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Abstract

Background: As an important epigenetic modification, DNA methylation plays a crucial role in the development of
mammals and in the occurrence of complex diseases. Genes that interact directly or indirectly may have the same
or similar functions in the biological processes in which they are involved and together contribute to the related
disease phenotypes. The complicated relations between genes can be clearly represented using network theory. A
protein-protein interaction (PPI) network offers a platform from which to systematically identify disease-related
genes from the relations between genes with similar functions.

Results: We constructed a weighted human PPI network (WHPN) using DNA methylation correlations based on
human protein-protein interactions. WHPN represents the relationships of DNA methylation levels in gene pairs for
four cancer types. A cancer-associated subnetwork (CASN) was obtained from WHPN by selecting genes associated
with seed genes which were known to be methylated in the four cancers. We found that CASN had a more
densely connected network community than WHPN, indicating that the genes in CASN were much closer to seed
genes. We prioritized 154 potential cancer-related genes with aberrant methylation in CASN by neighborhood-
weighting decision rule. A function enrichment analysis for GO and KEGG indicated that the optimized genes were
mainly involved in the biological processes of regulating cell apoptosis and programmed cell death. An analysis of
expression profiling data revealed that many of the optimized genes were expressed differentially in the four
cancers. By examining the PubMed co-citations, we found 43 optimized genes were related with cancers and
aberrant methylation, and 10 genes were validated to be methylated aberrantly in cancers. Of 154 optimized
genes, 27 were as diagnostic markers and 20 as prognostic markers previously identified in literature for cancers
and other complex diseases by searching PubMed manually. We found that 31 of the optimized genes were
targeted as drug response markers in DrugBank.

Conclusions: Here we have shown that network theory combined with epigenetic characteristics provides a
favorable platform from which to identify cancer-related genes. We prioritized 154 potential cancer-related genes
with aberrant methylation that might contribute to the further understanding of cancers.

Background
Cancer is a complex multi-gene disease. For a long time,
gene mutation has been considered to be related to can-
cer. A number of oncogenes and tumor suppressor
genes linked to mutations have been shown to drive the

neoplastic process by increasing tumor cell numbers
[1-3]. However, with progress in the understanding of
cancer and the ongoing development of epigenetics, it
has been reported that aberrant DNA methylation
events are involved in many types of cancers [4]. Gen-
ome-wide hypomethylation and region-specific CpG
island promoter hypermethylation are a hallmark of the
cancer epigenome [5]. Thus the mechanisms that drive
cancer development and progression cannot be effec-
tively uncovered by studying only genetic factors. For a
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more profound understanding epigenetic characteristics
must also be examined.
Abnormal DNA methylation has been found in many

different tumors, including brain tumor, breast cancer,
and prostate cancer. DNA hypomethylation is often con-
sidered to activate oncogenes. DNA hypermethylation of
the promoter region, on the other hand, may initiate the
silencing of tumor suppressor genes. It has been
reported that the overexpression of FEN1 (flap endonu-
clease) in breast and other cancers is associated with
CpG island hypomethylation of the promoter region in
the tumor cells [6]. Similarly, in a recent study by Sun
et al., it was found that the promoter of TKTL1 (trans-
ketolase-like 1) had a high frequency of hypomethylation
which induced the overexpression of the gene in head
and neck squamous cell carcinoma (HNSCC) [7].
BRCA1 is a well-characterized tumor suppressor gene
which codes for proteins that have important roles in
the regulation of the cell cycle and in the apoptosis of
tumor cells. In breast and ovarian cancers, BRCA1 is
inactivated by hypermethylation within the promoter
region of the gene [8].
Thus, as the number of epigenetic studies gradually

increase, the importance of DNA methylation in cancer
research is being recognized. Simultaneously, a series of
methods for DNA methylation detection have been
developed. The earliest DNA methylation detection
methods were mainly single-gene sequence-specific
methods such as methylation sensitive restriction endo-
nucleases [9], methylation specific PCR [10], and com-
bined bisulfite restriction analysis [11]. Subsequently,
high-throughput genomic DNA methylation detection
methods were developed like, for example, the large-
scale microarray and sequencing technologies [12,13].
Numerous studies of gene methylation have used tradi-
tional experimental methods to generate large amounts
of methylation data; more recently, a large number of
genome-wide DNA methylomes have been generated
through the traditional methods being combined with
the high throughput technologies.
Some cancers have been identified as different sub-

types based on the methylation level of CpG islands [14]
and cancer-related genes have been identified by their
epigenetic variations. Loss et al. prioritized genes with
epigenetic regulation in 45 breast cancer cell lines by
their ranked methylation-expression association using
logistic regression, and identified 58 genes as epigeneti-
cally regulated genes in the breast cancer cell lines [15].
Some cancer-related genes have been identified by com-
bining epigenetic characteristics and network theory.
Network theory provides a platform for the systematic
study of diseases [16-19]. The prioritization of cancer-
related genes has also been widely studied using net-
work theory. Most network theoretical approaches are

based on the assumption that cancer-related genes parti-
cipate in common functional modules including protein
complexes, molecular pathways and developmental pro-
cesses, and may have the same or similar functions that
are involved in the development of cancers. Charles et
al. established a weighted function network composed of
human genes, and ranked the related genes to 110 dif-
ferent diseases (including cancer). This study revealed
the recondite relationship between diseases with quite
different phenotypes [20]. In a study by Cui et al., a
manually curated human signaling network was con-
structed and a set of cancer mutated genes and a set of
cancer-associated methylated genes were mapped into
the signaling network. These researchers found that
methylated genes were mainly enriched in negative reg-
ulatory loops encoding tumor suppressors in cancer
cells [21]. Thus, they successfully developed an approach
to identify cancer-related genes that could be used as
biomarkers of cancers from high-throughput data.
A human protein-protein interaction network, con-

structed using a machine learning method, has been
shown to be of benefit when applied to the study the
disease-related genes using network theory [22]. Here,
we report the construction of an integrated and
weighted network using protein-protein interaction
(PPI) data and its correlation with DNA methylation to
provide a comprehensive approach for prioritizing the
cancer-related genes with abnormal methylation from
genome and epigenome data.

Results
In this study, the workflow is shown in Figure 1. It con-
sists of four major stages: (A) the construction of
WHPN, a weighted human PPI network by integrating
DNA methylation and protein-protein interaction fea-
tures, (B) the formation of CASN, a cancer-associated
subnetwork extracted by seed genes which from Pub-
Meth, (C) the analysis of topological features between
the two networks, (D) the prioritization cancer-related
genes with aberrant methylation as optimized genes and
the analysis of the optimized genes.

The weighted human PPI network and cancer-associated
subnetwork
Protein-protein interaction (PPI) networks can be more
perspicuous for the representation of the complex rela-
tionships between large numbers of elements and better
at depicting the structure and function of the elements.
In this study, we used a PPI network to understand the
DNA methylation patterns present in the development
and progression of cancers. We constructed the network
by integrating DNA methylation and protein-protein
interaction features to prioritize cancer-associated genes.
The genes were used as nodes and the correlations of
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DNA methylation among genes were used as the linkage
weight. The linkages whose methylation correlations
were below the threshold are removed. The weighted
human PPI network (WHPN) that we built contained
17617 interaction pairs covering 7840 human genes (see
Methods for details) (Figure 2).
We identified 127 seed genes for the four types of

cancers (glioblastoma, ovarian cancer, hepatocellular
carcinoma and leukaemia) from PubMeth using text
mining (see Method for details). The set of seed genes

were classified into four types according to how many
types of the four cancers the seed genes are associated
with (Additional file 1). The seed genes were mapped to
WHPN and a subset of 84 seed genes was obtained. In
the set of 84 seed genes, 16 genes were for glioblastoma,
30 were for ovarian cancer, 41 were for hepatocellular
carcinoma, and 48 were for leukemia. Using the seed
genes, the cancer-associated subnetwork (CASN) was
extracted from WHPN. CASN contains the seed genes
and the genes which connect with the seed genes in

Figure 1 Workflow used in the present study. (A) The PPI and DNA methylation data sources used in the construction of WHPN. (B) The
acquirement of seed genes and the construction of CASN. (C) Analysis of the topological features of WHPN and CASN. (D) Analysis of the
optimized genes using the GO and KEGG enrichment analysis, SAM and PubMed co-citations.

Liu et al. BMC Systems Biology 2011, 5:158
http://www.biomedcentral.com/1752-0509/5/158

Page 3 of 15



WHPN comprising 857 genes (nodes) and 2333 interac-
tion pairs (linkages) (Figure 3).

Comparison of the topological features of WHPN and
CASN
The topological features for WHPN and CASN were com-
puted. CASN should have a network structure that is dif-
ferent from WHPN, which should show the specific
genetic and epigenetic relations between genes in cancers.

The average degrees for WHPN and CASN were 4.51
and 5.44, respectively, showing that CASN was much
closer than WHPN. CASN was also more highly con-
nected when compared with the 1000 randomly simu-
lated subnetworks sampled the same number of nodes
as in CASN from WHPN (Wilcoxon rank sum test, P <
1.0912E-200, FDR = 0.01). When the degree distribu-
tions of WHPN and CASN were compared (Figure 4),
both WHPN and CASN followed a power-law

Figure 2 Weighted human protein-protein interaction network (WHPN). There are 7840 nodes and 17671 linkages in WHPN. The nodes
represent genes and the linkages represent protein-protein interactions. The yellow nodes represent the seed genes; the red linkages represent
positive correlations and the green linkages represent negative correlations; the line width represents the weight of methylation correlation.
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distribution. The r values for the two networks were
also obtained; rWHPN = 2.2178 for WHPN and rCASN =
1.8862 for CASN. A network which has a power-law
degree distribution is generally called a scale-free net-
work [23]. In both networks, there were a few nodes
with high connectivity, referred to as Hub nodes; how-
ever, most nodes had low connectivity.
By analyzing the clustering coefficient of each node in

WHPN and CASN, we found that CASN had a higher
clustering coefficient than WHPN (Figure 5A). Most of
the nodes in WHPN had lower clustering coefficients
(clustering coefficient for WHPN, 0.0503) than the
nodes in CASN (clustering coefficient for CASN,
0.1410). The clustering coefficient of CASN was also
compared with the 1000 randomly simulated subnet-
works sampled the same number of nodes as in CASN
from WHPN (Wilcoxon rank sum test, P < 3.4408E-
078, FDR = 0.01).
The average path length and the probability density

distribution of the average path length were also

compared for the two networks. The results showed
that CASN had a shorter average path length (average
path length for CASN, 3.6902) than WHPN (average
path length for WHPN, 4.7335) (Figure 5B). As for the
other topological features, the average path length of
CASN was significant when compared with the average
path lengths of the 1000 randomly simulated subnet-
works (Wilcoxon rank sum test, P < 1.7703E-006, FRD
= 0.01). The network diameters for WHPN and CASN
were 15 and 10, respectively.
Although the topological features of CASN were sig-

nificantly different from those of WHPN and the ran-
dom subnetworks, to confirm the significance of our
results, we used the topology-matched random subnet-
works that were generated as described in the Method
section. Compared with the topology-matched random
subnetworks, the topology features of CASN were all
statistically significant (Wilcoxon rank sum test, Pdegree
< 1.9049E-095, Pclustering coefficient < 1.7775E-042, Paverage
path length < 2.0008E-091, FDR = 0.01). We also

Figure 3 Cancer-associated subnetwork (CASN). There are 857 nodes and 2333 linkages in CASN. The red linkages represent positive
correlations and the green linkages represent negative correlations; the line width represents the weight of methylation correlation. The triangle
nodes represent the seed genes and the diamond nodes represent the optimized genes; there are 84 seed genes and 154 optimized genes. The
red nodes represent genes related to one type of cancer, the blue nodes represent genes related to two types of cancers, the yellow nodes
represent genes related to three types of cancers and the purple nodes represent genes related to all the four types of cancers.
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generated 1000 random networks by keeping the same
number of nodes and connections as in CASN. We
found that, compared with the three different random
subnetworks, the degree and clustering coefficient for
CASN were much significant those of the three random
subnetworks, suggesting that the nodes in CASN were
not randomly distributed (Additional file 2).
The calculated topological features of the networks

indicate that CASN had a more densely connected net-
work community than WHPN. It is generally believed

that the mutant proteins contribute to diseases with
similar phenotypes directly or indirectly interact and
cancer is considered to be the result of the deregulation
of some interrelated pathways. So, if a gene in the net-
work is close to a cancer gene, then that gene is likely
to be involved in some of the events that lead to the
cancer. Further, the genes in CASN were also related to
cancer through their abnormal methylation. Thus, the
CASN genes may be involved in the same or similar
biological processes as the seed genes, which may in
turn be display changes of methylation levels in cancers.

Prioritizing the cancer-related genes with aberrant
methylation
To further investigate the proposed hypothesis that the
genes that were close in the CASN network may have
similar methylation levels, we selected 773 genes that
were connected with the seed genes in CASN as candi-
date genes. The 773 candidate genes were assessed to
prioritize the cancer-related genes with aberrant methy-
lation that had not been detected in CASN before.
Using the neighborhood-weighting decision rule [20],
every candidate gene was scored to measure the possibi-
lity that the methylation state of the candidate genes
varied in cancers. The candidate genes whose scores
were larger than any of the 1000 simulated scores were
identified as the optimized genes (See Methods for
details). Finally, 154 CASN genes were prioritized using
the seed genes and neighborhood-weighting decision
rule (Additional file 3). The optimized genes are also
classified as four types according to the number of can-
cer types that the genes connected; 79 optimized genes
for type I, 12 for type II 26 for type III and 37 for type
IV (Additional file 4).

Figure 4 The degree distributions of WHPN and CASN. The
degree distributions of WHPN (blue star) and CASN (red star) are
shown. K is the degree of the nodes and the x axis is the ln
transformed degree ln(k). The y axis is the ln transformed number
of nodes for which the degree is k, ln(nk).

Figure 5 Probability density distributions of the clustering coefficient and average path length for WHPN and CASN. The blue and the
red lines are for WHPN and CASN, respectively. (A) The decline for CASN is gentler than for WHPN. The x axis is the clustering coefficient with a
range of 0 to 1. The probability density of the clustering coefficient is on the y axis. (B) Average path length is shown on the x axis and the
probability density of average path length is on the y axis.
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Analysis of Hub nodes and optimized genes
The genes in WHPN were divided into two types,
CASN gene set and non-CASN gene set. Overall, the
connectivity of the CASN genes was higher than that of
the non-CASN genes (Wilcoxon rank sum test, P =
2.6270E-145, Figure 6A, Additional file 5). The degrees
for the CASN genes were in the range 1 to 470, and for
the non-CASN genes the range was only from 1 to 116.
The percentile 50 of degrees in CASN genes and non-
CASN genes were 5 and 2, respectively (Figure 6A,
Additional file 6). We found that, in WHPN, the top 10
genes with the largest degrees were all CASN genes
(Additional file 5).
CASN genes were divided into three types: seed gene

set, optimized gene set and rest potential gene set. The
percentile 50 of degrees in the seed gene set, the opti-
mized gene set and the rest potential gene set were 3.5,
4 and 2, respectively (Figure 6B, Additional file 7). The
results showed that the seed genes and the optimized
genes had higher degrees than the rest potential genes
(Wilcoxon rank sum test, Pseed genes and rest potential genes

= 2.3400E-002, Poptimized genes and rest potential genes =
5.4202E-004 and Pseed genes and optimized genes > 0.1). Of
the top 10 genes with the largest degrees in CASN, 5
were seed genes, 4 were optimized genes and only one
was a rest potential gene which was ranked 10 (Addi-
tional file 5). Four of the optimized genes (MAX, E2F4,
EP300, MAPK8) were all in the top 10 genes with the
highest degrees in WHPN.
The gene, MYC associated factor X (MAX), with the

second highest number of degrees in CASN and the
highest number of degrees (470) in WHPN, was

prioritized as an optimized gene. The MAX protein
coded by this gene is a member of the basic helix-loop-
helix leucine zipper (bHLHZ) family of transcription
factors. MAX usually forms heterodimers with other
family members such as Mad, Mxi1 and Myc. Myc is an
oncoprotein involved in cell proliferation, differentiation
and apoptosis [24]. Therefore, MAX may also partici-
pate in the same or similar biological processes that
affect the development and progression of cancers. In
CASN, some Hub nodes were prioritized as cancer-
related genes with aberrant methylation. Other studies
have shown that cancer-related proteins often have high
connectivity that are usually considered to be the Hub
notes in networks, rather than the peripheral notes
[25,26]. The optimized genes in our study tended to
have high connectivity, suggesting critical roles for them
in important biological processes and in the deregula-
tion of genes during the development and progression
of the cancers.

Analysis of GO categories and KEGG pathways
The GO function enrichment analysis of the CASN
genes indicated that these genes were mainly enriched
in the GO terms of regulation of programmed cell death
and apoptosis, terms which are relevant of tumors
(Additional file 8). The non-CASN genes, on the other
hand, were mainly involved in the biological processes
of regulation of protein RNA metabolic processes and
cell proliferation (Additional file 8). Of the many signifi-
cant GO terms listed for the non-CASN genes, only
some of them were related to programmed cell death
and apoptosis and they were significantly lower for the

Figure 6 Distributions of degree for the genes in WHNP and CASN. (A) The CASN and non-CASN genes in WHPN are on the x axis; (B) The
seed genes, optimized genes and rest potential genes in CASN are on the x axis. The y axis represents the degrees for these nodes. For the box
plot, the top bar (black) is the lowest point within the 1.5 interquartile from the lower quartile, and the bottom bar (black) is the highest point
within the 1.5 interquartile of the upper quartile, the top of box (blue) is the upper or third quartile, the bottom of box (blue) is the lower or
first quartile, the middle bar is the median value. Pluses (red) are possible outliers.
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non-CASN genes than for the CASN gene set. These
findings revealed that the CASN genes were much more
closely related to cancers than the non-CASN genes. In
the subsequent analysis, we focus on the CASN gene
set.
The seed genes are mainly involved in GO biological

processes associated with the regulation of the apoptosis
and programmed cell death (Additional file 9). The seed
genes were selected because they may be methylated
aberrantly; thus, the abnormal methylation may induce
their involvement in apoptosis and programmed cell
death, affecting the development and progression of
cancers [27,28]. We also found that the optimized genes
were mainly enriched in the GO terms involving regula-
tion of gene expression, regulation of transcription and
in the biological processes of cell apoptosis and pro-
grammed cell death (Additional file 9). Apoptosis is a
basic biological phenomenon that may have a direct or
indirect relationship with many diseases, such as cancers
and autoimmune diseases [29]. Apoptosis is negatively
regulated in cancers and the disruption of apoptosis is
involved in the initiation of cancers. These biological
processes might be deregulated by the aberrant methyla-
tion of the optimized genes, thus affecting the process of
cancers.
The CASN and non-CASN gene sets in WHPN were

next analyzed for KEGG pathway enrichment. The find-
ings revealed that the CASN genes were enriched in
many cancer and cancer-associated pathways (Addi-
tional file 10); the non-CASN genes were not enriched
in any cancer pathway. We investigated the three gene
groups in CASN in the same way as we did for the GO
enrichment analysis. The results for the optimized genes
and seed genes are shown in Additional file 11. The
seed genes were annotated to 12 of the 15 cancer path-
ways in the KEGG database. Two of the other pathways,
the P53 signaling pathway and the Wnt signaling path-
way, are closely related to cancers [30-32]. The opti-
mized genes were also annotated to cancer pathways,
and to the Notch signaling pathway and the cell cycle in
KEGG. Some studies have shown that abnormalities of
the Notch signaling pathway are linked to breast carci-
nogenesis, T cell malignancies, neuroblastoma, myeloid
leukemia and lung cancer [33,34]. Our results also show
that the optimized genes may be linked to cancers, sug-
gesting that the abnormal methylation levels affect the
development and progression of cancers.
Finally, the GO and KEGG enrichment analysis for the

rest potential genes indicated that these genes may also
be enriched in some cancer-related GO biological pro-
cesses and in some KEGG cancer- related pathways
(Additional file 9 Additional file 11). A possible explana-
tion for this result may be that the all genes in the net-
works were interactional and all the genes in CASN

interacted with the seed genes which were all cancer-
related genes. Genes that interact often participate in
common functional modules like protein complexes,
molecular pathways and developmental processes; so,
the rest potential genes may have some functions that
are similar to the cancer genes.

The expression level of the optimized genes
The expression profiling data for the four types of can-
cers were obtained from NCBI GEO (See Methods for
details). The differentially expressed genes were screened
in the expression profiles for the four types of cancers
by SAM [35]. The candidate differentially expressed
genes that appear in more than 900 re-sampling differ-
entially expressed gene sets were identified as the differ-
entially expressed genes (See Methods for details). This
process helped us to identify and remove the numerous
insignificant differentially expressed genes. The resultant
set contained 52 differentially expressed genes that were
ranked by the SAM score diff_scorei (Additional file 12).
Comparing the differentially expressed genes with the
corresponding optimized genes for each of the cancer
types (Figure 7), we found that, for the hepatocellular
carcinoma expression profiles, 9 of the 11 differentially
expressed genes overlapped with our set of 105 opti-
mized genes; for the glioblastoma expression profiles, of
the 27 differentially expressed genes, 17 of them

Figure 7 Comparison of the optimized genes and the
differentially expressed genes. Four types of cancers,
hepatocellular carcinoma, glioblastoma, leukemia, and ovarian
cancer are on the x axis. The y axis represents the number of genes.
The optimized genes are blue and the differentially expressed genes
are yellow; the intersection between optimized genes and
differentially expressed genes is red.

Liu et al. BMC Systems Biology 2011, 5:158
http://www.biomedcentral.com/1752-0509/5/158

Page 8 of 15



overlapped with our set of 65 optimized genes; for the
leukemia expression profiles, there were 13 differentially
expressed genes, 11 genes were contained in the set of
101 optimized genes; and for the ovarian cancer expres-
sion profiles, only 7 of 18 differentially genes were con-
tained in the set of 58 optimized genes.
These findings suggest that some of the optimized genes
in our data set might be differentially expressed in the
corresponding cancers, indicating that these genes may
be regulated by aberrant methylation resulting in their
involvement in the cancer-related pathways.

PubMed co-citations for the optimized genes
To evaluate the relationship between the optimized
genes and cancers, we queried the PubMed database for
publications that contained the combination of opti-
mized gene, type of cancers and hypermethylation/hypo-
methylation [36]. The results showed that 43 of 154
optimized genes were associated with cancers and aber-
rant methylation in PubMed (Additional file 13). Of the
43 cancer and aberrant methylation related genes in
PubMed, 10 were reported to have aberrant DNA
methylation (Table 1 Additional file 14). In the 10 opti-
mized genes that we found reported in the literature to
have changes of methylation level in cancers, 5 were
cited as possible diagnostic and prognostic markers for
cancers respectively, and 4 were recognized as drug tar-
gets (Table 1). The promoter region of MED1 (mediator
complex subunit 1), one of the optimized aberrant
methylated gene associated with cancers, was reported
to be frequently methylated in ovarian and colorectal
cancer cell lines and this had been to result in the low
expression of MED1 [37]. MED1 was also identified as a
drug target. PRKCDBP, the gene that encodes the delta
binding protein, protein kinase C, was reported to be

significantly hypomethylated in breast cancers and the
expression of the encoded protein was found to be
down-regulated in various cancer cell lines [38]. This
gene has also been cited as a diagnostic marker for
neuroblastoma.
We also manually searched PubMed for an association
between all the optimized genes and their use as diag-
nostic or prognostic markers. We found that 27 of the
154 optimized genes were in the literature as diagnostic
markers, and 20 optimized genes were in the literature
as prognostic markers for breast cancer, nasopharyngeal
carcinoma, prostate cancer, and for other non-cancer
diseases that included Rubinstein-Taybi syndrome, type
II diabetes and familial dysautonomia (Additional file
14). Subsequently, we searched for the optimized genes
in the DrugBank database, and found that 31 genes
were annotated as the targets for drug markers (Addi-
tional file 14)[39]. Therefore, we conclude that the pro-
moter regions of the optimized genes may be
methylated aberrantly, leading to the activation or inhi-
bition of gene expression and contributing to their
involvement in the development and progression of
cancers.

Discussion
Here, we prioritized potential cancer-related genes with
aberrant methylation based on the constructed weighted
human protein-protein interaction network. Network
theory has been applied widely to the study of diseases
[19]. As a method of describing the interactions between
biological molecules, biological network theory reveals
the processes and laws involved in, for example, growth,
development, aging, and disease. Proteins play important
roles in the activity of cells and protein-protein interac-
tions are the main path by which proteins function.
Many researchers have used network theory to construct
protein-protein interaction networks and combined
them with other characteristics, such as molecular path-
ways and GO annotations, to identify disease-related
genes [19]. However, a few studies have attempted to
combine network theory with both epigenetic and
genetic characteristics [21]. DNA methylation is an
important epigenetic modification that influences a vari-
ety of physiological activities of the cell, such as X chro-
mosome inactivation, aging, temporal and spatial
expression and the development of diseases [40]. Aber-
rant DNA methylation can affect tumor formation by
affecting the chromatin structure and the expression of
oncogenes and tumor suppressor genes [41,42]. There-
fore, we prioritize the potential cancer-related genes
with aberrant methylation by integrating epigenetic and
genetic characteristics based on network theory.
In this study, we ensured the reliability of the linkages

in the WHPN by deriving the interaction data from five

Table 1 Genes validated using PubMed literature co-
citations

Symbol Entrez gene
ID

Diagnostic
marker

prognostic
marker

DrugBank

CREBBP* 1387 ▲ target

EP300* 2033 ▲ ⋆
HIF1A* 3091 ⋆ target

PRMT1* 3276 ▲ ⋆ target

PML* 5371 ⋆
med1* 5469 target

tp63* 8626 ▲ ⋆
PRKCDBP* 112464 ▲
MANEAL* 149175

Rasef* 158158

The star (*) in the top right corner of the first column represents this gene is
methylated aberrantly in cancers validated by literature. The triangle (▲) in the
second column represents this gene can be a diagnostic marker for diseases.
And the pentagram (⋆) in the third column represents this gene can be a
prognostic marker for diseases supported by literature.
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different PPI databases and by selecting only the PPIs
which were validated by experiments or which have
been reported in the literature. We then built the can-
cer-associated subnetwork (CASN) from WHPN. The
network topological features evaluated using r values
related to power law distribution indicate that WHPN is
a typical scale-free network. Most biological networks
constructed so far are scale-free networks with a degree
distribution that follows the power law with degree
exponents in the range 2 < r < 3 [23]. Although rCASN is
below this range, CASN still follows power law distribu-
tion and has the characteristics of a scale-free network
that has a few Hub nodes with high connectivity and
most nodes with low clustering coefficients. Thus,
CASN is an approximate scale-free network. This char-
acteristic may be due to the synergetic effect of DNA
methylation and the cancer-related seed genes that were
used to construct it. This also causes the network struc-
ture of CASN to be closer than that of WHPN. The
clustering coefficient for CASN (0.1410) is more than
the clustering coefficient for WHPN (0.0503). Therefore,
in CASN, the genes connected with the seed genes may
participate in the same or similar biological processes as
the seed genes and may have the same or similar func-
tions as the seed genes. Thus, it can be concluded that
the deregulated DNA methylation may affect the devel-
opment and progression of cancers.
We prioritized 154 potential cancer-related genes with

aberrant methylation using the neighborhood-weighting
decision rule based on CASN. In the PubMed co-cita-
tions analysis for these 154 genes, we found 43 genes
that were associated with cancers and aberrant methyla-
tion in PubMed. The PubMed co-citations analysis is
only a rough assessment which may have a high rate of
false positives [36]. Of the 43 genes in the PubMed co-
citations, only 10 could be confidently validated to be
aberrantly methylated in cancers from the literature ana-
lysis. The optimized genes that were not identified in
the PubMed co-citations may be cancer-related genes
with aberrant methylation that are, as yet, undetected.
These genes are prime candidates for validation by
further experiments.

Conclusions
In this study, we constructed a weighted human protein-
protein interaction network (WHPN). Based on WHPN,
a cancer-association subnetwork (CASN) was obtained
using a set of seed genes derived from PubMeth. Com-
paring the topological features of the two networks, we
found that CASN had a much denser network commu-
nity than WHPN, indicating that the genes in CASN
might be aberrantly methylated in cancers and likely
participated in the same or similar biological processes
as the seed genes. 154 genes were prioritized as

potential cancer-related genes with aberrant methylation
based on neighborhood-weighting decision rule. The
enrichment analysis of GO and KEGG showed that the
prioritized genes were generally enriched for biological
processes related to apoptosis and programmed cell
death and for pathways associated with cancers. Many
of the optimized genes showed some degree of differen-
tial expression in the SAM analysis, revealing that these
genes might be abnormally methylated in the cancer-
related biological processes. Abnormal methylation
would affect the expression level of these identified
genes leading to the development and progression of
cancers. In this study, we prioritized the cancer-related
genes with aberrant methylation by integrating DNA
methylation and protein-protein interaction characteris-
tics based on the network theory. This method will be
helpful for the further understanding of the mechanisms
of the development and progression in cancers and may
help develop new avenues for the prioritization of can-
cer-related genes with aberrant methylation for diagno-
sis and therapeutics.

Methods
Datasets
Protein-protein interaction data
The protein-protein interaction data were obtained from
five PPI databases, the Human Protein Reference Data-
base (HPRD) [43], IntAct [44], the Database of Interact-
ing Proteins (DIP) [45], the Molecular INTeraction
Database (MINT) [46] and the Biomolecular Interaction
Network Database (BIND) [47]. To assure the reliability
of the protein-protein interactions, we used only the
interaction data that was supported by experimental evi-
dence and not the optimized interactions. Because the
different databases use different identifiers, the original
identifiers were mapped to the corresponding Entrez
Gene IDs using the cross-reference files from Entrez
Gene, the HUGO Gene Nomenclature Committee
(HGNC) [48] or Biomart [49]. Using this method we
obtained 80496 pairs of human protein-protein interac-
tion involving 14611 genes.
DNA methylation data
The genome-wide DNA methylation data sources were
derived from patients with four types of cancer, glioblas-
toma (GBM), ovarian cancer, hepatocellular carcinoma
and leukemia. The methylation data for glioblastoma
and ovarian cancer were from TCGA (The Cancer Gen-
ome Atlas) which contained 26 samples for GBM and
394 samples for ovarian cancer. The methylation data
for hepatocellular carcinoma and leukemia were
obtained from ENCODE in the UCSC Genome Browser
which contained two replicates of the HepG2 cell line
and two replicates of the K562 cell line. These data
were all generated using Infinium assays on the Illumina
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Infinium HumanMethylation27 BeadChip. In these
assays, quantitative measurements of DNA methylation
are made for 27578 interrogated CpG dinucleotides cov-
ering a genome-wide scale of 14475 genes at single-
nucleotide resolution. The probes for the CpG sites
were mapped to the corresponding genes using Entrez
Gene IDs as the unique identifiers. For genes containing
two or more CpG sites, the average methylation value of
these CpG sites was used to represent the methylation
level of the corresponding gene. Finally, the methylation
values of the 27578 CpG sites were mapped to the
14475 genes using the Entrez Gene IDs.
Seed gene data
Seed genes were defined as the genes validated by
experiments to be aberrantly methylated (hypermethyla-
tion or hypomethylation) in cancers. PubMeth, a data-
base of methylation in cancer, contains genes reported
to be abnormally methylated in various cancer types.
PubMeth is based on automated literature mining which
is then manually checked and annotated [50]. We used
the keywords, glioblastoma, ovarian cancer, hepatocellu-
lar carcinoma and leukemia, in the PubMeth cancer-
centric search tool to extract cancer-associated genes
with aberrant methylation from the database. After
removing the genes for which the number of samples or
the methylation frequency was 0, the remaining set of
genes was chosen as seed genes. The selected seed gene
set included 73 genes for glioblastoma, 58 for hepatocel-
lular carcinoma, 47 for ovarian cancer and 22 for leuke-
mia. These genes were then combined giving a final
seed gene set of 127 genes for the four cancer types.

Construction of WHPN, the weighted human PPI network
We build the weighted network used in this study by
combining the human PPI data with the DNA methyla-
tion data. Pearson correlations were calculated to assess
the association of the methylation for each gene pair.
The genes were used as the nodes, the interactions of
the gene pairs were the edges and the correlation coeffi-
cient was used as the linkage weight. Linkages for which
the methylation correlations were beneath the threshold
were removed.
Next, the weight thresholds of the network were

determined. The DNA methylation data was perturbed
for 1000 times; thereafter, the Pearson correlation coeffi-
cient of the random DNA methylation was computed
for the gene pairs in each perturbed methylation dataset.
The methylation correlation of the original gene pairs
was compared with the methylation correlations of the
perturbed gene pairs. All the values were ranked and
compared with the true methylation correlation. If the
true value was either in the top five percent or in the
bottom five percent of the ranked correlations for the
perturbed gene pairs (P value < 0.1), then the

methylation correlation for that pair was considered to
be significant and this correlation was used as the link-
age weight of the connected gene pair. All gene pairs
for which the methylation correlations were not within
the top or bottom five percent were removed from the
PPI network.

Construction of CASN, the cancer-associated subnetwork
The seed gene set obtained using the data from Pub-
Meth was mapped into the weighted human PPI net-
work. Thus, the cancer-associated subnetwork (CASN)
is composed of the seed genes and the genes that are
connected with the seed genes in the weighted PPI
network.

Network randomization
Random subnetworks were generated by randomly sam-
pling the same number of nodes as in CASN from
WHPN; the connections in the sampling nodes were
kept in the random subnetworks. This process was
repeated 1000 times. Topology-matched random subnet-
works were generated by the method described by Li et
al. in an earlier study [51]. Similarly, all the genes in
WHPN were divided into three subsets of equal size
based on degrees and clustering coefficients. Next, the
WHPN genes were assigned to nine sets by combining
the three degree sets with the three clustering coefficient
sets. To create the random subnetwork, for every node
in CASN, we randomly obtained one node from the
same topological set in WHPN; in this way, 1000 topol-
ogy-matched random subnetworks were generated.
Finally, to determine the significance of our results, a
third randomization method was used to generate 1000
random subnetworks by keeping the number of nodes
and connections of CASN.

Network visualization
The networks were drawn using Cytoscape http://www.
cytoscape.org/, an open source software platform for
visualizing complex biological networks [52].

The calculation of topological features in the two
networks
Network theory provides a quantifiable description of
networks for the biological systems. And degree, cluster-
ing coefficient and average path length are the three
characteristic topological features used to measure com-
plex networks. In this study, we examined these topolo-
gical features that can be used to measure and compare
the different complex networks [23].
Degree
The degree (connectivity) of a node i, ki, is defined as
the number of notes which the node i connects. And
the average degree of the network is the average value
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of the degrees of all the notes, 2L/N, where L represents
links and N represents notes.
Degree distribution
This measurement indicates that the variety trend of
probability for the note whose degree is k with the
change of the note’s degree k, and it also means that the
ratio of the number of notes with the degree of k
accounting for all the notes in the network.
Scale-free networks
Most biological networks are scale-free whose degree
distribution follows a power law, at least asymptotically.
That is,

P(k) ∼ k−r (1)

r is the index for the distribution. According to

p(k) = ak−r (2)

The r values for the networks are calculated, looking
for whether they asymptotically follow power law
distribution.
Clustering coefficients
If the degree of a note i is ki and the edge number of
the linked neighbor notes is Ei, the clustering coefficient
of the note i is

Ci = 2Ei/(ki(ki − 1)) (3)

The clustering coefficient of the network is defined as
the average value for clustering coefficient of all the
notes, which reflects the overall cluster trend of inter-
acted notes.
Average path length
In the network research, the general definition of the
distance between two nodes is the shortest path con-
necting the two notes, and the network diameter is the
maximum distance between any two notes, that is

D = max
i,j

dij (4)

The average path of the network < L > is the average
value of the distances for all notes,

L =
1

1
2

N(N − 1)

∑
i≥j

dij (5)

Subnetwork-based cancer gene with aberrant
methylation prioritization
Neighborhood-weighting decision rule
Candidate genes are defined as the genes that connect
to seed genes [20]. Given the seed gene set of cancers,
the candidate gene i associated with the seed genes in
the subnetwork are quantitatively measured using

score Si:

Si =
∑

|ωij| (6)

ωij represents the linkage weight that between the
candidate gene i and the seed gene j, viz. the Pearson
correlation of the DNA methylation between the two
genes. If the candidate gene i is not associated with
the seed gene j, ωij = 0. The scores of the candidate
genes are calculated by the neighborhood-weighting
decision rule.
And next, the candidate genes are prioritized accord-

ing to the score Si. Through the perturbation of DNA
methyaltion data, the permuted weights for linkages
are obtained. And then the permuted scores are also
calculated by the Neighborhood-weighting decision
rule. This procedure is repeated 1000 times and then
the scores and the permuted scores are compared. The
genes whose score is grater than all the corresponding
permuted score are selected. It is believe that these
genes have potential to be methylated aberrantly in
cancers.

Enrichment analysis of GO and KEGG pathway
The gene annotation enrichment analysis for the opti-
mized genes was taken by DAVID [53], where the tools
can provide functional interpretation of large gene lists
derived from genomic studies.

Comparisons of differentially expressed genes
Using the gene expression profiles from NCBI GEO
(GSE4290, GSE14811, GSE5788 and GSE18520), the
profiles of cancer samples and control samples were
compared to find differentially expressed genes by SAM
method [35]. The genomes of tumor cells are usually
more unstable than the genomes of other cells. In an
earlier study, Li et al. [54] speculated that there may be
many genes with variable expression between individual
tumor cells making the differentially expressed genes
that are really tumor-specific hard to find in the highly
varied profiles. To overcome this problem, we firstly
identified candidate differentially expressed genes using
the original NCBI GEO dataset. The cancer and control
samples in the datasets were re-sampled 1000 times tak-
ing care to maintain the same ratio of control to cancer
samples as in the original dataset. Then, for each ran-
dom dataset, the apparently differentially expressed
genes were identified. For each candidate differentially
expressed gene i, ni, the number of times this gene
appeared in the 1000 random differentially expressed
gene sets was calculated. If ni was > 900, then gene i
was identified as a differentially expressed gene and the
diff_scorei for this gene was defined as,
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diff scorei =
1000∑
j=1

dij

/
ni

(7)

where, dij is the SAM score for gene i in the random
dataset j. The differentially expressed genes were ranked
according to their diff_scorei. SAM was performed using
the R package samr.

Text-mining of PubMed for the optimized genes
comparison to previously publications
In the absence of a gold standard to assess the relation-
ship between the cancers and the methylation level of
the optimized genes, we used the public database
PubMed to produce the reference lists. PubMed con-
tains hundreds of thousands of citations to the biomedi-
cal literature. We systematically searched PubMed using
query terms that included the optimized gene name, the
cancer type and hypermethylation/hypomethylation, for
the co-occurrence of these terms either in an abstract or
in the title of previous publications [36].

Additional material

Additional file 1: Category of seed genes. The first column is the
Entrez Gene ID for the seed genes. In columns 2 to 5, 1 represents a
seed gene that is related with this type of cancers and 0 represents a
seed gene that is not related with this type of cancers. The last column
shows the types of the seed genes. The seed genes were classified into
4 types; genes related with one type of cancers are marked with 1,
genes related with two types of cancers are marked with 2, genes
related with three types of cancers are marked with 3, and the genes
related with all the four types of cancers are marked with 4.

Additional file 2: Comparison of CASN and random subnetworks.
Comparison between degree and clustering coefficient of CASN and the
three kinds of random subnetworks.

Additional file 3: Scores of the optimized genes. The first column is
the Entrez Gene ID for the optimized gene. The second and the third
columns are the true and random scores respectively, for the optimized
genes by the neighborhood-weighting decision rule.

Additional file 4: Category of optimized genes. The first column is
the Entrez Gene ID for the optimized gene. From columns 2 to 5, 1
represents an optimized gene that interacts with the seed genes related
with the type of cancers and 0 represents an optimized gene that does
not interact with the seed genes related with the type of cancers. The
last column shows the types of the optimized genes. The optimized
genes were classified into 4 types, the genes related with one type of
cancer are marked with 1, the genes related with two types of cancers
are marked with 2, the genes related with three types of cancers are
marked with 3, and the genes related with all the four types of cancers
are marked with 4.

Additional file 5: Degree of the genes in WHPN and CASN. The
genes are on the x axes and the degree of the genes is on the y axes.
(A) The degrees of the CASN genes (red dots) and non-CASN genes
(blue dots) in WHPN; (B) The degrees of the seed genes (red dots),
optimized genes (blue dots) and rest potential genes (yellow dots) in
CASN.

Additional file 6: Comparison of CASN and non-CASN genes.
Comparisons are based on mean, median, minimum, maximum and the
percentiles 25, 50 and 75.

Additional file 7: Comparison of seed genes, optimized genes and
rest potential genes. Comparisons are based on mean, median,
minimum, maximum and the percentiles 25, 50 and 75.

Additional file 8: GO enrichment analysis for WHPN genes. The GO
enrichment analysis of CASN genes and non-CASN genes in WHPN are
shown in Additional file 8. A P value of < 0.05 was taken to be
significant.

Additional file 9: GO enrichment analysis for CASN genes. The GO
enrichment analysis of seed genes, optimized genes and rest potential
genes are shown in Additional file 9. A P value of < 0.05 was taken to be
significant.

Additional file 10: KEGG enrichment analysis for WHPN genes. The
KEGG enrichment analysis of CASN genes and non-CASN genes in WHPN
are shown in Additional file 10. A P value of < 0.05 was taken to be
significant.

Additional file 11: KEGG enrichment analysis for CASN genes. The
KEGG enrichment analysis of seed genes, optimized genes and rest
potential genes are shown in Additional file 11. A P value of < 0.05 was
taken to be significant.

Additional file 12: SAM score for the differentially expressed genes.
Of the 154 optimized genes, 52 differentially expressed genes and they
are ranked by their diff_scorei.

Additional file 13: PubMed co-citations of the optimized genes. The
first column is the Entrez Gene ID for the optimized genes. Of the 154
optimized genes, 43 genes that were found from a preliminary analysis
to be associated with cancers and aberrant methylation in PubMed. The
star (*) in the first column marks a gene that was subsequently validated
to be methylated aberrantly in cancers by text mining the literature in
PubMed.

Additional file 14: Diagnostic, prognostic and drug marker
validation of optimized genes. After searching PubMed manually, 27
genes were identified as diagnostic markers and 20 genes were
identified as prognostic markers for cancers and other complex diseases.
Mapped into DrugBank target list, 31 genes can be target as drug
response markers.
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