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Abstract

Background: The study of phenotype transitions is important to understand progressive diseases, e.g., diabetes
mellitus, metabolic syndrome, and cardiovascular diseases. A challenge remains to explain phenotype transitions in
terms of adaptations in molecular components and interactions in underlying biological systems.

Results: Here, mathematical modeling is used to describe the different phenotypes by integrating experimental
data on metabolic pools and fluxes. Subsequently, trajectories of parameter adaptations are identified that are
essential for the phenotypical changes. These changes in parameters reflect progressive adaptations at the
transcriptome and proteome level, which occur at larger timescales. The approach was employed to study the
metabolic processes underlying liver X receptor induced hepatic steatosis. Model analysis predicts which molecular
processes adapt in time after pharmacological activation of the liver X receptor. Our results show that hepatic
triglyceride fluxes are increased and triglycerides are especially stored in cytosolic fractions, rather than in
endoplasmic reticulum fractions. Furthermore, the model reveals several possible scenarios for adaptations in
cholesterol metabolism. According to the analysis, the additional quantification of one cholesterol flux is sufficient
to exclude many of these hypotheses.

Conclusions: We propose a generic computational approach to analyze biological systems evolving through
various phenotypes and to predict which molecular processes are responsible for the transition. For the case of
liver X receptor induced hepatic steatosis the novel approach yields information about the redistribution of fluxes
and pools of triglycerides and cholesterols that was not directly apparent from the experimental data. Model
analysis provides guidance which specific molecular processes to study in more detail to obtain further
understanding of the underlying biological system.

Background
Cardiovascular and metabolic diseases such as diabetes
mellitus and metabolic syndrome are progressive in time
[1-5]. Progressive diseases are often being studied by
experimentally comparing different states: a control
state representing a healthy phenotype, and one or more
adapted states representing phenotypes of certain stages
of the disease. Experimentally observed differences
between phenotypes provide information about biologi-
cal processes that are involved in the pathogenesis.
Most research is carried out using mouse models, hav-
ing many practical advantages such as short generation
times, reduced genetic variation, and the possibility to

apply gene manipulation technology [6-8]. For instance,
the genetic leptin-deficient (ob/ob) or leptin-resistant
(db/db) mouse are frequently used to study metabolic
pathologies, e.g., obesity, insulin resistance, and diabetes
[9-12]. A challenging task is to explain phenotypical
characteristics and the progression of phenotype transi-
tions in terms of adaptations in molecular components
and interactions in underlying biological systems. This is
especially the case for the study of progressive diseases
in which multiple processes, operating on various length
and timescales, are altered.
In systems biology mathematical modeling is applied

to integrate different sources of experimental data of a
phenotype and to investigate the complex interactions
of underlying biological systems [13-19]. However, sev-
eral issues complicate the simulation and prediction of
molecular adaptations associated with progressive
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diseases. One problem is to cover large differences in
timescales. Computational models in molecular systems
biology are typically constructed to simulate processes
on a single timescale. These range from seconds in sig-
nal transduction and metabolic network models to
hours for genetic networks [20-24]. On the other hand,
progressive diseases often comprise of a combination of
these processes and typically develop over a time span
of years in humans. Another issue is that mathematically
describing progressive adaptations could become unfea-
sible when sufficient information of the underlying bio-
logical system, such as network structure, molecular
concentrations and fluxes, as well as their interaction
mechanisms, is lacking.
In the present work, we propose a novel computational

approach to analyze molecular adaptations in a biological
system to overcome these problems. We use mathematical
modeling to quantitatively integrate metabolic data of dif-
ferent phenotypes and subsequently exploit this mathema-
tical framework to analyze which molecular processes have
changed and are collectively responsible for the shift
between phenotypes. This information is obtained by iden-
tifying the progression of necessary parameter changes
required for the model to be consistent with the experi-
mental data of these phenotypes. These changes in para-
meters reflect progressive adaptations at the transcriptome
and proteome level, which occur at larger timescales than
the metabolic processes. The approach involves consecu-
tive steps of data gathering, model development, and para-
meter estimation, which will be discussed in detail. An
advantage of our approach is that mathematical models
containing processes at any timescale of interest can be
used, while their long-term adaptations are captured by
identifying necessary parameter changes. This enables us to
study long-term aspects of short-term processes. Further-
more, in cases when the amount of information of the
underlying biological system is limited, our approach could
provide a means to describe adaptations in molecular pro-
cesses without the necessity to develop detailed kinetic
models of the modulating mechanisms. For instance, if one
is interested in studying a metabolic pathway which is
adapting due to activation of a signal transduction pathway,
the modulating effects can be captured by identifying
necessary changes in the metabolic pathway parameters
rather than developing a mathematical model that includes
an explicitly modeled signal transduction pathway. The
approach, which is applicable to a multitude of biological
systems, is demonstrated on the basis of a case involving
the activation of the liver X receptor (LXR), a promising
drug target for atherosclerotic therapies [25,26].
The family of liver X receptors (LXRa and LXRb) is

involved in the control of cellular lipid metabolism.
LXRs, when ligand-activated by oxysterols, heterodimer-
ize with the retinoid X receptor (RXR) and bind to LXR

responsive elements on the DNA [27], where they
induce the transcription of lipogenic genes such as
SREBP-1C, FAS, ABCA1, and ACC1. Hereby they mod-
ulate the control of cholesterol, fatty acid, triglyceride,
and lipoprotein metabolism. As a consequence, LXRs
have emerged as promising drug targets for pharmacolo-
gical LXR agonists to treat metabolic diseases like ather-
osclerosis and type 2 diabetes [28]. In rodents it has
been shown that synthetic LXR agonists (T0901317,
GW3965, and WAY252623) promote cellular cholesterol
efflux, transport, and excretion, herewith halting the
progression of atherosclerosis. However, pharmacologi-
cal LXR activation also induces hepatic steatosis and
promotes the secretion of enlarged atherogenic very-
low-density-lipoprotein (VLDL) particles by the liver,
complicating the clinical application of LXR agonists
[29,30]. In the present study, we applied our computa-
tional approach to determine which metabolic processes
change upon LXR activation, and identify the progres-
sion of molecular adaptations that collectively result in a
shift of phenotype (wild-type versus LXR activated
state). Parameters that are critical to the phenotype
transition are considered candidates as biomarkers for
disease diagnosis, treatment, or even prevention.

Methods
Several theoretical sections are presented describing the
methodology of the computational approach, which
involves consecutive steps of data gathering, model
development, and various parameter estimation steps.

Model development
The computational approach is developed to analyze
progressively adapting biological systems that are mod-
eled using a system of (non)linear ordinary differential
equations (ODEs):

ẋ(t, θ) = f (x(t, θ), θ , u(t)) with x(t0, θ) = x0 (1)

where ẋ is a vector of flux descriptions of molecular
species x, which are given by a set of functions f, that in
turn depend on kinetic parameters θ and model inputs
u. The initial concentrations of molecular species x are
given by x0. The vector of model outputs y is given by:

y(t, θ) = g(x(t, θ), θ , u(t)) (2)

which is described by a set of functions g depending
on molecular species x, kinetic parameters θ, and model
inputs u.

Simulating the biological system of phenotype A
Once a network topology of molecular species and cor-
responding flux descriptions are defined, values for the
kinetic parameters θ have to be specified in order to
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perform simulations and make predictions. One way of
determining parameter values is to directly measure
them. However, this could become impractical when it
is not possible to perform the necessary experiments, or
model parameters do not have a well-defined physiologi-
cal meaning, e.g., when multiple processes are lumped
into a single model parameter. Another way to obtain
parameter values, which was employed here, is to esti-
mate them by minimizing the difference between experi-
mental data and corresponding model simulations [31].
The amount of experimental data is usually limited
compared to the number of parameters, resulting in
non-unique solutions for the model parameters. Hence,
multiple parameter sets exist that adequately describe
the experimental data. Conversely, model predictions of
unmeasured molecular species might potentially vary
greatly depending on the chosen parameter set. To
assess the uncertainty associated with model predictions,
differences between feasible parameter sets must be
examined [32-34]. A large-scale parameter estimation
protocol was employed to capture multiple parameter
sets describing the biological system of phenotype A.
First, parameter regions were identified that are most
likely to describe the experimental data. To this end, a
collection of one hundred million parameter sets was
sampled from a log-uniform distribution, capturing a
parameter range of twelve orders of magnitude (10-6 to
106). For each parameter set a simulation to steady-state
was carried out. Subsequently, the weighted sum of
squared errors Xd (θ) between the experimental data of
phenotype A and corresponding steady-state model out-
puts were determined:

Xd(θ) =
N∑

i=1

(
yi(θ) − dA

i

σA
i

)2

(3)

where N is the number of measurements, dA and sA

respectively the means and standard deviations of the
experimental data of phenotype A, and y the corre-
sponding model outputs. Furthermore, a Monte Carlo
approach was employed to account for experimental
uncertainties. Each simulation a different realization for
dA was used. It was assumed that the experimental data
is Gaussian distributed with means μA and standard
deviations σA(dA

i = N (μA
i , σA

i )). Subsequently, the ten
thousand best parameter sets (lowest Xd values) were
selected and optimized to describe the experimental
data, by applying a weighted non-linear least squares
algorithm that minimizes Xd (θ):

θ̂ = arg min
θ

Xd(θ) (4)

where θ̂ represents the optimized parameter set. An
optimized parameter set was acceptable if corresponding

model outputs were in the confidence intervals of the
experimental data. A significance level of 0.05, adjusted
by Bonferroni correction to account for the number of
comparisons being performed (number of model out-
puts), was used [35].

Identification of molecular adaptations from phenotype A
to phenotype B
Parameter estimation to describe phenotype B
The mathematical model together with the collection of
acceptable parameter sets, represents the biological sys-
tem of phenotype A. Molecular processes that are
responsible for the transition of the biological system
from phenotype A to phenotype B, are determined by
identifying kinetic parameters that necessarily have to
change in order to describe the biological system of
phenotype B. A first approach could be to repeat the
large-scale parameter estimation protocol, employed on
phenotype A, for phenotype B. However, apart from
being computationally expensive, comparing parameter
sets from different phenotypes with each other is pro-
blematic, as they are obtained independently from each
other. For instance, in the case when multiple separate
minima exist, it would not be possible to know which
realization of phenotype A is the reference for a specific
realization of phenotype B. However, the fact that phe-
notype B originates from phenotype A could be used to
address latter problem. The acceptable parameter sets
from phenotype A could be used as initial values and
reoptimized by once more applying a weighted non-lin-
ear least squares algorithm, minimizing Xd(θ) with
respect to the experimental data of phenotype B. Subse-
quently, necessary parameter adaptations can be identi-
fied which are responsible for the change of phenotype.
Iterative data integration and parameter estimation
Parameter adaptations describing a phenotype transition
are often not unique. For instance, in order to increase
a specific molecular concentration, corresponding pro-
duction and degradation parameters can be changed in
infinitely many different ways to accomplish this. Here,
we assume that adaptations are minimal and proceed
progressively in time. Therefore, the concept described
in the previous section was extended to study progres-
sively adapting biological systems, by defining artificial
intermediate phenotypes. Hereto, the experimental data
is interpolated from phenotype A to phenotype B in a
number of steps. For instance, for a linear interpolation
scheme this would imply dq = (1 - q)dA + qdB, where dA

and dB respectively represent the experimental data of
phenotype A and B, and q a coordinate ranging from
zero (completely phenotype A) to one (completely phe-
notype B). At each interpolation step the parameters are
reoptimized in order to describe the newly interpolated
data. The final values of the model states and
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parameters of the current optimization step are used as
initial values for the next optimization step. This proce-
dure is repeated until the final state representing pheno-
type B is reached and a parameter adaptation trajectory
is obtained. The new objective function becomes as fol-
lows:

Xd(θq) =
N∑

i=1

(
yi(θq) − dq

i

σ
q
i

)2

(5)

Similar as in equation (3), for each parameter trajec-
tory different realizations for dA and dB were used to
account for experimental uncertainties.
Regularization of parameter adaptation trajectories
It is assumed that adaptations are minimal and proceed
progressively in time. Therefore, the parameter estima-
tion protocol was extended to avoid needless change of
parameters, hereby identifying minimal parameter adap-
tations that are necessary to describe a phenotype tran-
sition. To this end, Xd could be combined with a
regularization term Xr given by the sum of squared
parameter changes. When changing a parameter is
costly, it will be avoided if not necessary. The new
objective function is given by:

X(θq) = Xd(θq) + λXr(θq)

=
N∑

i=1

(
yi(θq) − dq

i

σ
q
i

)2

+ λ

M∑
j=1

(
θ

q
j − θ0

j

θ0
j

)2
(6)

where M is the number of parameters, θ0
j the initial

parameter set representing phenotype A, and l a con-
stant determining the strength of the regularization
term.
Consistency of parameter adaptation trajectories
The identification of parameter adaptation trajectories
was performed for each acceptable parameter set, which
gives information about the possible dispersion of para-
meter trajectories due to kinetic variations between the
different acceptable parameter sets. However, given the
uncertainties arising from experimental data and para-
meter estimates, the reliability of individual parameter
trajectories is also a relevant topic to explore; is an
observed trajectory consistent or is its path just a coinci-
dental result? Given a certain parameter trajectory, it is
important to analyze how reliable and consistent its
path is to eventually draw conclusions about potential
molecular adaptations that could have taken place.
Therefore, the protocol described above was extended
by not only determining parameter trajectories from
phenotype A to phenotype B, but also backwards from
phenotype B to phenotype A. A backward trajectory is
obtained by interpolating the data from phenotype B to
phenotype A, whilst reoptimizing the parameters. The

final values of the model states and parameters obtained
from the forward trajectory are used as initial values to
calculate the backward trajectory. Furthermore, the
reference parameter set θ0

j (equation 6) is exchanged in

this case by θ1
j (the initial parameter set representing

phenotype B) in order to regularize the backward trajec-
tory. This process can be repeated an arbitrary number
of steps, each time using the newly obtained values for
the model states and parameters as initial values. The
obtained parameter trajectories have been analyzed for
consistency, which gives information regarding how well
these adaptations are constrained by the data and can
be predicted by the model. It must be noted that the
calculation of backward trajectories is mainly a mathe-
matical technique to assess the robustness of a specific
solution. Hence, these trajectories do not necessarily
have to exist physiologically.

Results
We presented a computational approach to analyze
molecular adaptations in a biological system evolving
through various phenotypes, which is generically
applicable to different biological systems. In this sec-
tion, the computational approach is demonstrated by
applying it to a case of liver X receptor induced hepa-
tic steatosis.

Experimental data
The acquisition of quantitative experimental data of dif-
ferent phenotypes is essential to gain insight in the pro-
gression of molecular adaptations in underlying
biological systems. The available experimental data
determines to a large extend the development of a
mathematical model. The level of detail and precision at
which certain biological processes can be integrated in a
mathematical model, is determined by the selection of
molecular species, as well as the type and quality of the
measurements. With respect to the LXR case, several
datasets of wild-type and T0901317 LXR activated
C57BL/6J mice were obtained. Data was included con-
taining measurements of hepatic triglyceride, free cho-
lesterol, and cholesterylester levels, as well as plasma
triglyceride, high-density-lipoprotein (HDL) cholesterol,
total cholesterol, and free fatty acid levels in overnight-
fasted mice [29]. Furthermore, data of nascent produced
VLDL particles such as diameter, triglyceride/cholesterol
composition ratio, and VLDL triglyceride production
rate was used [29]. Data was included containing rate
measurements of hepatic cholesterol production, hepatic
cholesterol uptake via HDL, and cholesterol uptake by
peripheral tissues [36]. Information about the deposition
and production of hepatic triglycerides in cytoplasmic
and microsomal fractions was included [37]. An
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overview of the obtained experimental data is included
in Additional file 1.

Computational model of hepatic lipid and plasma
lipoprotein metabolism
A mathematical multi-compartment model was con-
structed, based on the available experimental data,
which integrates metabolic processes involved in hepatic
lipid metabolism, as well as plasma lipoprotein metabo-
lism (Figure 1). The mathematical model contains three
compartments representing the liver, blood plasma, and
periphery. The liver compartment includes reactions
representing the production, utilization and storage of
triglycerides and cholesterols. Furthermore, the model
includes the mobilization of these metabolites to the
endoplasmic reticulum, where they are incorporated
into nascent produced VLDL particles. These VLDL
particles are subsequently secreted in the plasma com-
partment where they serve as nutrients for peripheral
tissues, e.g., muscle, heart, and adipose tissue. Remnant
particles are taken up and cleared by the liver. The
model furthermore includes the hepatic uptake of free
fatty acids and the reverse transport of cholesterol via
HDL. The model size and complexity of the reaction
equations was kept to a minimum to preserve feasibility
of model analyses and parameter estimation. The model
developed contains eight molecular species x and
twenty-two kinetic parameters θ. The flux descriptions f
are all based on mass action kinetics. A description of
the mathematical model, including equations, is pre-
sented in Additional file 1. Furthermore, an implemen-
tation of the model is available in SBML format
(Additional file 2).

Simulating the wild-type mouse
A large-scale parameter estimation protocol was
employed to capture multiple parameter sets that
describe the experimental data of phenotype A (wild-
type C57BL/6J mice). Mass isotopomer distribution ana-
lyses indicate that the metabolic fluxes are expected to
be in the μM/h range [38,39]. Therefore, parameter sets
corresponding to unphysiologically high fluxes for any
of the reactions (>100 mM/h) were removed from
further analyses. Finally, a collection of 2909 acceptable
parameter sets was obtained that describe the experi-
mental data. With respect to the parameter values, it
appeared that several are very constrained by the data
and have a well defined value, whereas others show a
larger spread of possible outcomes. Figure 2 shows an
example of four parameter combinations, in which the
black dots represent the initial sampled parameter sets,
the red dots represent the ten thousand best parameter
sets, and the green dots represent the optimized accep-
table parameter sets that describe the experimental data.

The observed variation in several parameters is reflected
in specific model predictions. Figure 2 shows two exam-
ples of model predictions obtained for all acceptable
parameter sets for the depositioning of hepatic triglycer-
ides and cholesterylesters in cytoplasmic and endoplas-
mic reticulum fractions. Note that only the total pools
of triglycerides and cholesterylesters were measured
[29]. Nonetheless, the predictions for the triglyceride
fractions are consistent, due to the data of triglyceride
deposition and production rates in cytoplasmic and
endoplasmic reticulum fractions [37]. However, the pre-
dictions for the cholesterylester fractions show a larger
spread of possible outcomes. The latter case illustrates
the importance of exploring differences between feasible
parameter sets to assess the uncertainty associated with
model predictions.

Parameter adaptations from the wild-type to the LXR
activated phenotype
Using the previously described techniques, an analysis
was carried out to study the metabolic consequences of
T0901317 induced LXR activation. It was assumed that
metabolic adaptations upon LXR activation proceed lin-
early in time [40]. Therefore, a linear interpolation
scheme was used for the step-wise optimization to
describe the transition between phenotypes. A beneficial
consequence of the approach is that the step-wise opti-
mization guides the parameter estimation algorithm and
hereby could overcome potential practical problems,
such as convergence to local unacceptable minima. Fig-
ure 3 shows an example of an acceptable parameter set
describing the wild-type phenotype, which was not suc-
cessfully reoptimized by single-step optimization to
describe the LXR activated phenotype, whereas this pro-
blem was circumvented by multi-step optimization.
The parameter trajectories were regularized according

to equation (6) to avoid needless change of parameters.
A potential risk of regularization, as always with multi-
objective optimization, is that for a low l the regulariza-
tion term has no effect, whereas for a large l the para-
meter estimation algorithm might focus on minimizing
the regularization term while describing the experimen-
tal data inaccurately. Therefore, the effect of l on the
sum of squared model errors Xd and the sum of squared
parameter differences Xr was investigated for a collec-
tion of acceptable parameter sets. Figure 4a shows Xd

for increasing l, where green indicates an acceptable
data fit and red an unacceptable data fit. Figure 4b
shows Xr for increasing l. Note that a small l is already
sufficient to minimize parameter changes, while the
experimental data is still described very well. It is pre-
ferred to bias the data fitting as little as possible and
therefore a l of 0.1 was selected (both for the forward
and backward trajectories). Figure 5 shows three
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examples of parameter trajectories from the wild-type
phenotype to the LXR activated phenotype obtained
without regularization (blue dashed) and with regulari-
zation (red). Both the regularized and unregularized

parameter trajectories are acceptable in terms of model
error Xd. Note that the triglyceride production and
metabolism parameters counteract each others effect
and not necessarily have to change to describe the

Figure 1 Hepatic lipid and plasma lipoprotein metabolism. The mathematical model has three compartments representing the liver, blood
plasma, and peripheral tissues. The liver compartment includes reactions representing the production, utilization and storage of triglycerides and
cholesterols, and the mobilization of these metabolites to the endoplasmic reticulum, where they are incorporated into nascent produced VLDL
particles. The VLDL particles are secreted in the plasma compartment where they serve as nutrients for peripheral tissues. Remnant particles are
taken up and cleared by the liver. The model furthermore includes the hepatic uptake of free fatty acids and reverse cholesterol transport via
HDL. ABCA1, ATP-binding cassette transporter 1; ACAT, acyl-CoA: cholesterol acyltransferase; ApoB, apolipoprotein B; CE, cholesterylester; DGAT,
diglyceride acyltransferase; ER, endoplasmic reticulum; FFA, free fatty acid; FC, free cholesterol; HDL, high-density-lipoprotein; HSL, hormone-
sensitive lipase; IDL, intermediate density lipoprotein; LDL, low density lipoprotein; LDLr, low density lipoprotein receptor; LPL, lipoprotein lipase;
MTP, microsomal triglyceride transfer protein; SR-B1, scavenger receptor class B1; TG, triglyceride; TGH, triglyceride hydrolase; VLDL, very low
density lipoprotein; VLDLr, very low density lipoprotein receptor.
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change in phenotype (Figure 5a,b). In some cases a less
prominent change is sufficient to describe the change in
phenotype (Figure 5c).
The uncertainty associated with parameter trajectories

was investigated, among other things, by repeatedly calcu-
lating forward and backward trajectories. Figure 6 shows
three examples of back and forward parameter trajectories
from the wild-type phenotype to the LXR activated pheno-
type, using a hundred repetitions. Some parameters
change consistently (Figure 6a,b), whereas others show a
large spread in possible outcomes (Figure 6c).
The parameter adaptation trajectories were deter-

mined for all acceptable parameter sets and used to
determine how the fluxes of triglycerides and cholester-
ols change in time from the wild-type phenotype to the

LXR activated phenotype. The data interpolation was
carried out in a hundred steps and the back and forward
flux trajectories were determined using a hundred repe-
titions. Figure 7 shows pairs of flux trajectories of sev-
eral metabolic processes included in the model, where
the large green and red dots respectively represent the
wild-type phenotype and the LXR activated phenotype.
The small dots represent the artificial intermediate phe-
notypes. The majority of these flux trajectories are
reproduced very consistently for the different parameter
sets. The main findings are that both the VLDL-TG and
VLDL-CE production are increased (Figure 7a), whereas
the production of apolipoprotein B is slightly decreased
(Figure 7b). The hepatic and whole-body uptake of tri-
glycerides and cholesterols are increased (Figure 7c, e,

Figure 2 Parameter scatter plots and predictions. Several parameters are very constrained by the data and have a well defined value (A and
B), whereas others show a larger spread of possible values (D and E). The black dots represent the 108 initial sampled parameter values
(individual dots not visible), whereas the red dots represent the 104 best parameter sets which were optimized. The resulting 2909 acceptable
parameter sets that describe the experimental data are shown in green. Model predictions for the depositioning of hepatic triglycerides (C) and
cholesterylesters (F) in cytoplasmic and endoplasmic reticulum fractions were obtained for all acceptable parameter sets. Note that only the total
pools of triglyceride and cholesterylester were measured. The predictions for the triglyceride fractions are consistent, whereas the predictions for
the cholesterylester fractions show a larger spread of possible outcomes.
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and 7f). The increased hepatic triglyceride fluxes are
especially stored in cytosolic fractions, rather than in
endoplasmic reticulum fractions (Figure 7d). Further-
more, the net synthesis of cholesterylester from endo-
genous free cholesterol is decreased in the cytosol, yet
increased in the endoplasmic reticulum (Figure 7h).
As described in previous sections, several parameters

are not constrained by the data and show a large spread
of possible outcomes. This makes the calculation of con-
sistent quantitative trajectories impossible. Nonetheless,

relative changes with respect to the initial values of the
wild-type phenotype could still provide useful informa-
tion, e.g., to determine ranges of feasible fold inductions
of molecular concentrations and fluxes, and to discrimi-
nate between different possible scenarios. The latter
could be used to generate new hypotheses and to guide
the design of new experiments. An example is depicted
in Figure 8, showing adaptations in metabolic processes/
components involved in hepatic cholesterol metabolism,
normalized by the values of corresponding wild-type
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phenotype. The green dots represent the wild-type phe-
notype, whereas the blue and black dots represent the
LXR activated phenotype. A positive correlation between
HDL-CE synthesis and HDL-CE uptake by the liver was
observed (Figure 8a). Both fluxes are either increased or
decreased depending on the chosen parameter set. To
investigate how these different scenarios are reflected in
other related metabolic processes, solutions correspond-
ing to an increased HDL-CE synthesis/uptake rate are
colored blue, whereas solutions corresponding to a
decreased HDL-CE synthesis/uptake rate are colored
black. Different clusters of possible scenarios exist
depending on how the HDL-CE synthesis/uptake rate
adapts. The ellipses were calculated by means of princi-
pal component analysis (PCA) and contain 95% of the
corresponding solutions.

Discussion
To improve our understanding of progressive diseases
such as diabetes mellitus and metabolic syndrome, the

study of phenotype transitions is important. A challen-
ging task is to explain the progression of phenotype
transitions in terms of molecular adaptations in underly-
ing biological systems. Here, we propose a novel compu-
tational approach to analyze biological systems evolving
through various phenotypes and to predict which mole-
cular processes are responsible for the transition. We
presented a case involving the activation of the liver X
receptor, a promising drug target for atherosclerotic
therapies.

Parameter adaptation trajectories during phenotype
transitions: strengths and limitations
A large-scale parameter estimation protocol was
employed to capture multiple parameter sets describing
the biological system of phenotype A. A collection of
2909 acceptable parameter sets were obtained that
describe the experimental data. A substantial fraction of
the optimized parameter sets were not acceptable.
These parameter sets did either not describe the
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experimental data or displayed unphysiologically high
fluxes for any of the reactions. It appeared that the latter
criterion contributed significantly to the rejection of
parameter sets. The efficiency of sampling acceptable
parameter sets could potentially be improved by includ-
ing the rejection criteria in the optimization objective
function. Note, that the computational approach is not
restricted to the parameter estimation protocol pre-
sented here. Various parameter optimization methods
exist that minimize the difference between experimental
data and corresponding model simulations, e.g., trust-
region optimization methods, simulated annealing, and
genetic algorithms [31]. All these methods have their
own merits and shortcomings, and therefore the prefer-
ence for a certain protocol varies on a case-by-case
basis.
Parameter trajectories describing the phenotype transi-

tion were determined by interpolating the data between
phenotypes. The data interpolation was carried out in a
hundred steps. We have performed several tests by
using different numbers of steps. Performing more than
a hundred steps did not change the results significantly.
The computational approach allows free choice of inter-
polation schemes. Hence, when information is available
about the progressive nature of certain biological

processes, this information could be incorporated in the
interpolation scheme. Furthermore, the computational
approach could be used to explore different possible
transition scenarios by employing a variety of different
interpolation schemes. The latter could be useful when
sufficient information about the transition characteristics
is lacking, e.g., to test hypotheses about the feasibility of
specific transitions with respect to the available experi-
mental data. In this work we focused on diseases that
arise progressively, e.g., hepatic steatosis, diabetes type
2, and metabolic syndrome. However, some diseases
arise abruptly like in case of diabetes type 1. In latter
cases it could be relevant to explore switch-like interpo-
lation schemes and investigate whether the computa-
tional model can exhibit bistable behavior [41-45]. Here,
it has been assumed that metabolic adaptations upon
LXR activation proceed linearly in time. Although there
is limited information about the dynamic response upon
T0901317 induced LXR activation, this assumption is
supported by experimental observations from Okazaki et
al. showing a fairly linear response in plasma triglyceride
and cholesterol levels in wild-type and Ldlr -/- mice trea-
ted with T0901317 [40]. Although initial and final points
of the trajectories were consistent with experimental
data, the actual trajectories between phenotypes partly

Figure 7 Flux adaptations upon T0901317 induced LXR activation. Flux trajectories from the wild-type phenotype (green) to the LXR
activated phenotype (red). The data interpolation was carried out in a hundred steps and the back and forward flux trajectories were
determined using a hundred repetitions. Molecular fluxes (A-C, E-H) are given in mM/h, whereas the triglyceride concentrations presented in (D)
are given in mM.
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depended on the selected interpolation scheme. If more
time-course data of LXR activated C57BL/6J mice would
be available, a more realistic interpolation scheme could
be defined. Although the dynamic behavior of parameter
trajectories depends on the selected interpolation
scheme, the relation between parameter trajectories (as
visualized in Figure 7) does not necessarily have to
change for different interpolation schemes. Namely, in
the case all measured metabolite concentrations/fluxes
adapt in a similar way, i.e. it can be assumed that the
interpolation scheme is identical for each measurement,
the relation between parameter trajectories remains
identical. The results depicted in Figure 7 were repro-
duced using a quadratic-like and inverse-quadratic-like
interpolation scheme for the measurements (Additional
file 1). To identify minimal parameter adaptations that
are necessary to describe a phenotype transition, the
parameter estimation protocol was extended by includ-
ing a regularization term given by the sum of squared
parameter changes. This prevents unnecessarily changes
of parameter values. The strength of the regularization
term, determined by l, was chosen carefully. It is pre-
ferred to bias the data fitting as little as possible and
therefore a minimal value for l, while still being

effective, was selected. From a physical point of view,
the regularization term could be interpreted as a mea-
sure for the energy cost, e.g., in terms of ATP produc-
tion, to achieve a certain system adaptation. In future
research, the approach could be refined by introducing
multiple l parameters to take account for different
energy costs for the various processes included in a
model.

Metabolic adaptations upon T0901317 induced LXR
activation
A computational model of hepatic lipid and plasma lipo-
protein metabolism was developed to study the meta-
bolic consequences of LXR activation. We were able to
quantitatively integrate data of wild-type and LXR acti-
vated C57BL/6J mice into a consistent model and iden-
tified trajectories of parameter adaptations, describing
the change in phenotype. The presented model predic-
tions are in good agreement with experimental observa-
tions by other groups and contribute to the current
understanding of LXR activation. The VLDL-TG pro-
duction rate increases about 2.6 times upon LXR activa-
tion, as predicted by the model and experimentally
measured [29]. A novel finding is that model predictions

Figure 8 Adaptations in cholesterol metabolism upon T0901317 induced LXR activation. Adaptations in metabolic processes/components
involved in hepatic cholesterol metabolism, normalized by the values of corresponding wild-type phenotype. The green dots represent the wild-
type phenotype, whereas the blue and black dots represent the LXR activated phenotype. Solutions corresponding to an increased HDL-CE
synthesis/uptake rate are colored blue, whereas solutions corresponding to a decreased HDL-CE synthesis/uptake rate are colored black. The
ellipses were calculated by means of principal component analysis (PCA) and contain 95% of the corresponding solutions. ABCA1, ATP-binding
cassette transporter 1; ABCG5, ATP-binding cassette transporter G5; SR-B1, scavenger receptor class B1.
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indicate that the VLDL-CE production rate increases as
well (2.5 fold induction) and hereby contributes to the
increase of plasma cholesterol levels. Model predictions
indicate that the production of apolipoprotein B
decreases slightly, which was also observed by
[29,30,46]. This is reflected in an increase of VLDL par-
ticle diameter (94 ± 12 nm to 129 ± 9 nm). A novel
model prediction is that the liver plays a major role in
the re-uptake of lipoproteins (2.5 fold induction) and
hereby prevents plasma hyperlipidemia. This flux predic-
tion was not directly measured, but is in good agree-
ment with gene expression data showing increased
hepatic levels of the VLDL and LDL receptor [29]. Inter-
estingly, model predictions indicate that the uptake of
lipoproteins at peripheral tissues is negligible. Model
analysis reveals that the uptake of triglycerides through
lipolysis by lipases is increased as well (2.6 fold
increase), which is in correspondence with gene expres-
sion data showing a significant induction of the lipopro-
tein lipase gene [29,30,47]. A significant increase in
hepatic triglyceride level (6.92 ± 2.65 versus 57.74 ±
16.61 nmol/mg liver) was observed by [29], which is
partly caused by an induction of lipogenic genes
[29,30,46-50]. A novel model prediction is that the
increased triglyceride fluxes are especially stored in cyto-
solic fractions, rather than in endoplasmic reticulum
fractions which are predominantly used for incorpora-
tion into nascent produced VLDL particles. The
increased level of ER triglycerides is partly caused by sti-
mulation of the mobilization of triglycerides from the
cytosol to the ER. This is confirmed by several studies
indicating that a large part of secreted VLDL triglycer-
ides are derived via lipolysis of cytosolic triglyceride sto-
rage pools [51-55]. A relevant follow-up study would be
to determine whether these differences are associated
with alterations in diglyceride acyltransferase activities
(DGAT1 and DGAT2), which play a crucial role in the
biosynthesis and deposition of triglycerides [56-59].
Another interesting example which could guide the
design of new experiments is depicted in Figure 8,
showing adaptations in metabolic processes/components
involved in hepatic cholesterol metabolism. Different
clusters of possible scenarios exist depending on how
the HDL-CE synthesis/uptake rate adapts. Hence, many
solutions could potentially be excluded by measuring
one of these fluxes/components. With respect to this,
the ‘blue’ scenario is probably more plausible for several
reasons. First, these solutions are associated with an
increased level of the ATP-binding cassette transporter
G5 (ABCG5), resulting in an increased biliary excretion
of free cholesterol. Secondly, these solutions correspond
to an increased level of the ABCA1 transporter, which is
responsible for the efflux of cholesterol from peripheral
tissues to HDL [30,47,49,50].

Mathematical modeling of progressively adapting
biological systems
Mathematical modeling is well suited for integrating dif-
ferent sources of experimental data for a certain pheno-
type and allows investigating of the complex
interactions of underlying biological systems. A mathe-
matical model can be used to obtain thorough under-
standing of a biological system, e.g. by investigating its
complex behavior in response to various stimuli. How-
ever, simulating and predicting long-term progressive
adaptations is challenging. The multiscale nature of pro-
gressively adapting biological systems complicates the
development of predictive computational models. As
such, one of the central and formidable challenges in
systems biology is to develop multiscale computational
models and methods that can be used to study molecu-
lar mechanisms underlying progressive diseases [60-65].
Furthermore, model parameters that determine the
kinetics of molecular processes are often assumed to be
constant in time and between phenotypes. This is most
probably a valid assumption to study short-term pro-
cesses, e.g., initial response kinetics to perturbations of a
biological system. In case of progressively adapting bio-
logical processes, it is questionable whether this assump-
tion still holds. For instance, effects of aging, changes in
body composition, or other developmental changes,
influence the phenotypical characteristics and the transi-
tion between phenotypes.
The computational approach presented here was

employed to study the metabolic consequences of LXR
activation, which displays several of the aforementioned
issues. For example, the underlying biological system
contains processes at timescales ranging from seconds
to hours, whereas the phenotypical characteristics
develop at a timescale ranging from days to weeks in
mice. Our approach has as advantage that it can readily
deal with large differences in timescales. For instance,
long-term changes in short-term processes could be stu-
died by explicitly modeling the short-term processes,
whereas the long-term modulation could be captured by
identifying necessary parameter changes. This implies
that molecular adaptations could be described without
the necessity to develop detailed kinetic models of the
modulating mechanisms. This is a major advantage, e.g.,
for the LXR case, as LXRs modulate a wide range of
heavily interlinked complex metabolic processes and sig-
nal transduction pathways of which the kinetics and
molecular mechanisms are not well understood.

Conclusions
The study of phenotype transitions is important to
understand disease progression. We developed a novel
computational approach to analyze molecular adapta-
tions in a biological system evolving through various
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phenotypes, which is generically applicable to different
biological systems. For the case of liver X receptor
induced hepatic steatosis the novel approach yields
information about the redistribution of fluxes and pools
of triglycerides and cholesterols that was not directly
apparent from the experimental data. The collection of
parameter and corresponding flux trajectories give a
broad overview of key-processes that are involved in the
phenotype transition and how they potentially change in
time. Model analysis provides guidance which specific
molecular processes to study in more detail to obtain
further understanding of the underlying biological sys-
tem. The main findings are that both the VLDL-TG and
VLDL-CE production rates are increased, as well as the
uptake of triglycerides through lipolysis. The liver plays
a major role in the re-uptake of lipoproteins and hereby
prevents plasma hyperlipidemia. The increased triglycer-
ide fluxes are especially stored in cytosolic fractions,
rather than in endoplasmic reticulum fractions.

Additional material

Additional file 1: Supplementary material. Description of model
equations, additional analyses, implementation details, and experimental
data.

Additional file 2: SBML file. Implementation of the mathematical
model in SBML format.
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