to another
hopefully more transparent modeling formalism, with a
structure that better captures the key qualities of the
original system. Examples of model reduction [17]
include lumping of variables [10,11], separation of time-
scales [14] (or, for example, the classical Michaelis-Men-
ten equation describing enzyme kinetics), sensitivity
analysis based methods, and methods based on identifia-
bility analysis [13]. Examples of transformation of mod-
eling formalism include boolean approximations [4,12],
hybrid stochastic approximations [18], or the simplified
model used throughout this study, a delayed piecewise
linear approximation [15] of an ordinary differential
model.
The simplified model has subsequently been used to

characterize parameters of the original model, as in
Radulescu et al [14], where critical parameters are found
through reduction to dominant subsystems, and after
this analytically mapped back to the original model.
Here, in contrast, we started from the original model, by
exploring the dynamics with sensitivity analysis, and
next compared this to the predictions from the simpli-
fied model. The aim was to investigate to what extent it
is feasible, by using an underlying core description [15],
to explain dynamical properties of the original model
(Figure 1).
The cell cycle is one of the most extensively studied

and essential biological regulatory circuits. The differen-
tial computational models pioneered and developed by
Novak and Tyson [2,19] describing cell cycle regulation
of fission yeast, incorporates and accounts for a large
body of experimental data. During the cell cycle, the cell
grows, DNA replicates, and the cell divides into two

daughter cells. To maintain cell size over several genera-
tions, it is essential that there is a controlled balance
between cell growth and cell division. The model used
in the present study [19] describes the key components
of that regulatory mechanism, consisting of proteins and
protein complexes that drive the cell cycle in fission
yeast. It is detailed in the Methods (equations (3-16))
and is referred to throughout as the NT-model. The
NT-model is thus our point of departure for the model
simplification process and sensitivity analyses. For a
detailed description of the NT-model see [19]. For a
more general discussion of cell cycle dynamics see [2].
To examine the dynamical properties of the original

NT-model, we performed a sensitivity analysis. Two dif-
ferent types of output responses to parameter perturba-
tions were considered. One was qualitative and
described whether the system was still working, i.e.
whether there were oscillations (cell divisions) corre-
sponding to parameters that here we call “essential”.
The other response pattern was quantitative and mea-
sured changes in cell size (cell growth), which described
“modulatory” effects of parameter perturbations. This is
primarily a methodological distinction, i.e. response
effects related to parameter perturbations. In principle,
parameters could be both essential and modulatory,
depending on the perturbations in question. In practice,
when conducting sensitivity analyses, the key question is
which parameters affect the system output, how, and
under what conditions. Here, we extend the scope of
the sensitivity analysis to evaluate the correspondence
between perturbation effects in the original model and
analytical results of the simplified model, focusing on
two types of possible perturbation effects - essential and
modulatory changes - anticipating that the simplified
model should be able to account for both of these situa-
tions. The analysis includes three key steps: (1) pertur-
bations of the parameters of the original NT-model; (2)
a corresponding recalibration of the parameters of the
simplified model; and (3) systematic comparison of the
perturbation effects on the orginal and simplified mod-
els (Figure 1). The perturbation effects of the original
model are investigated by numerical simulations
whereas the corresponding effects of the simplified
model are retrieved by evaluation of analytical
expressions.
In [15] we introduced a scheme by which we could

simplify the NT-model using step functions and a time
delay. Introducing discrete step-functions resulted in a
hybrid model containing both continuous and discrete
variables. In the case of the NT-model, this hybrid
model turned out to be piecewise linear. This delayed
piecewise linear (DPL)-model can be found in the Meth-
ods (equations (17-20)), and is referred to throughout as
the hybrid, or the DPL-model. A piecewise linear
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Figure 1 Work flow. We compared a sensitivity analysis of the original model (Track 1) to predictions from the hybrid model (Track 2) using the
same set of 470 perturbations of original model parameters. Track 1: For each perturbation i) a numerical simulation was performed; ii) output
measures were retrieved (cycle time tCT and cell mass Mend) and; iii) sensitivity scores (Sosci and Smass

i ) were constructed for each parameter.
Track 2: For each perturbation of the original model i) a corresponding recalibration of the hybrid model parameters was performed; ii) the
analytical constraints (NC and SF) were recalculated and; iii) sensitivity scores (hybSosci and hybSmass

i ) were constructed for each original
parameter.
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description facilitates system analysis, as each individual
linear system can be analyzed separately using well
established linear system analysis tools. The combined
results from these separate analyses exposes the beha-
viour of the full system (Figure 2).
Sensitivity analysis refers to a broad range of mathe-

matical and statistical analysis methods that serve to
evaluate the relative merits of a set of parameters in
controlling system dynamics. The aim is to relate varia-
tion (uncertainty) in the system output to variation
(uncertainty) in the system input. The analysis method
chosen depends on the goal. Campolongo et al [20] dis-
tinguish between three types of analysis: (1) factor
screening; (2) local sensitivity analysis; and (3) global
analysis. The first type refers to an analysis targeting the
effects of parameter variation one at a time, i.e. variation
in system output is related to parameters one at a time.
It is a more or less qualitative assessment of the relevant
factors in system dynamics. By contrast, local and global
sensitivity analyses imply detailed quantitative

assessments of relative effects of the isolated factors of
concern. Local analysis makes use of differential calcu-
lus, and stability analysis of equilibrium points. Global
sensitivity analysis targets response effects in the whole
parameter space, as well as interaction effects between
parameters. It relies to a larger extent on statistical
methods. Our purpose in this study was to clarify the
relevance of parameters in cell cycle dynamics. As a
starting point, we performed a screening study to inves-
tigate the relative merits of single parameters in cell
cycle regulation.

Results
Our analysis is based on a set, Porg, of parameter pertur-
bations of the original NT-model, consisting of 470 sin-
gle parameter changes. This set was used to analyse the
relationship between parameter values and model out-
put (cell size and cycle time) through two different
tracks, see Figure 1. During the first track, the sensitivity
analysis, numerical simulations of the NT-model were
conducted for all perturbations in Porg, and scores of
sensitivity were constructed for each model parameter.
During track two, all perturbations of Porg were trans-
lated to corresponding perturbations of the hybrid
model and, instead of simulations, mathematical condi-
tions were evaluated in order to predict the sensitivity
to the perturbations, and thereby construct scores of
sensitivity. Two measures of sensitivity were used in
both tracks, targeting essential and modulatory effects of
perturbations, respectively. Finally, the sensitivity scores
from the two tracks were compared in order to i) vali-
date the predictions from the hybrid model, and ii)
investigate the role of essential and modulatory para-
meters and perturbations. The results are divided into
the following sections: (I) sensitivity analysis of original
model; (II) analytical predictions from the hybrid model;
and (III) comparison between the analytical predictions
and the sensitivity analysis. Finally, (IV) the hybrid
model is used for more complicated predictions.

I Sensitivity analysis of the original model identifying
essential and modulatory perturbation effects
The parameters of the original model, k1,..., μ = porg

(equation (16)), were perturbed one at a time, starting
from a default set of parameter values corresponding to
the wild-type cell (equation (16)). A perturbation con-
sists of a change of the parameter value by a factor psj
(the relative Perturbation Size), where psj Î ps = (10-1,
10-0.8, 10-0.6, 10-0.4, 10-0.2, 100, 100.2, 100.4, 100.6, 100.8,
101). Each of the 47 parameters, porgi ∈ porg, i Î 1,..., 47,
was thus perturbed 11 times given the new value
porgi = porgij = psj × def p

org
i , j Î 1,..., 11, where def p

org
i is the

default value of parameter porgi . For each perturbed

Figure 2 Cell cycle dynamics. Numerical simulation of the hybrid,
DPL-model with the different linear systems indicated. During
different parts of the cell cycle trajectory, different linear systems are
used, here indicated on the time course of the variable y(t) = [MPF]
(t) with green, red, blue and magenta. These linear systems
correspond to the four cell cycle phases G1, S/G2, M and EM, where
EM is the ending of Mitosis. Mathematically, the linear system used
at time t depends on [MPF](t) and t’ (the time since the last
occasion when [MPF] = θslp/ste as detailed in [15]), and the linear
systems are, green: [MPF] <θ25/wee and t’ <τ (the system matrix A12

is used), red: [MPF] <θ25/wee and t’ >τ (A11), blue: [MPF] >θ25/wee and
t’ <τ (A21), and magenta: [MPF] >θ25/wee and t’ >τ (A22). The default
parameter set of [15] was used in this figure.
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simulation, the output trajectory was examined for i)
whether there were consistent oscillations or not, ii)
cycle time tCT and iii) final (before cell division) cell
mass Mend.
i) Out of a total of 470 perturbations (47 × 10, not

counting psj = 1), 437 corresponded to trajectories with
consistent oscillations. ii) When inspecting these trajec-
tories, two distinct patterns emerged - either the cycle
time tCT was constant within the trajectory, or, for a few
of the perturbations, tCT alternated in a repeated pat-
tern, e g. tCT = ..., 111.0, 166.25, 111.0, 166.25, 111.0,...
(denoted quantized cell cycles using the formulation of
Novak and Tyson [19]). Surprisingly, for perturbations
with constant cycle times, most had the same cycle time
tCT = 138.6 (in total 423 perturbations), giving a very
narrow distribution of cycle times (see Figure 3). One
exception to this was the parameter μ, which determines
the speed of cell growth, and naturally has a large
impact on cycle time. iii) For final cell mass Mend, the
pattern reversed. The parameter perturbations generated
a broader distribution of Mend (Figure 3).
We next defined measures of sensitivity summarizing

how sensitive the system was to perturbations of the
single parameter porgi . Two measures were defined, one
based on the cycle time of the oscillations, denoted Sosci ,
and the other based on final cell mass, Smass

i . Since the
cycle time was, in almost all cases, either constant tCT =
138.6 or non-existing (quantized cycle times or no oscil-
lations), we decided to consider only whether we had
proper cell cycle oscillations or not in the definition of
Sosci . Proper oscillations were defined as trajectories that
still oscillated after 4000 min, and had a narrow distri-
bution of cycle times (to remove quantized behaviour).
We therefore ended up with one discrete-qualitative
measure Sosci and one continuous-quantitative Smass

i . In
the calculation of Smass

i , only simulations with proper
oscillations were considered. We denoted perturbations
with a large effect on Sosc essential, and with a large
effect on Smass

i modulatory.

The sensitivity analysis was carried out using two dif-
ferent ranges of parameter perturbations, narrow range
perturbations close to the default parameter value, and
wide range perturbations both close, but also further
away. For narrow range perturbations, Sosci and Smass

i
were calculated using only the two perturbations closest
to the default value, i.e. psnarrow = (10-0.2, 100, 100.2),
while for wide range, all perturbation sizes were used,
pswide = ps.
Essential parameters
The sensitivity measure, Sosci , corresponds to the number
of perturbed simulations of parameter porgi that ended in

cell collapse, i.e. a lack of proper oscillation, Sosci =
∑

j sij,
where sij = 0 if perturbation j resulted in proper oscilla-
tions, and sij = 1 otherwise, j Î 1,..., npert, where npert =
11 for wide and npert = 3 for narrow range perturba-
tions. For narrow range perturbations, all parameters
have Sosci = 0 (Table 1 original model), and therefore the
system is robust against perturbations of this size when
proper oscillations are considered. We here define
robustness as persistent system dynamics after perturba-
tion. It is quantified with the sensitivity scores (being
the opposite to sensitivity). Even for larger perturba-
tions, oscillation is a robust behaviour for most para-
meter perturbations (Table 1 original model, wide range
perturbations). Still, some perturbations do affect oscil-
lations, e.g. the rate constants k9 and k10 of the hypothe-
sized intermediate enzyme IEP, of the Slp1/APC
subsystem, which remove the protein complex MPF at
the end of mitosis. In the coming analysis, we denote
parameters with Sosci > 0 as essential, and with Sosci = 0
as non-essential.
Modulatory parameters
The sensitivity measure, Smass

i , corresponds to the aver-
age effect on final cell mass Mend of the n perturbations
of parameter porgi that had proper oscillations (sij = 0)

(Figure 4). It is defined as Smass
i =

∑
j′ |Mend

ij′ − Mend
def |/n,

where j’ corresponds to perturbations with sij = 0, Mend
ij′
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Figure 3 Different distributions of cell mass and cycle time. Histograms of cell mass (Mend) and cell cycle time (tCT) respectively. Cell mass
was measured at the end of the last cell cycle of each simulated trajectory, just before cell division and was 2.0 for the default parameter set.
Only trajectories with proper oscillations (defined in the main text) were used. Cycle times for the two last cycles of each trajectory are plotted.
The cycle time of the default parameter set was 138.6.
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is the final cell mass after the j’th perturbation of para-

meter porgi , and Mend
def is the final cell mass using the

default parameter set (16).
With narrow range perturbations (Table 2 original

model) the parameters with the highest sensitivity
(Smass

i ) are related to either the proteins Cdc25 or Wee1,
or to the formation or destruction of the protein Cdc13.
This is in agreement with the fact that, in the original
NT-model, final cell mass is in large determined by the
SNIC bifurcation [19] corresponding to the G2/M
checkpoint. This checkpoint is realized by the phosphor-
ylation and dephosphorylation of Cdc25 and Wee1.
With wide range perturbations (Table 2 original

model), the top scoring parameters also include k′
16 and

k15, which are related to TF (a transcription factor)
activity, and k′

4 related to the activity of the protein Ste9.
This is most likely a result of the G1/S checkpoint not

Table 1 Essential perturbation effects - comparison
between the hybrid model predictions and the original
model results

Essential Parameter Effects

Narrow Range Wide Range

Parameter Original Hybrid Parameter Original Hybrid

k′′
25 0 0 k10 6 1

k′
25 0 0 k9 5 1

k′′
wee 0 0 k6 4 4

k′
wee 0 0 k′′

5 4 4

Ji25 0 0 k14 3 0 *

Ja25 0 0 k13 3 0 *

Vi25 0 0 k8 3 3

Va25 0 0 k7 3 4

Jiwee 0 0 J5 3 4

Jawee 0 0 k′
3 2 0

Viwee 0 0 k′′
wee 1 1

Vawee 0 0 J7 1 0

J16 0 0 * k′′
25 0 0

J15 0 0 * k′
25 0 0

k′′
16 0 0 * k′

wee 0 0

k′
16 0 0 * Ji25 0 0

k15 0 0 * Ja25 0 0

k14 0 0 * Vi25 0 0

k13 0 0 * Va25 0 0

kdiss 0 0 * Jiwee 0 0

k′′
12 0 0 * Jawee 0 0

k′
12 0 0 * Viwee 0 0

k12 0 0 * Vawee 0 0

k11 0 0 * J16 0 0 *

J10 0 0 J15 0 0 *

J9 0 0 k′′
16 0 0 *

k10 0 0 k′
16 0 0 *

k9 0 0 k15 0 0 *

J8 0 0 kdiss 0 0 *

J7 0 0 k′′
12 0 0 *

k8 0 0 k′
12 0 0 *

k7 0 0 k12 0 0 *

J5 0 0 k11 0 0 *

k6 0 0 J10 0 0

k′′
5 0 0 J9 0 0

k′
5 0 0 J8 0 0

J4 0 0 k′
5 0 0

k4 0 0 J4 0 0

k′
4 0 0 k4 0 0

J3 0 0 k′
4 0 0

k′′
3 0 0 J3 0 0

k′
3 0 0 k′′

3 0 0

k′′′
2 0 0 k′′′

2 0 0

k′′
2 0 0 k′′

2 0 0

0.001 0.002 0.005 0.010 0.020 0.050 0.100
0

1

2

3

4

5
Mend

ji25

Figure 4 Calculation of the Smass score. The distance between
the perturbed final cell mass, Mend

ij′ (small dots) and the default
final cell mass Mend

def (large dot), for each perturbation of parameter
Ji25. The sensitivity score Smass

Ji25 is calculated by the average distance
of all perturbations.

Table 1 Essential perturbation effects - comparison
between the hybrid model predictions and the original
model results (Continued)

k′
2 0 0 k′

2 0 0

k1 0 0 k1 0 0

Comparison between the sensitivity analysis of the original model and the
analytical predictions of the hybrid model (mapped back to the original
model parameters), at small range and wide range parameter perturbations.
The sensitivity scores Sosci (original model) and hybSosci (hybrid model),
describing essential perturbation effects are used. The parameters are sorted
by the sensitivity scores (based on the original model) in decreasing order; *
indicates original model parameters without a counterpart in the hybrid
model. Scores corresponding to essential effects (Sosci , hybSosci > 0) are in
bold.
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functioning properly in the presence of these large para-
meter perturbations further away from the default para-
meter set, and being active at a point where it should
not. In the coming analysis, we denote parameters with
Smass
i > 0.1 as modulatory and with Smass

i < 0.1 as non-
modulatory. This, a bit arbitrarily chosen, limit
(Smass

i = 0.1) corresponds to a relative average change of
cell size of 5%.

IIA Analytical predictions from the hybrid model on
essential and modulatory perturbation effects
In [15] we introduced a scheme by which we could sim-
plify the NT-model. Dynamical switching modules were
identified and replaced by time lagged step-functions,
resulting in the hybrid DPL-model. This model approxi-
mation process is summarized in the Methods. The
hybrid model (equations (17-19)) consists of four linear
systems, defined by the matrices Akl, k, l Î {1, 2}, where
the linear system at each time-point t is determined by,
so called, switching rules (equation (18)). Figure 2 dis-
plays a numerical simulation of the DPL-system, indicat-
ing the different linear systems. A switch between
systems is initiated when the output y(t) = [MPF](t),
corresponding to the concentration of the protein com-
plex MPF, crosses a threshold θ25/wee or θslp/ste. Note
that when θ25/wee is passed, the switch is immediate,
whereas, when θslp/ste is passed, the switch is delayed
with τ minutes. The switching rule can therefore be con-
sidered as equipped with a memory, and we have
denoted the model delayed piecewise linear. An analysis
of the DPL-model [15] showed that each separate linear
system, defined by the system matrix Akl, was stable,
having an asymptotically stable fixed point
(x̂kl = −A−1

kl Buext, with real negative eigenvalues). Com-
bining the four linear systems with the switching rules
revealed, however, that some of the fixed points could
never be reached without passing a switching threshold
(and thereby a change of linear systems). Thus, these

Table 2 Modulatory perturbation effects - comparison
between the hybrid model predictions and the original
model results

Modulatory Parameter Effects

Narrow Range Wide Range

Parameter Original Hybrid Parameter Original Hybrid

k1 0.637 0.593 k1 3.98 3.84

k′′
wee 0.533 0.507 k′′

wee 2.35 2.17

Vi25 0.523 0.25 k′
2 1.77 2.35

Va25 0.521 0.249 Vi25 1.27 0.764

k′
2 0.361 0.502 Va25 1.27 0.762

k′′
25 0.225 0.31 k15 0.966 0. *

Ji25 0.222 0.29 k′
16 0.965 0. *

k′
25 0.168 0.106 k′

4 0.948 0.0102

k′
3 0.0367 0.0165 k′

3 0.859 0.259

Viwee 0.0356 0.237 k13 0.83 0. *

k13 0.0352 0. * k14 0.823 0. *

k14 0.0345 0. * k′′
25 0.801 1.08

Vawee 0.0343 0.234 Ji25 0.786 1.01

k11 0.0307 0. * k′
25 0.555 0.408

J4 0.0259 0.0148 Viwee 0.304 0.65

k′′
2 0.0237 0.0148 Vawee 0.303 0.649

k′
12 0.0212 0. * k9 0.207 0.396

k9 0.0212 0.0191 k11 0.202 0. *

k′′
5 0.02 1.64 × 10-7 J4 0.157 0.0941

k7 0.0181 0.000916 k′′
2 0.149 0.094

k′′′
2 0.0142 0.000213 k′

12 0.0817 0. *

k′′
3 0.0142 0.000237 k′′′

2 0.065 0.00137

k′
4 0.0135 0.00256 k7 0.0491 0.00615

k6 0.0118 0.000217 k′′
3 0.0421 0.000484

k′′
12 0.00821 0. * Jawee 0.0392 0.097

Jawee 0.00655 0.017 Ja25 0.0366 0.0435

k4 0.00624 0.0134 k4 0.0354 0.0632

Ja25 0.00574 0.00586 k′′
12 0.029 0. *

k8 0.00574 0.000655 k′′
16 0.0238 0. *

k10 0.00548 0.0189 k10 0.022 0.396

J5 0.00291 0.000132 k8 0.0127 0.00918

k15 0.00282 0. * k′′
5 0.0102 3.04 × 10-7

k′
16 0.00232 0. * J5 0.00917 0.0000567

k′′
16 0.000926 0. * k6 0.00828 0.000456

k′
wee 0.000595 0.00173 k′

wee 0.00567 0.0331

k′
5 0.000429 5.63 × 10-9 J15 0.00219 0. *

J15 0.000331 0. * k′
5 0.00189 3.15 × 10-8

k12 0.000263 0. * k12 0.00144 0. *

Jiwee 0.000166 0.00304 J3 0.000874 0.000998

J10 0.000166 0.0007 J9 0.000724 0.00169

J8 0.000166 0.000233 Jiwee 0.000723 0.00895

J3 0.000166 0.00016 J10 0.000694 0.00437

J16 0. 0. * J8 0.000306 0.00149

kdiss 0. 0. * J16 0.000271 0. *

Table 2 Modulatory perturbation effects - comparison
between the hybrid model predictions and the original
model results (Continued)

J9 0. 0.00027 kdiss 0.000207 0. *

J7 0. 1.72 × 10-7 J7 0.0000497 1.1 × 10-6

Comparison between the sensitivity analysis of the original model and the
analytical predictions of the hybrid model (mapped back to the original
model parameters), at small range and wide range parameter perturbations.
The sensitivity scores Smass

i (original model) and hybSmass
i (hybrid model),

describing modulatory perturbation effects are used. The parameters are
sorted by the sensitivity scores (based on the original model) in decreasing
order; * indicates original model parameters without a counterpart in the
hybrid model. Scores corresponding to modulatory effects (Smass

i ,

hybSmass
i > 0.1) are in bold.
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fixed points were no longer stable. The relationship
between the location of the fixed points and the switch-
ing thresholds, therefore, determines the dynamical
behaviour of the system. This relationship between fixed
point and switching thresholds corresponds to analytical
expressions including the parameters of the hybrid
model, and allows us to present two types of important
parameter/output relationships. The first type refers to
necessary constraints (NC), which must be satisfied in
order for the model to generate proper oscillations.
Therefore NC identifies essential parameter changes.
The second type is a function describing the size of the
cell, or Size Function (SF). SF describes how cell size is
influenced by hybrid model parameters, and therefore
SF identifies modulatory parameter changes and their
effects on cell size. When using these expressions in
order to find out whether a parameter change is modu-
latory, essential or both, we always have the default
parameter set as the point of departure for the change.
With another set of default parameter values, the result
could of course change. Note that NC is a qualitative
test - either a parameter change violates the conditions
(and the change is considered to be essential), or it does
not; whereas SF is quantitative, giving numerical predic-
tions on cell size.
Analytical results identifying essential parameter changes -
necessary constraints NC
Two constraints, that are necessary in order to have cell
cycle oscillations, were retrieved in the analysis of the
hybrid model [15], and are further extended in the
Methods section (equations (24,25)). These correspond
to inequalities, including hybrid model parameters, that
define regions of parameter values for which there can-
not be proper oscillations (note that the necessary con-
ditions only state that if not satisfied, there will not be
oscillations, but not the opposite, i.e. they do not assure
oscillations, which agrees with the definition of “essen-
tial” in the sensitivity analysis, i.e. anhilation of oscilla-
tion due to parameter perturbations). A change of
hybrid parameter τ...μ = phyb (equation (20)), that vio-
lates these constraints is considered as essential.
Analytical results identifying modulatory parameter
changes - the size function SF
The second type of parameter/output relationship, the
function SF (equations (21,22), Methods), describes how
the final size of the cell (i.e. just before cell division), is
influenced by hybrid model parameters. SF corresponds
to the formation of a concentration threshold. When
the concentration of the protein complex MPF passes
this threshold (under normal circumstances), cell divi-
sion is initiated. In cell cycle physiology, it corresponds
to the G2/M checkpoint [2].

IIB Translating the analytical results from the hybrid
model to the original model
To be able to compare the hybrid and original models
(i.e. compare their respective parameter characteriza-
tions) we needed to translate the analytical result of the
hybrid model to the original model. For this translation,
we first defined a mapping from original model para-
meters to hybrid model parameters. We then used this
mapping to backtrack the analytical results of the hybrid
model to the original model parameters.
Mapping original model parameters onto hybrid model
parameters
There is no simple algebraic relationship that could be
used to define mappings between original and hybrid
model parameters parameters, porgi ∈ porg, i = 1...norg and

phybm ∈ phyb, m = 1...nhyb, i.e. there is no analytical func-

tion phybm = f (porg) for all m that can be used to relate
the original and hybrid models. Instead, we constructed
mappings numerically for different specific values of
porg, namely those values corresponding to the perturba-
tions used in the sensitivity analysis. First, each original
parameter porgi was perturbed npert = 11 times according
to the relative perturbation sizes, ps, described earlier, i.

e. the parameter was given the value porgi = porgij , j = 1...

npert (note here that single index porgi denotes a para-

meter, whereas a double index porgij denotes a specific

parameter value). Next, the effect from the perturbation
was translated to the hybrid parameters phyb. The trans-
lation was done using a recalibration process, adapting
the hybrid model to the original perturbed one through
re-performing the hybrid approximation process and

measuring the effect of the perturbation porgij on phybm for

all m = 1...nhyb (Methods). This means that we, for each

perturbation of the original model p
org
ij , j = 1...npert, i =

1,..., norg, obtained a new set of hybrid mobel parameter

values, denoted by phyb
ij .

Backtracking the analytical result from the hybrid model to
the original model
After recalibration of the hybrid model, we translated
the analytical result in terms of modulatory and essen-
tial effects, by backtracking the analytical conditions
(NC and SF) to the original model. This means that for

each perturbation of an original model parameter porgij ,

we constructed a new hybrid model and examined the
analytical expressions determining essential and modula-
tory effects. From this, we finally characterized the origi-
nal parameter in terms of essential and/or modulatory.
To sum up, the essential and modulatory effects of the
original parameter perturbations are measured in two
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main ways: with respect to the original model (track 1),
and with respect to analytical constraints and implica-
tions after recalibration of the hybrid model (track 2).
Bactracking the essential conditions To backtrack the
necessary constraints (NC, corresponding to essential
parameter changes), to original parameter characteriza-
tions, we counted the total number (out of npert) of per-
turbations of porgi which have a mapped effect such that
the necessary constraints (equations (24,25)) are vio-
lated. From this we calculated a sensitivity score similar
to the one from the sensitivity analysis, but based on
the hybrid model, and therefore denoted hybSosci . Thus,

hybSosci =
∑

j s
hyb
ij , where shybij = 0 if perturbation j of para-

meter porgi (mapped to the hybrid model) does not vio-

late constraints (24,25) and shybij = 1 otherwise, j Î 1,...,

npert.
Backtracking the modulatory conditions To backtrack
the function determining cell size (SF, corresponding to
modulatory parameter changes) to original parameter
characterizations, we calculated the average mapped
effect that the n perturbations of porgi (which do not vio-
late the necessary constraints (24,25)) should have on
final cell size, as calculated by SF. By this we get a cal-
culated sensitivity score similar to the one from the sen-
sitivity analysis, but based on the hybrid model and
therefore denoted hybSmass

i . Thus,

hybSmass
i =

∑
j′ |hybMend

ij′ − hybMend
def |/n, where hybM

end
ij′ is the,

from SF (equations (21,22)), calculated final cell size
after the j’th perturbation of parameter porgi (mapped to
the hybrid model), where j’ corresponds to those j for

which shybij = 0, and hybM
end
def is the by SF calculated final

cell size using the default parameter set (20).
There are two hybrid parameters that are not consid-

ered in the correspondence analysis. The first one is μ,
which is related to the growth of the cell, i.e. the
increase in cell mass M. Since the hybrid model is based
on the assumption that the increase in M is very slow
compared to other variables, perturbations of μ are not
considered. The other parameter is τ, which has not
been included in the analysis for practical reasons
(Methods). Not all original parameter perturbations
have a mapping to a hybrid parameter (data not shown).
This is partly a reflection of the fact that parts of the
original system are inactive during the experimental
context that the hybrid model seeks to reproduce, and
has therefore not been included in the hybrid model.

III Correspondence analysis of hybrid and original
parameter characterizations
Once we had conducted the sensitivity analysis of the
original model (I), and retrieved the corresponding

predictions from the hybrid model (II), we were now in
a position to compare the results (Figure 1). The para-
meters were divided into essential or non-essential
(Table 1) and modulatory or non-modulatory (Table 2),
with respect to the model in question: original or
hybrid. We considered both narrow range and wide
range perturbations. A parameter was characterized as
modulatory if Smass

i > 0.1 (or hybSmass
i > 0.1) and as

essential if Sosci > 0 (or hybSosci > 0), and the parameter
characterizations of the original and hybrid models were
compared.
No parameter was detected as being essential by nar-

row range perturbations, neither from the original nor
hybrid model (Table 1). Wide range perturbations were
needed to get an essential effect. For modulatory charac-
terizations, the correspondence was better for the mod-
els at narrow range perturbations than at long range
perturbations (Table 2). The result is summarized by a
binary (essential/non-essential or modulatory/non-mod-
ulatory) classification test (Table 3). We view the para-
meter characterizations from the hybrid model as a
predictor of the class of the original model parameters,
and calculate the sensitivity and specificity of the predic-
tions for each class (Table 3). For the narrow range
modulatory perturbations, the prediction is close to per-
fect, with a sensitivity of 100% and a specificity of 95%
(Table 3). For narrow range essential predictions the
specificity is 100% and no hybrid or original model para-
meters are found to be essential. When wide range per-
turbations are considered, there are more mis-
classifications. For modulatory parameter predictions
the sensitivity decreased to 60%, while the specificity
was 96% and for essential predictions, the sensitivity was
67% and the specificity remained 100% (Table 3).
In the hybrid model, modulatory parameters are

defined by the size function SF, which corresponds, as
earlier described, to the G2/M checkpoint of the cell
cycle. The proteins behind this checkpoint are those
that are most important to regulate the size of the cell
in this context. If we did not know this and were to
identify the mechanism regulating cell size, from this
model comparison, we can see that we would be better
of by the use of narrow perturbations rather than wide

Table 3 Sensitivity and specificity of hybrid model
predictions

Prediction sensitivity specificity

modulatory-narrow range 100% 95%

modulatory-wide range 60% 96%

essential-narrow range - 100%

essential-wide range 67% 100%

Note that for narrow range no perturbations are found to be essential, neither
by the original or hybrid model.
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ones. If wide range perturbations are used, other para-
meters, which are not involved in this checkpoint, are
also incorrectly identified, and therefore confusing the
picture.
We can conclude that the correspondence between

models is better near the default values of the model
parameters (narrow range), and becomes worse further
from this point. At the same time, it seems impossible
to identify essential parameters without using perturba-
tions further away from the default parameter setting.
Finally, if we use narrow range perturbations to identify
modulatory parameters and wide range perturbations to
identify essential parameters, then we note that most
parameters are either essential or modulatory for this
set of perturbations.
Mis-predictions
There are two main types of mis-predictions at wide
range perturbations. First, parts of the original model,
for which there is no counterpart in the hybrid model
(parameters indicated with * in Table 1 and Table 2),
and that are not active at narrow range perturbations,
have in fact an essential or modulatory effect at wide
range perturbations. This indicates that the hybrid
model performs quite well for predictions locally around
the point in parameter space where the hybrid model
was constructed. Further away from this point, the pre-
dictions are still quite good for those parts of the origi-
nal system that were included in the hybrid model. The
hybrid model cannot, however, capture what will hap-
pen to parts that were not included. Second, there are
some mis-predictions that are most likely due to the
approximation and discrepancy between the hybrid and
original models. One such prediction was the para-
meters k9 and k10, which are found to be more essential
in the original model than in the hybrid model. k9 and
k10 are important actors to obtain quantized output
behaviour. Such behaviour cannot be mimicked by the
hybrid model; rather, the hybrid model predicts that the
system will have proper oscillations for some of the per-
turbations, which gives quantized oscillations. Also, the
fact that we have not included the hybrid model para-
meter τ in the analysis might affect predictions.
Finally, we have a problem with mappings to the

hybrid model parameter θ25/wee. This parameter is differ-
ent compared to the other hybrid parameters since it
corresponds to the switching threshold of two step func-
tions, s25 and swee (Methods), when their respective
switching thresholds are at the same level i.e. θ25/wee =
θ25 = θwee when θ25 = θwee. To be able to map a pertur-
bation of the original model to θ25/wee Î phyb that keeps
this relationship (θ25 = θwee), and thus the structure of
the hybrid model, at least two original parameters have
to be perturbed simultaneously. However, the single

parameter perturbations p
org
ij used in this study, only cor-

respond to a change in either θ25 or θwee. To obtain a

numerical value for each mapping porgij → θ25/wee despite

this, we assume that θ25/wee = min(θ25,θwee), when the
threshold is passed from below, and that θ25/wee = max
(θ25, θwee), when the threshold is passed from above.
Presuming that as soon as either θ25 or θwee is passed,
the other threshold will also soon be passed.

IV Combinatorial predictions from the hybrid model
After investigating the correspondance between the ori-
ginal and hybrid model concerning single parameter per-
turbations of the original model, we used the hybrid
model to identify combinations of parameters aimed at a
specific critical effect.
Essential combinations of parameters
We used the necessary constraints (24,25) to find hybrid
model parameters with an essential effect on model out-
put. To evaluate the constraints, we used, as earlier, a
set of perturbations, but this time investigating hybrid
model parameters directly instead of translating the
result to original model parameters. From these pertur-
bations (Table 4) we could see that (at least) hybrid
model parameters θ25/wee, hwee and hslp/ste can have an
essential effect.
The hybrid parameter θ25/wee was shown to have the

largest effect (Table 4), using these perturbations. Simu-
lataneously, none of the original parameters mapped to
θ25 or θwee were found to be essential (data not shown).
This emphasizes that there are important (essential) fea-
tures in the original model that are robust towards single
parameter perturbations. We described earlier that θ25/
wee Î phyb can only be mapped to from combinations of
original parameters if the structure of the hybrid model
is to be retained (i.e. θ25 = θwee). We therefore expect a

Table 4 Essential hybrid model parameters

Parameter (phyb) no.

k1 0

k′
2 0

l25 0

h25 0

θ25/wee 2

hwee 1

lwee 0

lslp/ste 0

hslp/ste 1

θslp/ste 0

The hybrid model parameters were perturbed one by one with the relative
perturbation sizes psj Î ps (as defined in Results), and the constraints (24) and
(25) were evaluated. The table shows the total number of perturbations (out
of 11) for which the constraints were violated.
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critical effect on the original system by changing such a
combination. A pairwise mapping to θ25/wee Î phyb can
be achieved by simultaneous changes in Vi25 Î porg and
Vawee Î porg or Va25 Î porg and Viwee Î porg. By adding
the parameter s Î porg such that Vi25 ® sVi25, Vawee ®
sVawee, and the parameter t Î porg such that Va25 ®
tVa25 and Viwee ® tViwee, then a perturbation of s Î porg

or t Î porg in the original model corresponds to chan-
ging θ25/wee Î phyb. Using the same perturbation scheme
as before (wide range) we obtained the following sensi-
tivity scores for the combined perturbations Soscs = 3 and
Sosct = 3, which can be compared to the score of Sosc = 0
for Vi25, Vawee, Va25 and Viwee, respectively. This shows
that by combining perturbations of two, by themselves,
robust parameters, we can obtain a critical effect.
Modulatory combinations of parameters
From the hybrid model we retrieved an expression for
the critical cell mass, MC, above which mitosis is
initiated [15]

MC =
θ25/wee(k′

2 + lslp/ste)(k′
2 + l25 + hwee + lslp/ste)

k1(k′
2 + l25 + lslp/ste)

, (1)

where all constants are hybrid model parameters.
Mathematically, this corresponds to a bifurcation point
at which the system moves from a stable fixed point to
a limit cycle. Under circumstances corresponding to a
normal cell, this expression can be used to approximate
final cell mass before cell division.
If we assume that lslp/ste << k′

2, l25 <<hwee, as for the
normal cell (equation (20)), then equation (1) can be
approximated with

MC ≈ θ25/week′
2hwee

k1(k′
2 + l25)

. (2)

Using this expression, we can compute quantitative
predictions of cell size, e.g. if k1 is reduced by 50%, the
cell size is expected to be twice as large. This was tested
in the original model by setting k1 = 0.015 and running
a numerical simulation. Final cell mass increased from
2.0 to 4.0. If, together with halving k1 we also double
θ25/wee and hwee, cell size should increase by about 2 × 2
× 2 = 8 times. Testing this in the original model by set-
ting k1 = 0.015, Vi25 = Vawee = 0.5 (corresponding to
doubling the hybrid model parameter θ25/wee ),
k′′
wee = 2.6 (doubling hwee), final cell size increased from
2.0 to 14.4. We can therefore predict multiplicative
effects by using the hybrid model.

Summary of results
In this case study of the cell cycle, by comparing the
sensitivity analysis of the original model with analytical
predictions from the hybrid model, we found that i) pre-
dictions for essential and modulatory parameters from

the hybrid model were satisfactory for small perturba-
tions, but more discrepancies were seen for larger per-
turbations; ii) small perturbations were of more use
when trying to identify important modulatory mechan-
isms compared to larger ones whereas, iii) larger pertur-
bations were needed in order to identify essential
parameters. Furthermore, iv) most parameters were
either essential or modulatory using this set of perturba-
tions. Finally, v) the most sensitive feature of the system
(the threshold corresponding to θ25/wee) was robust
towards single parameter perturbations.

Discussion and Conclusions
Any biological process is essentially an interaction
between different elements in time and space. Given
experimental data and prior knowledge we may be able
to formulate such interactions in mathematical terms.
As a rule, such models suffer from uncertainty in the
structure, both from a lack of representation of essential
elements and interactions, as well as from erroneous
model representation of the phenomena under investiga-
tion [21,22]. Moreover, parameters are uncertain in the
sense that several different combinations are consistent
with a given set of data. When dealing with a specific
model, such as the NT-model for the cell-cycle [19], we
are in a unique position because a large body of experi-
mental work has already been encoded in mathematical
models by the pioneering work of Novak and Tyson
[23]. Furthermore, this specific NT-model has been ana-
lyzed using both bifurcation [19] and mathematical pie-
cewise linear approximation techniques [15]. Bifurcation
analysis indicates the dynamical mechanisms behind the
transitions within the cell-cycle, while the mathematical
simplification analysis provides proof of the existence of
a limit cycle, yields explicit analytical expressions
describing how model parameters affect cell size, and
also provides conditions necessary for oscillations. How-
ever, it is generally very difficult to succeed with a thor-
ough mathematical analysis of a given computational
model, and this becomes even harder for larger models.
Numerical bifurcation analysis is also a technique that is
most efficient for smaller models. For larger models, we
are left performing numerical simulations to explore the
sensitivity of the model, and thereby increase our under-
standing of what parts of the model may be important
for different aspects of the system’s behaviour [24]. For
these reasons, we have here interpolated between the
results obtained from a sensitivity analysis of the original
model, and the outcome from a previous model simplifi-
cation [15], with the rational being that such an analysis
may be instructive for assessing what we can and cannot
discover using a sensitivity analysis. Such understanding
may prove useful for those cases where an explicit
mathematical simplification is not feasible.
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Our analysis of the simplified model resulted in the
formulation of two types of mathematical constraints -
one identifying parameter perturbations with a qualita-
tive effect on model output (NC), and the other describ-
ing perturbations with a quantitative effect (SF). From
the corresponding sensitivity analysis of the original
NT-model, we could also here identify perturbations
that had a qualitative effect (removing oscillations), or
quantitative effect (changing cell size). Using the same
set of parameter perturbations and sensitivity measures
in both the hybrid and original models, we could com-
pare our analytical predictions to the sensitivity analysis.
Based on our definition on modulatory and essential
parameters, both methods characterized the parameters
more or less equally for narrow range perturbations; for
wide range perturbations there was a discrepancy.
This combined analysis demonstrated that the para-

meters were, in most cases, characterized as either
essential or modulatory using this set of perturbations,
where essential parameters were only identified using
wide perturbations. This means that there are para-
meters that do not have any effect at small perturba-
tions, not even modulatory, but which do have a critical
(essential) effect at large perturbations. They are there-
fore very important to the system even though this
would not be obvious from a local sensitivity analysis.
Modulatory parameters, as defined by the size function
(SF) of the hybrid model, were best identified by small
perturbations. When larger perturbations were applied,
parameters from other parts of the system also showed
up, confusing the picture. SF describes the parameter
relationship of the G2/M checkpoint - the proteins
behind this checkpoint are those that are most impor-
tant in cell size regulation. If we did not know this and
were to try to identify the mechanism regulating cell
size, we would be better to use small perturbations.
Essential parameters, on the other hand, could not be
found using small perturbations alone; rather larger per-
turbations had to be used. This is not surprising consid-
ering that the biological system has to be robust in the
default parameter setting, and the corresponding point
in parameter space must therefore be located far away
from the region where there are, for example, no oscilla-
tions. Using the hybrid model for more complex predic-
tions and comparing these to the sensitivity analysis, we
found that the threshold corresponding to the hybrid
parameter θ25/wee, which has an essential effect (and
modulatory) in the hybrid model, were robust (using
Sosc) towards single parameter perturbations; however it
had an essential effect with a targeted combined pertur-
bation. We also demonstrated the possibility to find
combinations of parameters with a multiplicative effect
on cell size.

In the case of single parameter perturbations, it is pos-
sible to numerically simulate the behaviour of a large
model to all possible parameter perturbations. With per-
turbations of more than one parameter at a time, the
combinatorial explosion has the effect that all parameter
combinations cannot be tested. A simplified model
therefore has the potential to inform us about which
parameter combinations that are important to test. Our
study pin-points the difference between parameters that
have a quantitative, modulatory impact on model out-
put, where the perturbation size is correlated with the
change in model output, and parameters that are essen-
tial to the system in a qualitative manner.
Our investigation has several similarities to a recent

study of Radulescu et al [14] where they suggest the use
of a hierarchy of reduced models to describe complex
biological networks. Radulescu also map critical para-
meters identified from the reduced model, back to the
original model. However, there are also marked differ-
ences. In Radulescu et al, model reductions are by and
large faithful in both structure and components to the
original model, letting kinetics guide structural decom-
position and parameter elimination, keeping the most
important components and not introducing new ones.
In the process, critical monomials and thereby critical
parameters are identified. This is not the approach
taken here. There are no simple and direct analytical
relationships between the original and simplified models.
Instead we look at different perturbations in the original
model and recalibrate the simplified model from those
in order to backtrack findings in the simplified model.
By using a new model formalism, in this case, a piece-
wise linear with delay, we can point to other important
features of the original model. In this case that the sys-
tem seems to switch between different linear systems
and that the location of the fixed points and the thresh-
olds are most important for the dynamics. We also find
that a very sensitive feature of the original model, the
threshold described earlier, is robust towards single
parameter perturbations.
A simplified model is an approximation of a more

complicated system, and there will be instances when it
does not work. Its predictions must therefore be con-
firmed in the full model context. However, a discre-
pancy between the simplified and original model is of
interest in itself, since it can point out an approximation
that has failed. Since approximations are a way to learn
about the essentials of a system, this gives information
on neglected essential features. To combine model sim-
plification with sensitivity analysis is a way to investigate
the structure of complex biological networks. We
believe that this approach is applicable to systems other
than the cell cycle, even though the precise set up used
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in this study may not be suitable. Sensitivity analysis has
to be carefully performed, since it is almost impossible
to investigate the full parameter space for any model
with more than a few parameters. Here we performed a
first step screening study, modifying one parameter at a
time. The next logical step would be to consider a more
global sensitivity analysis by investigating combinations
of parameters, which was beyond the scope of this
study. In this comparison between the hybrid model and
the original model, we have considered all simulations
with a quantized behaviour as not working properly,
and therefore disqualified them from the analysis. This
is partly because a normal cell does not display this type
of behaviour, but also because the hybrid model does
not mimic the behaviour of the original model in a few
of these quantized instances.

Methods
The original NT-model
The original Novak and Tyson model [19] which was
our point of departure corresponds to

d[Cdc13T]
dt

= k1M − (k′
2 + k′′

2[Ste9] + k′′′
2 [Slpl])[Cdc13T] (3)

d[preMPF]
dt

= kwee([Cdc13T] − [preMPF]) − k25[preMPF] − (k′
2

+ k′′
2[Ste9] + k′′′

2 [Slpl])[preMPF]
(4)

d[Ste9]
dt

= (k′
3 + k′′

3[Slp1])
1 − [Ste9]

J3 + 1 − [Ste9]
− (k′

4[SK]

+ k4[MPF])
[Ste9]

J4 + [Ste9]

(5)

d[S1p1T]
dt

= k′
5 + k′′

5
[MPF]4

J45 + [MPF]4
− k6[Slp1T] (6)

d[Slp1]
dt

= k7[IEP]
[Slp1T] − [Slp1]

J7 + [Slp1T] − [Slp1]

− k8
[Slp1]

J8 + [Slp1]
− k6[Slp1]

(7)

d[IEP]
dt

= k9[MPF]
1 − [IEP]

J9 + 1 − [IEP]
− k10

[IEP]
J10 + [IEP]

(8)

d[Rum1T]
dt

= k11 − (k12 + k′
12[SK] + k′′

12[MPF])[Rum1T] (9)

d[SK]
dt

= k13[TF] − k14[SK] (10)

dM
dt

= μM (11)

[Trimer] =
2[Cdc13T][Rum1T]∑

+
√

�2 − 4[Cdc13T][Rum1T]
(12)

[MPF] =
([Cdc13T] − [preMPF])([Cdc13T] − [Trimer])

[Cdc13T]
(13)

[TF] = G(k15M, k′
16 + k′′

16[MPF], J15, J16) (14)

where

kwee = k′
wee + (k′′

wee − k′
wee)G(Vawee,Viwee[MPF], Jawee, Jiwee)

k25 = k′
25 + (k′′

25 − k′
25)G(Va25[MPF],Vi25, Ja25, Ji25)∑

= [Cdc13T] + [Rum1T] + Kdiss

G(a, b, c, d) =
2ad

b − a + bc + ad +
√
(b − a + bc + ad)2 − 4ad(b − a)

When [MPF]decreases through 0.1,M → M/2.

(15)

The default parmater values corresponding to the
wild-type cell are

k1 = 0.03, k′
2 = 0.03, k′′

2 = 1,
k′′′
2 = 0.1, k′

3 = 1, k′′
3 = 10,

J3 = 0.01, k′
4 = 2, k4 = 35,

J4 = 0.01, k′
5 = 0.005, k′′

5 = 0.3,
k6 = 0.1, J5 = 0.3, k7 = 1,
k8 = 0.25, J7 = 0.001, J8 = 0.001,
k9 = 0.1, k10 = 0.04, J9 = 0.01,
J10 = 0.01, k11 = 0.1, k12 = 0.01,
k′
12 = 1, k′′

12 = 3, Kdiss = 0.001,
k13 = 0.1, k14 = 0.1, k15 = 1.5,
k′
16 = 1, k′′

16 = 2, J15 = 0.01,
J16 = 0.01, Vawee = 0.25, Viwee = 1,
Jawee = 0.01, Jiwee = 0.01, Va25 = 1,
Vi25 = 0.25, Ja25 = 0.01, Ji25 = 0.01,
k′
wee = 0.15, k′′

wee = 1.3, k′
25 = 0.05,

k′′
25 = 5, μ = 0.005.

(16)

The hybrid, DPL-model
The hybrid model approximation process is described in
[15] and summarized further down. Let
x(t) = (xCdc13T(t) xPreMPF(t))′ represent the state of the
cell cycle system (xCdc13T corresponds to NT-model vari-
able [Cdc13T] and xPreMPF to NT-variable [preMPF]).
Further, let uext(t) = M (t) (cell mass) be the external
input, and y(t) the output from the system (DPL-model
variable y corresponds to NT-variable [MPF] and we
sometimes, a bit sloppy, write y = [MPF]). Then, the
DPL-model can be written as

Eriksson et al. BMC Systems Biology 2011, 5:123
http://www.biomedcentral.com/1752-0509/5/123

Page 13 of 16



ẋ(t) = Aklx(t) + Buext(t),

y(t) = Cx(t),

k, l ∈ {1, 2},
(17)

where Akl is a 2 × 2 matrix, B = (k1 0)’, C = (1 -1), k1
a constant parameter, and the following rules are used
for switching between linear systems

k(y(t)) =
{
1 if y(t) ≤ θ25/wee
2 if y(t) > θ25/wee

,

l(y(t − τ )) =
{
1 if y(t − τ ) ≤ θslp/ste
2 if y(t − τ ) > θslp/ste

.

(18)

Here θ25/wee, θslp/ste and τ are constant parameters
retrieved from the model approximation process. The
variable uext(t) = M (t) is most often treated as a con-
stant parameter uext = M, otherwise it evolves according
to Ṁ = μM. From the approximation process, the system
matrices will correspond to

A11 =
[−(k′

2 + lslp/ste) 0
hwee −(hwee + l25 + k′

2 + lslp/ste)

]

A12 =
[−(k′

2 + hslp/ste) 0
hwee −(hwee + l25 + k′

2 + hslp/ste)

]

A21 =
[−(k′

2 + lslp/ste) 0
lwee −(lwee + h25 + k′

2 + lslp/ste)

]

A22 =
[−(k′

2 + hslp/ste) 0
lwee −(lwee + h25 + k′

2 + hslp/ste)

]
(19)

where k′
2, lslp/ste, hwee, l25, hslp/ste, lwee and h25 are con-

stant parameters. In the wild-type cell the use of A11

corresponds to cell cycle phase S/G2, A12 to phase G1,
A21 to Mitosis and A22 to ending of Mitosis. The default
parameter values used are

τ = 15, k1 = 0.03, k′
2 = 0.03,

l25 = 0.19, h25 = 4.8, θ25/wee = 0.25,
hwee = 1.3, lwee = 0.19, lslp/ste = 0.00088,
hslp/ste = 1.2, θslp/ste = 0.4, μ = 0.005.

(20)

This default parameter set was retrieved by calibrating
the hybrid model to the unperturbed original NT-
model, as described below. It differs slightly from the
default parameter set of [15].

Parameter perturbations
Each simulation was run in 4000 minutes using the
numerical integration program XPP and integration
method QualRk. We defined one cell division cycle as
the trajectory between two local minima in the mass M
variable. The length of each such cycle, the cycle time,
tCT, was recorded. If the trajectory still oscillated after
4000 minutes and the distribution of tCT was narrow

(within 1 min from average tCT ), the perturbation was
defined as having proper oscillations.

Size Function
In [19] and [15] the dynamics of the cell cycle are
described in terms of bifurcation analysis, presuming
that the size of the cell (cell mass M) changes much
slower than the other variables and therefore can be
viewed as a constant parameter in the analysis of the
dynamics. From a bifurcation diagram (e.g. Figure six in
[15]) using M as bifurcation parameter and [MPF] as
bifurcation variable, can be found that, during normal
circumstances, critical for the size of the cell is the
point of bifurcation when the system moves from a
stable fixed point to a limit cycle. In [15] we gave an
analytical expression for when this bifurcation takes
place.
In the coming discussion we use the notation of the

hybrid (DPL) model (equations (17-19)), and view M as
a constant parameter. Each linear system of the DPL-
model (defined by the system matrix Akl), has a fixed
point x̂kl = −A−1

kl BM. The location of x̂kl in the phase
space of x thus depends on M, i.e. x̂kl(M). The bifurca-
tion described above takes place at the critical cell mass,
MC, at which x̂11(MC) of the linear system defined by
A11, is located on the switching threshold corresponding
to θ25/wee, i.e. Cx̂11(MC) = θ25/wee, which, using the nota-
tion of equations (17-19) gives the following expression
for the critical cell mass MC,

MC =
θ25/wee(k′

2 + lslp/ste)(k′
2 + l25 + hwee + lslp/ste)

k1(k′
2 + l25 + lslp/ste)

. (21)

At this point the system switches from the dynamics
of a stable fixed point to a limit cycle. After entering the
limit cycle the cell will divide approximately τ minutes
later, corresponding to a final cell mass of

Mend ≈ MCe
μτ . (22)

Presuming that for small perturbations this relation-
ship will remain, we use equation (22) to predict the
effect of perturbations in the hybrid and (after transla-
tion) the original model.

Necessary conditions
In the analysis of the hybrid (DPL) model [15] we
retrieved two conditions, necessary in order to have cell
cycle oscillations, namely

min
x∈ṽ12(Mend),x≥0

Cx < 0.1.

and

Cx̂22(Mend) < θ25/wee,
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where we use the notation of equations (17-19),
ṽ12(Mend) is the slow eigenvector of A12, going through
the fixed point x̂12 and Mend is given from equation
(22). Note that Mend was calculated from MC, i.e. the
point where Cx11 passes θ25/wee as described above.
For larger perturbations affecting θslp/ste another fixed

point and switching threshold relationship can be deci-
sive for cell size, namely Cx21 passing θslp/ste and final
cell size can therefore be extended to

M′
end = max(MC, M′

C)e
μτ (23)

were M′
C = θslp/ste

−CA−1
21 B and the conditions therefore corre-

sponds to

min
x∈ṽ12(M′

end),x≥0
Cx < 0.1. (24)

and

Cx̂22(M′
end) < θ25/wee, (25)

which are used as necessary conditions throughout
this study.

Summary of the model simplification process
The model simplification process [15] included the fol-
lowing steps; where porg is the set of original parameters
and phyb the set of hybrid (DPL) model parameters.

1. The steady-state input/output behaviour of sub-
sets of variables of the original model were graphed.
2. Variables with minor effect on the dynamical
behaviour were removed.
3. Remaining variables were lumped into switching
modules SMs s Î 1,..., 3, such that one variable was
functioning as input to the module, a combination
of variables as output, and the steady-state input/
output behaviour were in the form of a monotonic
function with a sigmoid kind of shape. The input/
output function is denoted, sSMs (porg

s ), where

porg
s ⊂ porg is a subset of original model parameters;

those parameters that exist in the ODE equations
defining SMs.
4. The sigmoid functions sSMs (porg

s ) were approxi-

mated by step functions ss(p
hyb
s ), where

phyb
s = {θs, hs, ls} ⊂ phyb, and θs corresponds to the

switching threshold of the step function, hs (high) to
the maximum level and ls (low) to the minimum
level (θs, hs, and ls are in this study determined from
three points of sSMs (porg

s ) as described in the calibra-
tion below).

5. The switching modules SMs were each approxi-
mated by a step function ss(p

hyb
s ) and a time delay τs

[15]. The time delay was often τs = 0.

Note that we here only consider the small DPL-model
in [15].

Mapping (calibration) procedure
In order to construct mappings between porg and phyb,
all parameters of porg were perturbed npert = 11 times
according to ps (defined in Results), and for each per-
turbation a calibration of the hybrid model was per-
formed. The hybrid model corresponding to the jth, j Î
1,...,11 perturbation of parameter porgi is denoted phyb

ij .

The calibration of the step functions ss(p
hyb
s ) was done

from three points of the sigmoid functions sSMs (porg
s ), s Î

1,...,3, corresponding to the threshold, the high, and low
level of the step-functions. The threshold level was
defined as the point (denoted θSM) where the derivative
of the curve sSMs (porg

s ) was the largest (smallest), and the
high and low level were measured at two points
(denoted hSM and lSM) of the curve sSMs (porg

s ) corre-

sponding to θSM − θSM
def

/
4 or θSM + θSM

def

/
4, depending

on whether the sigmoid was increasing or decreasing;
θSM
def corresponds to θSM using the default parameter set.

The hybrid model calibration procedure for mapping
between original parameter perturbations and hybrid
parameters can be described in pseudo-code as

for each porgi ∈ porg, i Î 1,..., norg do
for each perturbation size psj Î ps, j Î 1,..., npert

do
set porgi = psj×def p

org
i ;

let phyb
ij be formed according to:

for each switching module SMs s Î 1,..., 3 do
measure θSM

s and hSMs , lSMs of sSMS (porg
s );

use θSM
s and hSMs , lSMs as values for parameters

θs, hs, ls ∈ phyb
ij ;

end for
end for

end for.
The hybrid parameter τ were not included in the com-

parison between the two models of practical reasons;
since this parameter can not easily be mapped via
sSMs (porg

s ) as the other ones. From this process we
retrieved norg × npert = 47 × 11 sets of hybrid model

parameters phyb
ij i ∈ 1 . . . , norg, j Î 1,..., npert.

To translate the notation above to the hybrid model
parameters of equation (20) let s Î 1,..., 3 = {25, wee,
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slp/ste}, except for θ25 and θwee. During the model sim-
plification process we noted that θSM

25 = θSM
wee (when using

default parameters) and this was used as a further sim-
plification step by merging θ25 and θwee into one para-
meter θ25/wee. Therefore, only perturbations of the
original model which keep the θSM

25 = θSM
wee property are

consistent with the hybrid model. These are all pairwise
perturbations.
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