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Abstract

Background: C, plants such as corn and sugarcane assimilate atmospheric CO, into biomass by means of the C,
carbon fixation pathway. We asked how PEP formation rate, a key step in the carbon fixation pathway, might work
at a precise rate, regulated by light, despite fluctuations in substrate and enzyme levels constituting and regulating

this process.

sensitive to the system’s input (light levels).

levels.

Results: We present a putative mechanism for robustness in C4 carbon fixation, involving a key enzyme in the
pathway, pyruvate orthophosphate dikinase (PPDK), which is regulated by a bifunctional enzyme, Regulatory
Protein (RP). The robust mechanism is based on avidity of the bifunctional enzyme RP to its multimeric substrate
PPDK, and on a product-inhibition feedback loop that couples the system output to the activity of the bifunctional
regulator. The model provides an explanation for several unusual biochemical characteristics of the system and
predicts that the system'’s output, phosphoenolpyruvate (PEP) formation rate, is insensitive to fluctuations in
enzyme levels (PPDK and RP), substrate levels (ATP and pyruvate) and the catalytic rate of PPDK, while remaining

Conclusions: The presented PPDK mechanism is a new way to achieve robustness using product inhibition as a
feedback loop on a bifunctional regulatory enzyme. This mechanism exhibits robustness to protein and metabolite
levels as well as to catalytic rate changes. At the same time, the output of the system remains tuned to input

Background
A class of biological circuits was recently described with
robust input-output relations [1-4]. In these systems, the
output, such as the concentration or activity of a specific
protein, is perfectly insensitive to variations in the con-
centrations of all of the system’s components, and yet
responsive to the system’s input. Such robust input-out-
put relations are difficult to achieve, because in most
conceivable mechanisms the output is sensitive to varia-
tions in the concentrations of the circuit components.
At the heart of these robust mechanisms are bifunc-
tional enzymes that catalyze two opposing reactions.
The first example analyzed in detail appears in bacterial
two-component signaling systems, in which a
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bifunctional receptor confers a robust input-output rela-
tionship by acting as both a kinase and a phosphatase of
a response-regulator protein [1,2]. A second case of a
bifunctional enzyme tied to robustness was studied in
the glyoxylate bypass control of E. coli metabolism, in
which the activity of isocitrate dehydrogenase is made
robust by a bifunctional kinase/phosphatase [3]. A third
example appears in the nitrogen assimilation system of
E. coli, in which glutamine synthetase is controlled by a
bifunctional enzyme that both adenylates and de-adeny-
lates it [4].

Although all of these systems rely on bifunctional
enzymes, each system does so with important differ-
ences. Thus, robustness relies in each case on the bio-
chemical details of the system. In the two-component
signaling case, robustness relies on an auto-kinase and
phosphotransfer reaction by the receptor, as well as on
the receptor phosphatase reaction being ATP-
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dependent. In the case of the glyoxylate bypass, robust-
ness depends on saturating one of the sites of the
bifunctional enzyme with substrate. And in the nitrogen
assimilation case, robustness depends on avidity of the
bifunctional enzyme to its multimeric substrate. Thus,
in each case studied so far, there is a different detailed
mechanism for robustness.

It is therefore of interest to describe additional sys-
tems with bifunctional enzymes, in order to discover
new potential mechanisms for robustness. Here, we con-
sider the plant carbon fixation cycle which employs a
bifunctional kinase/phosphatase. The wealth of unusual
biochemical features in this system makes it an interest-
ing candidate for seeking a new mechanism for robust-
ness. We next describe the reactions in this system and
evidence for its robustness. We then propose a putative
model for how robustness in this system can arise based
on its biochemical architecture.

C, plants such as corn and sugarcane use an enzy-
matic cycle to promote the assimilation of atmospheric
CO, into biomass. A key step in this cycle is the conver-
sion of pyruvate to PEP by the enzyme pyruvate ortho-
phosphate dikinase (PPDK) [5,6]. The activity of PPDK,
namely the rate of PEP production, is controlled by light
(because PPDK needs to be correlated with the photo-
synthesis rate, PPDK activity having the highest correla-
tion with the photosynthetic rate, r = 0.96 [6]). Light
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level is encoded in the cell by the concentration of
ADP: high ADP means low light, and low ADP means
high light (see [7-11] and references therein). For simpli-
city, we will consider ADP levels as the input of the sys-
tem, and PEP formation rate as its output.

The C, pathway has three main types, two of which
decarboxilate malate to pyruvate (by NADP-ME and
NAD-ME enzymes) and then utilize PPDK as a crucial
enzyme in the CO, assimilation cycle [12]. Plants that
employ these two types include maize, sugarcane, sor-
ghum and millet. The third C, type has the PPDK
enzyme (and sequential cycle), but also has an additional
decarboxylation pathway through PEPCK (phosphoenol-
pyruvate carboxykinase) which transforms oxaloacetate
to PEP. In this third C, pathway type, PPDK may be
less crucial than in the first two types [12].

PPDK is one of the most abundant enzymes in the
biosphere [13], constituting about 7-10% of the protein
content of mesophyll cells [14]. It is maximally active as
a homotetramer. When subjected to cold temperatures
it dissociates into dimers and monomers, making it
mostly inactive.

The reactions and regulation of PPDK have the fol-
lowing biochemical features (Figure 1). PPDK catalyzes
the conversion of pyruvate to PEP in two steps: The
first is auto-phosphorylation at a His residue (we denote
this phosphorylated form PPDK;). The second step is a
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Figure 1 The PPDK enzyme produces PEP and is regulated by the bifunctional enzyme RP. Pyruvate, orthophosphate dikinase (PPDKg)
uses ATP and Pi to produce phosphoenolpyruvate (PEP) from pyruvate. It does so in two stages: first, it auto-phosphorylate itself to its active
form (PPDK;). Second, it transfers the phosphoryl group to pyruvate and returns to its natural form (PPDKy). Another regulatory cycle can
phosphorylate the active form PPDK; at a different residue to form PPDK,, the inactive form of PPDK. The second phosphorylation and de-
phosphorylation are done by the bifunctional enzyme RP. This enzyme is regulated by ADP levels (an indication to photosynthetic rate). The

o
-

—_ 40
o)
g
L_‘30
2 .
s ° .
‘B2 .
%20
[ ]

]
E,lo '; ° :':':.0 ° ’
E‘ .‘..3:& e ° °
=

0

0 10

2 4 6 8
Total PPDK levels [mg/g fresh weight]

products of the kinase/phosphatase activity of RP, AMP and PPi, are also the products of the auto-phosphorylation reaction of PPDKy with ATP
and Pi (b) Enzyme activity of PPDK is constant across a range of PPDK expression levels - as measured in a mutated strain of Maize (Zea Mays)
by Ohta et al [18]. Mean levels of PPDK expression in non-transformants is measured to be 1.6 mg/g fresh weight). Enzyme activity changes only
at extreme expression levels of PPDK (see text).
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phospho-transfer reaction that transfers the phosphoryl
to pyruvate to produce PEP. The autokinase reaction
takes two phosphoryl groups from ATP and in the pre-
sence of Pi produces PPDK;, AMP and PPi. The two
reactions are thus:

ATP + Pi + PPDKy — AMP + PPi + PPDK; (1)

pyruvate + PPDK; — PEP + PPDK 2)

To regulate the activity of PPDK there exists a second
phosphorylation/de-phosphorylation cycle. The auto-
phosphorylated form of PPDK, PPDKj, can be phos-
phorylated a second time at a Thr residue. This doubly-
phosphorylated form is an inactive form of the enzyme
(denoted PPDK,). A bi-functional enzyme called Regula-
tory Protein (RP) catalyzes two opposing reactions:
phosphorylation uses ADP as a substrate and its pro-
ducts are PPDK, and AMP

PPDK; + ADP — PPDK, + AMP 3)

whereas dephosphorylation uses inorganic phosphate
Pi to produce PPi:

PPDK, + Pi — PPDK; + PPi (4)

The two phosphorylation steps of PPDK are sequen-
tial, meaning that the second phosphorylation of PPDK
at the Thr residue can happen only on the auto-phos-
phorylated form PPDKI, i.e. only after PPDK is in its
active form and ready to phosphorylate pyruvate to pro-
duce PEP [15,16]. The bifunctional enzyme RP is inhib-
ited in a competitive manner by PPi [17].

A recent experimental study indicates that the activity
of PPDKI1 (the PEP formation rate) is insensitive to var-
iations in PPDK protein levels [18]. Ohta et al. trans-
formed a cold-tolerant PPDK gene into maize. The
transformation yielded 48 strains each with a different
expression level of PPDK. The strains were then mea-
sured for PPDK enzyme activity. These measurements
show that enzyme activity is nearly insensitive to
increasing or decreasing PPDK expression levels: there
was only about a 20% change of PEP formation rate
despite a 5.7 fold variation in PPDK levels [18] (for
examples in other metabolic enzymes see [19]). This
suggests that PPDK activity is regulated in a way to
ensure a robust PEP formation rate (see Figure 1b). The
nature of this mechanism remains unknown.

In this study, we demonstrate that the detailed fea-
tures of the system can work together to provide input-
output robustness. We propose a mechanism that
makes the output (rate of PEP formation) robust to
wide variations in the concentration of all of the system
components, including protein levels (RP and PPDK)
and substrate metabolite levels (ATP, pyruvate). Despite
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this robustness, the rate of PEP formation is still sensi-
tive to its input signal ADP which corresponds to
photosynthetic activity (light/dark). The mechanism pro-
posed in this study is based on avidity of the bifunc-
tional enzyme RP to PPDK tetramers. It also depends
on a product-inhibition feedback effect of a PPDK pro-
duct (PPi) on RP’s catalytic rates. We also detail the
conditions in which robustness breaks down, such as
extreme values of the input ADP, or ultra-low levels of
substrates or proteins.

Results

A mechanism based on bifunctional enzyme avidity and
product inhibition suggests robustness of PEP formation
rate

We present a mechanism for robustness in the system
based on its known biochemical features. The outline is
as follows: we first note that the tetramer structure of
PPDK makes possible an avidity effect, in which RP pri-
marily acts when it is bound at the same time to two
different monomers on the same tetramer. We then
show that this avidity effect allows the system to reach
steady-state only if the specific rates of the kinase and
phosphatase reactions of RP are exactly equal. Finally,
we note that such tuning of specific rates is made possi-
ble by a feedback loop, in which the rate of PEP forma-
tion affects RP rates by product-inhibition (through the
shared metabolite pyrophosphate). The upshot is that
the PEP formation rate (the output of the system)
depends only on the input signal (ADP, which corre-
sponds to light level), and not on any of the protein
levels (PPDK, RP), levels of metabolite substrates (pyru-
vate, ATP) or on PPDK catalytic rate. The full set of
equations of the mechanism is shown in additional file
1. The following description aims to allow an intuitive
understanding of the mechanism.

The avidity effect in RP action

We denote the non-phosphorylated form of PPDK by
PPDK,, the phosphorylated form at the His residue by
PPDK1 and the doubly phosphorylated form at the His
and Thr residues by PPDK,. Only PPDK; is active and
catalyzes the production of PEP.

The bifunctional enzyme RP has two domains, one for
kinase and the other for phosphatase activity [20,21].
This two-domain structure, together with the tetrameric
form of its substrate PPDK, provides for a cooperative
binding effect known as the avidity effect. Avidity
results when one domain of RP, the kinase domain,
binds a PPDK; subunit and the other domain binds a
PPDK, subunit on the same tetramer.

We name the situation where RP simultaneously binds
two PPDK subunits as the ternary complex, [PPDK; RP
PPDK,]. The situation where RP binds only one domain
is termed a binary complex. The binary complexes are
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[RP PPDK;] and [RP PPDK,]. Thus, at steady-state, the
total RP kinase activity equals the RP phosphatase activ-
ity, and includes the contribution of both binary and
ternary complexes

Vi(ADP) (|RP PPDK; ]+[ PPDK; RP PPDK;|) =

= V,(ADP)([RP PPDK, ]+[ PPDK; RP PPDK;]) )

where Vi(ADP) and V,(ADP) are the specific catalytic
activities of the two domains of RP. These rates depend
on the input ADP [17].

Due to the avidity effect, however, the ternary com-
plex is highly favored relative to binary complexes. Once
RP binds one subunit of PPDK, for example PPDK;, the
effective local concentration of a neighboring subunit
(PPDK,) is increased. As a result, the on-rate for the
second binding is very high (typical avidity effects show
an on rate that is 100 times or more larger than the
first binding rate [4,22]). Unbinding is rare, because
both subunits need to unbind at the same time for RP
to leave the tetramer.

Avidity therefore ensures that, as long as both PPDK;
and PPDK, forms are present on the same tetramer, the
ternary complex is the prevalent complex in the system
(see Figure 2). As a result, both phosphorylation and de-
phosphorylation catalyzed by RP occur mainly in the
ternary complex. This applies also in a more detailed
model, presented in the last section of the results, that
takes into account the spatial organization of the three
possible states of PPDK subunits along the tetramer.
Thus, we assume that, as a first approximation, we can
neglect the binary complexes in Eq.(5), to find that the
condition for steady-state is equality between the rates
catalyzed by ternary complexes:

Vi(ADP)[PPDK, RP PPDK;| = V,(ADP)[PPDK, RP PPDK,]  (6)

When the ternary complex level is non-zero, one can
cancel it out from both sides of the equation. This
means that steady-state requires equal specific kinase
and phosphatase rates for the bifunctional enzyme RP:

Vi(ADP) = V,(ADP) 7)

This is a requirement that cannot generally be met,
because the input signal ADP changes Vi and V,, in
opposite directions (except for a single value of ADP, Vi
and V, are generally unequal). Thus, steady state
requires an additional layer of regulation. We next
describe an effect due to product inhibition, which can
satisfy the steady-state condition, and turns out to pro-
vide robustness.

Tuning of RP velocities can be achieved through a product-
inhibition feedback loop

Note that the products of the auto-kinase reaction of
PPDK, AMP and PPij, are also the products of the RP
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Figure 2 Avidity favors a ternary complex in which the two
domains of RP bind to two adjacent monomers in the PPDK
multimer. (a) lllustration of the two domains of an RP enzyme
binding adjacent PPDK monomers in a PPDK tetramer. The
phosphoryl-addition domain binds PPDK;, whereas the phosphoryl-
removal domain binds PPDK,. This double-binding results in high
avidity. (b) Reactions for the formation of binary and ternary
complexes of RP and PPDK. When one domain of RP binds a
monomer, the rate for binding an adjacent monomer by the
second domain, kon2 and kon3, is very large. (c) The fraction of RP
found in a ternary complex with two adjacent monomers [PPDK; RP
PPDK,] is higher than the fraction found in binary complexes with
only one monomer [PPDK; RP] or [PPDK; RP], over most of the
range of PPDK phosphorylation levels. In this plot the parameters
were normalized to koff1 and total RP levels such that kon1 = kon4
= 0.01[koff1/RP], koff4 = koff1, kon2 = kon3 = 200[koff1], koff2 =
koff3 = 1[koff1], Vi = V, = 0.01[koff1] and total PPDK/total RP = 100
[11,13,33]. The complex fractions were calculated with a model that
takes into account the spatial configurations of PPDK subunits (see

Methods).

reactions: AMP is the product of the kinase reaction,
and PPi the product of the phosphatase reaction. In the
present view, these features can help to form a robust
mechanism, because they provide a feedback loop
between PPDK and RP activities. This feedback is due
to the phenomenon of product inhibition [19] of RP.
The phosphatase activity of RP has been found to be
inhibited by its product PPi, following a Michaelis-Men-
ten like inhibition curve [17]

Vp(ADP, PPi) = Vo (ADP)/(1 + [PPi] /K ppi) (8)

Where Kj,ppi = 160 uM is the inhibition constant [17]
and V,o(ADP) is the maximal phosphatase velocity.
Thus, the more PPi in the cell, the lower is the phos-
phatase activity of RP. Experiments suggest that the
kinase reaction of RP is not measurably inhibited by the
second product AMP (K;,anp > 2 mM, [17]).

Since PPi is produced by PPDK, and inhibits RP, it
can link these two enzyme activities. For this to happen,
however, the concentration of PPi in these cells must be
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determined mainly by PPDK, and not by the hundred or
so other reactions that produce PPi [23]. The situation
in these plant cells might be special, however, because
of the huge amount of PPDK enzyme (7-10% of total
protein). We therefore assume that the main production
source of PPi is the PPDK auto-kinase activity, and
neglect to a first approximation all other PPi sources
(see also additional file 2). The concentration of PPi in
such a case is given by the balance of its production
rate by the PPDK, auto-kinase reaction, F;(ATP,Pi,PPi),
and its degradation at rate o

d [PPi]/dt = F; — o [PPi] 9)

Solving this results in a steady-state concentration of
PPi that is proportional to the production rate from the
auto-kinase reaction (F;), [PPi] = F;/o.. This is important
because at steady-state each auto-kinase reaction corre-
sponds to one PEP formation reaction: the phosphate is
transferred from PPDK onto pyruvate to produce PEP.
Because of this stoichiometric relationship, the system
output, PEP formation rate F,, is equal to the produc-
tion rate of PPi from the auto-kinase: Fy= F;. These
considerations link the PEP formation rate, F,, to the
PPi concentration,

F, = « [PPi] (10)

Using this relation in Eq.(8), we see that product inhi-
bition of RP by [PPi] leads to the following connection
between the systems output F, and the RP phosphate
rate:

V,(ADP) = V,,0(ADP)/(1 + F,/F) (11)

Where Fy = o Ki,PPi. This closes a negative feedback
loop: the higher the PEP formation rate F,, the lower
the phosphatase activity of RP, and thus the more PPDK
in its inactive form PPDK,, leading to lower PEP forma-
tion rate (see Figure 3). This loop leads the PEP forma-
tion rate to a point at which the RP kinase and
phosphatase activities are equal (Eq.(7)). Using Eq.(11),
we find that this steady state PEP formation rate is

Fostst = F =« K, ppi (Vpo (ADP)/V(ADP) - 1) (12)

This is the main result of the present analysis. The
output formation rate F* does not depend on the concen-
trations of the proteins in the system, RP and PPDK. It
also does not depend on any of the substrate metabolites,
ATP, pyruvate, PEP and AMP. The formation rate is
thus robust to these potentially fluctuating concentra-
tions as been also suggested by studies in leaves and iso-
lated chloroplasts showing no clear relation between
PPDK activity and changes in ATP, AMP, pyruvate and
PEP levels (reviewed in [10] and references therein, see
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also additional file 2). Despite this robustness, the out-
put rate is controlled by the input signal ADP, which
corresponds to light levels.

The magnitude of the output (PEP formation rate) in
this mechanism is given by the product of the PPi pro-
duct-inhibition constant and the PPi degradation rate,
Fo = a Ki,PPi. We note that pyrophosphatases are abun-
dant in the chloroplast [24], providing a fast hydrolysis
specific activity of 40 pmol/mg chl/min [25], yielding o
~100 [1/sec]. Since Ki,PPi = 160 pM [17] one finds a
rate of about F, = 10® reactions/second per chloroplast
(for chloroplast of size 20 um?® [26]). This rate magni-
tude makes sense: the C,4 cycle in these plant cells
assimilates about 107-10® carbon atoms in the form of
CO, per second per chloroplast at daylight [27,28] (see
additional file 2 for more details).

Limits of robustness

We also studied the conditions in which robustness
might break down. The model suggests three cases: The
first potential condition for loss of robustness is when
there is not enough total PPDK enzyme or substrates to
provide the robust rate F* of Eq.(12). The second
includes conditions of very low or very high input sig-
nal, in which the binary complexes in Eq.(5) cannot be
neglected, and avidity is no longer a dominant effect.
The third condition for loss of robustness occurs when
total PPDK levels are extremely high such that its activ-
ity cannot be regulated due to shortage in the phosphor-
ylation substrate (ADP levels). We now briefly analyze
these conditions.

The first type of conditions in which robustness does
not occur is when there is not enough total PPDK
enzyme or substrates (ATP, pyruvate) to provide the
robust PEP formation rate F* given by Eq.(12). For
example, if substrate or PPDK levels are zero, one must
have F, = 0. Solution of the model shows that when one
of these factors (total PPDK, pyruvate or ATP levels)
goes below a threshold concentration (equal to its mini-
mal concentration needed to reach F*), all of PPDK
becomes active (PPDK, = 0). The formation rate F, is
then linear in PPDK1, F, = V1(pyr) PPDKI1. In this
state, the rate depends on protein and metabolite levels
and robustness is lost. As soon as PPDK and/or sub-
strate levels become high enough to reach F*, robustness
is restored (see Figure 4).

The second case for loss of robustness is extreme
input levels in which the binary complexes are not neg-
ligible compared to ternary complexes. Avidity requires
that PPDK exist on the same tetramer in both PPDK1
and PPDK, forms. However, in extreme high or low sig-
nal (ADP) levels, this does not apply. In these condi-
tions, one can no longer neglect the effects of binary
complexes (see Methods and additional file 2). At very
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Figure 3 Combination of avidity with a product-inhibition negative feedback loop provides robustness to the PEP formation rate. a) A
schematic illustration of how the PPi negative feedback leads the output PEP formation rate back to its robust level upon a step addition of
PPDK protein. (1) An increase in total PPDK levels leads to a rise in PPDK; levels. In turn, (2) PPDK; and PPi rise. (3) PPi rise leads to inhibition of
the phosphatase activity of RP (product inhibition) and (4) to a rise in PPDK; levels, lowering PPDK; amounts. (5) The decrease in PPDK; yields a
decrease in PPDK, and thus leads to (6) a decrease in PPi and rise of RP phosphatase rate. The robust formation rate, F*, is again attained. Since
the avidity mechanism places both the kinase and phosphatase reactions from the same complex (ternary complex), steady-state requires only
that their rates are equal (regardless of protein levels). Thus, steady state formation rate goes back to its original state, while the extra amount of
PPDK is routed to the PPDK; state, which acts as a buffer. Grey circles indicate deviations from the initial steady-state and green (red) arrows
indicate increased (decreased) levels. b) Schematic illustration of the system’s dynamics upon an increase in PPDK total amounts. The numbers

in the different plots mark the phases of the system’s adaptation back to the robust solution as marked in a).

low ADP levels (very high light), most PPDK is active
and PPDK, monomers are rare. Ternary complexes are
scarce because they require PPDK,.

We estimate that robustness begins to erode at light
levels below 50 uE m™ s™' or above 800 pE m™ s,
which is also the mean photosynthetic photon flux at
daylight [28,29]. Thus robustness is found between an
upper and lower bounds on the light input (and its cor-
responding ADP encoding), as illustrated in Figures 2
and 4.

Robustness also breaks down at an extreme case when
total PPDK levels exceed ADP concentration (PPDKy
>> ADP), a condition that physiologically cannot be met
due to the very high levels of this protein. In this case,
cellular ADP levels are too low to allow further phos-
phorylation of the excess PPDK;. Consequently, the rate

of PEP formation will be linearly dependent on PPDK
total amounts (see Figure 1b, high end of the x axis and
additional file 2).

We also note that to be feasible, the robust mechan-
ism must admit a positive and stable solution. Exact
solution of the model shows that this corresponds to
the condition Vy < V0, namely that the RP kinase rate
is smaller than the phosphatase maximal rate (the rate
in the absence of inhibition).

A model for the spatial arrangement of PPDK subunits
based on avidity predicts a bimodal distribution of
phosphorylated and unphosphorylated tetramers

Finally we analyze the detailed configurations of PPDK
states within PPDK tetramers, when the robust mechan-
ism is active. The robust mechanism involves the RP
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Figure 4 The PEP formation rate is robust to PPDK levels and
sensitive to ADP levels. Numerical simulations of the PPDK system

show that the robust solution has a range of validity. At very low
ADP levels (blue dashed line), the photosynthetic rate is high and
the system is fully active, all PPDK subunits are in their PPDK; form.
Then, PEP formation rate is dependent on PPDK total amounts. At
medium levels of ADP (gold, purple and green), PEP formation rate
is robust to PPDK total amounts and depends solely on ADP levels
(the signal). This rate is dependent on PPDK total amount only
when PPDK levels are too low to provide the robust solution, F*
(see text). Finally, at high ADP levels (darkness), the system shuts
down and almost all PPDK subunits are inactivated (PPDK,), which
yields a very low basal formation rate level. Loss of robustness also
occurs when PPDK levels are extremely high such that ADP levels
are not sufficient to phosphorylate the added active PPDK units (see
text and Figure 1b)

cycle catalyzed primarily by RP bound to two adjacent
subunits of PPDK, one in PPDK, form and the other in
PPDK, form. The abundance of this ternary complex
relative to binary complexes is due to the avidity effect.

When RP carries out a reaction, it changes the state of
one of the two subunits that it binds: changing PPDK;
to PPDK, or vice verse. It thus converts adjacent
PPDK;- PPDK, subunits either to two adjacent PPDK;
subunits, or two adjacent PPDK, subunits.

The action of RP therefore tends to convert neighbor-
ing subunits that have different forms to the same form.
Analyzing this in a detailed model that tracks the differ-
ent configurations of tetramers (see Methods), we find
that the dynamics reaches a steady-state in which the
configuration distribution resembles a bimodal distribu-
tion. In this distribution, tetramers tend to be made of
all PPDK; or all PPDK, subunits (Figure 5). These
forms are slowly converted to other forms by RP bind-
ing to a single monomer (binary complex). The rarest
forms are those with adjacent PPDK;- PPDK, states,
arranged in a “checkerboard” pattern. A quantitative
analysis of the configuration probability distribution and
its effect on the ratio of ternary to binary reactions is
presented at the Methods section.
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Figure 5 Avidity model predicts a bimodal distribution of
PPDK subunit phosphorylation states. Subunit state
configurations were evaluated using a model of spatial
arrangements of PPDK subunits. Presented is the steady-state
fraction (see Methods) of each configuration of the PPDK tetramer.
We focused only on configurations of either PPDK; (marked in
white) or PPDK, (marked in black) subunits. Similar results hold for
configurations where one or more subunits are in the PPDK, state
(see additional file 2). Model parameters are: V,, =V, = 0.2 [koff1],
kon2 = 200 [koff2] and total PPDK/total RP = 100 [11,13,33].

We also studied the effect of a three-state model on
the different configurations, with 3 possible states for
PPDK subunits, namely PPDK,, PPDK; and PPDK,. We
find that for the system to attain robustness it is benefi-
cial that the two steps of the phospho-transfer have dif-
ferent rates. Only if the auto-phosphorylation of PPDK
is faster than the phospho-transfer to pyruvate, the
majority of the PPDK pool will transition between the
PPDK; and PPDK, states and the ternary complex will
dominate the modification reactions. Otherwise, the
majority of the configurations will be in the PPDK| state
which hampers the probability for a ternary complex to
exist. In-vitro measurements suggest that the auto-phos-
phorylation reaction is 1.5 faster than the phospho-
transfer reaction [30]. We find that this is sufficient for
the avidity reactions to dominate the process, and for
robustness to result.

Discussion

We presented a putative mechanism for robustness in
the PPDK system of the C, pathway in plants. The
mechanism depends on avidity of the bifunctional
enzyme RP to its multimeric substrate PPDK, and on a
product-inhibition feedback loop that couples the sys-
tem output PEP formation rate to the activity of the
bifunctional regulator. The resulting output, PEP forma-
tion rate, is made insensitive to variations in substrates
and protein levels. Despite this robustness, the output
formation rate can be tuned by the input of the system,
light levels encoded by ADP concentration.



Hart et al. BMC Systems Biology 2011, 5:171
http://www.biomedcentral.com/1752-0509/5/171

Robust control of PEP formation rate in the C, cycle
might be important in order to synchronize its action
with the photosynthesis rate. The C, pathway allows
plants to increase their internal CO, concentration
near the carbon fixing apparatus. Good regulation can
ensure an optimal balance of resources in the plant
and help avoid reactive oxygen species accumulation
[31].

Robustness is predicted to break down at very high or
very low light levels, or when PPDK concentration or
the concentrations of its substrates are too low to pro-
vide the robust solution. In these cases the output for-
mation rate becomes proportional to PPDK levels and
catalytic activity. Darkness leads to a shutdown of PEP
production (perhaps to a low basal level) to match the
lack of photosynthesis. Shortage in substrates or PPDK
enzyme leads to maximal activity of PPDK [17]).

Our model also predicts that the robust rate solution
F* (Eq.12) does not depend on the catalytic rate of
PPDK. Thus, the PEP formation rate can be insensitive
to temperature effects on PPDK specific activity. This
feature of the model may explain the robust activity of
PPDK observed in Maize across temperatures from 28°C
to 45°C [32].

One interesting question raised by the present find-
ing is why should each cell be robust, when there are
so many cells in the plant tissue that errors might be
averaged away? A robust PEP formation rate in each
mesophyll cell, despite the fluctuations averaging abil-
ity of the entire tissue, suggests that each cell may
require the optimal rate level at each given conditions.
Being above or below this optimal level may cause
damage to the cell, or reduce its growth ability. For
example, ATP is needed both for carbon fixation and
for biosynthesis. An unnecessary consumption of ATP
by an error of too much C, cycle carbon fixation rate
could hamper biosynthesis. Similarly, reduced PEP for-
mation rate (and thus higher levels of ATP) would
reduce carbon fixation rate and therefore cell growth.
Because of such effects, fluctuations at the single cell
level may not average out but rather decrease the fit-
ness of the entire tissue.

The PPDK mechanism is readily testable by experi-
ments that test PEP formation rate as a function of
enzyme and substrate levels in plants. Experiments can
also test the breakdown of robustness predicted at
extreme light levels and very low levels of enzyme or
substrates. One can also test the importance of avidity
by studying mutant mono-functional versions of the
bifunctional enzyme RP [4]. More generally, the sug-
gested mechanism provides a context for the unusual
set of biochemical features in this system. When consid-
ered together, these features have the potential to per-
form a systems level function: providing robustness with
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respect to fluctuating components and at the same time
responsiveness to the input signal.

Conclusions

The presented PPDK mechanism is a new way to
achieve robustness using product inhibition as a feed-
back loop on a bifunctional regulatory enzyme. This
mechanism exhibits robustness, being insensitive to var-
iations in protein and metabolite levels as well as to cat-
alytic rate changes. At the same time, the output of the
system remains tuned to input levels.

Methods

Mathematical model of the ternary complex avidity

We used mass-action kinetics to describe the model illu-
strated in Figure 2:

d[PPDK; RP]/dt = kon1 PPDK; RP — (koff1 + Vi + kon2 p1) [PPDK; RP]

+koff2 [PPDK; RP PPDK;] = 0 (13)
d[PPDK, RP]/dt = kon4 PPDK; RP — (koff4 + V,, + kon3 p2) [PPDK, RP] (14)
+koff3[PPDK; RP PPDK;| = 0

d[PPDK; RP PPDK; J/dt = kon2 p1 [ PPDK; RP ]+kon3 p2 [ PPDK, RP|— (15)

(koff2 + koff3 + Vi + V,,) [PPDK; RP PPDK;] = 0

Here pl denotes the probability for a PPDK, subunit
near a bound PPDK; subunit, and p2 is the same for a
PPDK; subunit near a bound PPDK, subunit. The sim-
plest model assumes that p1 and p2 are the fractions of
the corresponding monomers

pl = PPDK,/PPDKy (16)

p2 = PPDK; /PPDK; (17)

A more detailed model that takes into account the
spatial configurations of PPDK,, PPDK; and PPDK, in
the tetramer is provided in the next section. The
detailed model shows similar results for robustness, and
makes further predictions on the correlations of the
states of adjacent monomers.

These equations were solved analytically using the fact
that PPDK concentration is much higher than RP levels
(more than a 100-fold higher [13,33]). The avidity effect
allows us to assume that the on-rate for RP bound to
one monomer to bind an adjacent monomer on the
same tetramer is very large, due to the increased local
concentration (kon2, kon3 >> konl PPDKT, kon4
PPDKT). Also, off-rates are assumed to be much faster
than enzymatic reactions rates as is the case for most
enzymes (in-vivo experiments suggest that full activa-
tion/de-activation occur on the scale of 10-60 minutes,
therefore phosphorylation/de-phosphorylation rates are
in the range of 1-10 [1/sec], compared to koff rates on
the scale of 1 msec [13,20,11] thus V,, Vi << koffl,
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koff4). Analytical solution of the model was obtained
using Mathematica 7.0.

A lower bound for the ratio of ternary to binary com-
plexes is obtained by solving Eq.(15) at steady-state. We
denote B1 as the binary complex [PPDK; RP], B2 as the
binary complex [PPDK; RP] and T as the ternary com-
plex [PPDK; RP PPDK,]. Also, for simplicity we assume
symmetrical rates on both branches (kon2 = kon3, koff2
= koff3)

(2 koff2 + Vi + V)T = kon2 (p1 B1 + p2 B2) (18)

Therefore, the fraction of ternary to binary complexes
is bounded from below by

T/ (B1 + B2) > kon2/(2 koff2 + Vi + V,}) min(p1, p2) (19)

Since kon2 is very large compared to koff2 due to the
avidity effect [22], kon2/koff2 = A >> 1, and one can
neglect Vy,V,, compared to koff2 [13,11]

T/(B1 + B2) ~ A min(p1,p2) >> 1 (20)

This prevalence of the ternary complex breaks down
only when the probabilities pl or p2 become small, on
the order of 1/A where A is estimated to be on the
order of 100 [11,22,34].

Solution of the product inhibition equation
To describe the output formation rate F as a function of
the input (ADP levels) we used Eq. (5):

Vi(ADP)(B1 +T) — V,(ADP) (B2 +T) = 0 (21)

where Vi and V,, are effective phosphorylation and
de-phosphorylation rates, B1 = [ PPDK; RP] and B2 =
[ PPDK,; RP] are the concentrations of the binary com-
plexes and T = [ PPDK; RP PPDK,] is the ternary
complex concentration. Since Vi is activated by ADP
and V; is inhibited by ADP in a Michaelis-Menten
fashion [17,35], we take the dependence on ADP levels
to be

Vi/Vp = Vio/VpoADP (22)

where Vi and V, are effective rate constants depen-
dent on enzyme catalytic rate and on/off rates.

Product-inhibition of PPi is formulated most generally
as [19]:

Vp = (Vpo — V;PPi/KQ,ppi)/(l + PPi/K; ppi) (23)

where the catalytic rate and the binding are both low-
ered due to the presence of the reaction product. For
clarity, we assume that the product inhibition is of a
competitive type [17], where the product occupies the
catalytic site thus preventing catalysis. The equations for
the rates then simplify to

Page 9 of 12

Vp = Vpo/(1 + PPi/K; ppi) (24)

For Figure 4, these equations were solved numerically
for different concentrations of PPDK total amount using
Mathematica 7.0.

We finally note that perfect robustness (complete
insensitivity) to all protein and metabolites is an idea-
lized feature. One may ask whether it persists if one
adds additional reactions which have been neglected
due to their small relative rates. We find (see addi-
tional file 2), that adding such reactions (e.g. the con-
tribution of the binary complexes, the contribution of
other reactions that make AMP and PPi) preserves
approximate robustness: if the rates of these reactions
are on order of a small number ¢ relative to the corre-
sponding reactions above, sensitivity to proteins and
metabolites is no longer strictly zero but is small, on
the order of &. We also note that the dependence of
V,0 on Pi levels is neglected in this discussion due to
the high and buffered Pi levels in the cell, making this
metabolite unlikely to fluctuate as much as other
metabolites [36,37].

Spatial model of PPDK configurations

We developed a model in order to study the binding of
RP to the four subunits of PPDK. For a ternary complex
to form, RP must bind a PPDK; and a PPDK, that are
neighboring subunits. It then can catalyze either phos-
phorylation or de-phosphorylation. Each PPDK subunit
has three conformations possible: PPDK,, PPDK; and
PPDK,. Taking into account the symmetries of the tet-
ramer there are 21 possible configurations.

The relative occupancy of the different configurations
was calculated using a Master equation model, with
transitions between configurations carried out by the
binding of the enzyme RP, to a single domain or two
adjacent domains. The single-domain binding events are
essential to prevent the system from becoming stuck in
an all PPDK; or all PPDK, state. The probability of
state i is P(i), and the transition rate to state j is wij, and

dl;(ti) = > wiP()— Y wyP(i)

j# j#

(25)

The transition probabilities were calculated based on
the number of adjacent PPDK,, PPDK;, PPDK, and
PPDK; PPDK,; subunit pairs in the configuration. Each
configuration has a probability p to phosphorylate or
de-phosphorylate any one of its subunits by single-subu-
nit binding of RP, or RP can bind adjacent PPDK; and
PPDK, subunits (if they exist in that configuration) and
to either phosphorylate the PPDK; subunit with a prob-
ability n1 or de-phosphorylate PPDK, with a probability
n2. Since the ternary complex is long-lived, the reaction
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almost always occurs before unbinding, and thus n1 and
N2 approach unity. Also, in the binary complex, the
probability for a reaction to occur before unbinding is
the ratio of RP catalytic rate to the unbinding rate, so
that:

1/ = 1/2(Vi/ (koff1 + Vi) + Vo/(koff4 +Vy,))  (26)

The probability for an auto-phosphorylation reaction
of a PPDK, subunit is denoted by 81 and the phospho-
transfer reaction by 82. Therefore, in order to have
accumulation of PPDK; and PPDK, subunits, 81 should
be greater than 52.

Solving the Master equation yields the fraction of each
configuration at steady-state. We find that the avidity
mechanism favors clustering of the PPDK; and PPDK,
subunits. Thus, PPDK; and PPDK, subunits tend to be
maximally spatially separated.

Analytical results of the major configurations’ occupation
at steady-state

The following simplified model allows for an analytical
estimate of the configurations distribution at steady-
state for arbitrary protein’s size. As shown from the
solution of the Master equation (see previous section),
the dominant configurations are ones where the modi-
fied and unmodified subunits cluster together and are
phase separated. Therefore we consider only transitions
between these states. The probability for a certain con-
figuration state is denoted by its amount of modified
subunits, namely, N(0) is the probability for the config-
uration where all subunits are unmodified, N(1) is the
probability for a configuration with one modified subu-
nit and so on. We further assume that for all states
which are not fully modified or unmodified, reactions
from the ternary complex are dominant and thus
neglect binary reactions from these configurations. The
modification reaction rate from a ternary complex is
denoted by n1 and de-modification reaction rate from a
ternary complex is denoted by n2. Similarly, modifica-
tion and de-modification reaction rates from a binary
complex are denoted by €1 and €2 respectively.

The model yields the following set of equations:

d N(0)/dt=-nel1 N(0)+273n2N(1)=0 (27)
dN(1)/dt =n el N(0) +2 2 N(2)-2(n1 +n2) N(1) = 0 (28)

dN(2)/dt =292 N(3) +2 1 N(1)-2(n1 +n2) N(2) =0 (29)

dN(n)/dt=-ne2 N(n)+2 71 N(n-1)=0 (30)
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The general solution is easily admitted. When one
assumes that €1 = €2 = ¢ and that n1 = n2 = 1, the
solution reduces to:

N(0) = N(n) = n/(2(n-1)e + 21) (31)

N() =¢/((n-1)e+n), i=1,2 ... n-1 (32)

It is thus evident that the ratio between the boundary
states to the ‘bulk’ (i.e. all configurations with partial
number of modified subunits) is of order &/m. This ratio
can be viewed as the energetic cost of shifting the
boundary between the two domains of modified and
unmodified subunits. Also, it suggests (as the Master
equation solution indeed indicates) that the neglected
states with two or more boundaries between domains
are of order (¢/n)"2 and higher, depending on the num-
ber of domains.

Ternary to Binary reactions ratio is inversely dependent
on the number of protein’s subunits

The avidity effect stems from the ability of the bi-func-
tional enzyme to bind neighboring modified and unmo-
dified subunits. The modification or de-modification
reactions are thus limited to proteins that have mixed
pairs of modified and unmodified subunits. Here we
solve a toy model of the avidity process to assess the
dependence of the ratio of ternary to binary reactions
on the number of protein subunits.

Following the analysis of configuration states (see
above section), we assume that most proteins are phase
separated (where a sequence of modified subunits is fol-
lowed by a sequence of unmodified subunits). Hence,
the number of modified subunits is characteristic of the
protein state. We also assume that transitions between
states with mixed subunits (modified and unmodified)
are committed from a ternary complex due to the
enhanced local concentration caused by the avidity
effect. Therefore, modification and de-modification reac-
tions occur only from the “edge” states when the pro-
tein’s configuration is either fully modified or
unmodified.

We define the mean number of steps to reach one of
the boundaries (all modified/all unmodified) as M(i),
meaning M(1) is the mean number of steps to reach the
boundary from the state of one modified subunit, M(2)
is the mean number of steps to reach the boundary
from a two modified subunits state and so on up to M
(N-1). Each state has a probability p to commit modifi-
cation and (1-p) to commit de-modification.

Without loss of generality, we can assume that a bin-
ary reaction occurred from the ‘all unmodified’ config-
uration. Then, M(1) will reflect the ratio between
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ternary to binary reactions, assuming that ternary reac-
tions have a much more faster time scale than binary
reactions (due to avidity, the unbinding of the ternary
complex is orders of magnitude slower). To calculate M
(1) we solve a regression model, where each state is
derived from the state next to it. For example, when the
current state is one modified subunit, the mean number
of reactions to reach one of the boundaries, M(1), is
given by a probability (1-p) to reach the boundary by a
de-modification (yielding the ‘all unmodified’ state)
while with probability p the mean number of steps will
be one plus the mean number of reactions from the
state with 2 modified subunits. The equations to solve
are thus:

M(1) = (1-p) + p(1 + M(2)) (33)
M(2) = (1-p)(1+ M(1)) + p(1 + M(3)) -
M(N-1)=(1-p)(1+M(N-2))+p (35)

This model can be solved analytically. For concrete-
ness, we take p = 1/2 (a state where modification and
de-modification are equally probable, i.e. near the sys-
tem’s steady-state). Then, M(1) simplifies to

M(1)=N-1 (36)

Therefore, near the steady-state the ratio between
ternary to binary reactions is proportional to the pro-
tein’s number of subunits. To confirm this result, we
run Monte-Carlo simulations where the number of pro-
teins is two orders of magnitude larger than the number
of bi-functional enzymes. We further assumed that
there is an equal probability for modification and de-
modification and that only states of fully modified and
fully unmodified can react from a binary complex. The
numerical results indeed show that the ratio between
ternary and binary reactions is proportional to the num-
ber of protein’s subunits and goes as (N-1) where N is
the protein’s subunits number.

Additional material

Additional file 1: Model equations for the PPDK system. In this file
we elaborate on the PPDK model’s equations and their derivation.

Additional file 2: Robust Control in the Carbon Fixation Pathway of
C,4 Plants - Supplementary Information. In this file we present further
analysis of the model’s stability and the effects of perturbations on
robustness. We elaborate on the estimation of PEP formation rate and
PPi sources in the chloroplast. We show the dependency of the ratio
between ternary to binary complexes on avidity and modification rate
and finally discuss a possible implication of the model to the metabolic
pathway in bacteria.
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