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Abstract

diverse needs.

external varieties grown in an independent experiment.

plant breeding.

Background: Increasing awareness of limitations to natural resources has set high expectations for plant science to
deliver efficient crops with increased yields, improved stress tolerance, and tailored composition. Collections of
representative varieties are a valuable resource for compiling broad breeding germplasms that can satisfy these

Results: Here we show that the untargeted high-coverage metabolomic characterization of such core collections is
a powerful approach for studying the molecular backgrounds of quality traits and for constructing predictive
metabolome-trait models. We profiled the metabolic composition of kernels from field-grown plants of the rice
diversity research set using 4 complementary analytical platforms. We found that the metabolite profiles were
correlated with both the overall population structure and fine-grained genetic diversity. Multivariate regression
analysis showed that 10 of the 17 studied quality traits could be predicted from the metabolic composition
independently of the population structure. Furthermore, the model of amylose ratio could be validated using

Conclusions: Our results demonstrate the utility of metabolomics for linking traits with quantitative molecular data.
This opens up new opportunities for trait prediction and construction of tailored germplasms to support modern

Background
Modern crop breeding techniques such as wide crossing
and marker-assisted selection have been highly success-
ful in improving the quality traits of rice [1,2]. However,
as slow selection processes and narrow germplasms [3]
have raised doubts on how much further current strate-
gies can take us [4], we must diversify the used genetic
material and develop novel breeding technologies.
While the germplasm that is actively used for rice
breeding may be narrow, the total number of rice vari-
eties is enormous due to its very long domestication his-
tory [5]. The broader use of available genetic variance
has great potential, both to improve crops directly [6]
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and to elucidate molecular determinants behind quality
traits (see e.g. [7]). Unfortunately, the necessary molecu-
lar characterization is often prohibitively expensive for
large seed collections.

Genetic core collections of relatively small size have
been developed in several rice genebanks to obtain man-
ageable but still representative selections, e.g., the Rice
Germplasm Core Set (RGCS) from the International
Rice Research Institute (623 accessions) [8], the GCore
collections (16 x ~120 accessions) [9], the EMBRAPA
Rice Core Collection (ERiCC, 242 accessions) [10] and
the rice diversity research set (RDRS) [3]. Of these, the
RDRS is particularly interesting because its restriction
fragment length polymorphism (RFLP) marker diversity
is highly representative of cultivated rice (Oryza sativa
L.); yet with only 67 varieties, it is small enough to
allow comprehensive molecular profiling.
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Direct relationships between metabolic composition
and genotype and phenotype have been shown for the
model plant Arabidopsis thaliana using both recombi-
nant inbred lines [11] and natural varieties [12,13].
Metabolomics has emerged a key technology for charac-
terizing crop germplasms; it has the potential to provide
a breakdown of complex high-level traits by expressing
them as a sum of correlated quantitative molecular fea-
tures. Such molecular factorization may increase the
physiological understanding of quality traits and provide
clues for possible implications associated with selecting
for them. This is highly relevant since metabolic compo-
sition is itself an important quality trait as it is tightly
connected to the taste and the nutritional and physical
characteristics of the harvested material [14].

With these considerations in mind, we aimed to (i)
chart the metabolic diversity of kernels from the RDRS
and (ii) investigate the covariance between metabolite
profiles and quantitative quality traits. A previous study
of 18 of the RDRS varieties using "H-NMR did not
reveal any relationship between metabolomic and overall
genetic diversity [15]. As this finding may be attributable
to the small sample size and insufficient resolution of
the applied technique, we aimed to obtain metabolomic
coverage as high as possible and decided to profile the
complete RDRS. Because no current single technology
can separate all compounds equally well [16], we chose
to integrate data from 4 complementary mass spectro-
metry (MS) -based platforms, and thereby reducing bias
towards any particular chemical subclass of metabolites
[17]. The resulting data showed clear compositional dif-
ferences among the 3 genetic subtypes Indica I, Indica II
and Japonica. Using a novel extension of orthogonal
projection to latent structures (OPLS) [18] that facili-
tates the handling of multi-block data (MB-OPLS), we
found that given the metabolic composition, 10 of the
17 studied traits, including the important kernel size
[19], ear emergence day [20], and amylose ratio (abun-
dance amylose/total starch content), could be predicted
indicating robust trait-metabolite covariance.

Starch composition is a major determinant of the taste
and texture of cooked rice [21]. The packing characteris-
tics of starch also determine the proportion of desired
translucent kernels to kernels with chalky white cores
that are prone to breakage during processing [22]. Our
metabolomics model confirmed previously observed
strong negative associations between fatty acids/lipids
and amylose ratios [23,24]. Furthermore, the same model
accurately predicted the amylose ratio for an independent
set of varieties grown in a remote field. However, starch
synthase IIla knock-out lines (ssIlla) with white-core
phenotypes had very high amylose ratios without the
accompanying expected fatty acid/lipid composition, sug-
gesting an important role of fatty acids in starch packing.
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Taken together, our results demonstrate the usefulness
of metabolomic profiling of genetically diverse varieties
for linking quality traits with molecular features.

Results

Multi-platform metabolomics of the RDRS

Rice plants from the 67 RDRS varieties plus Nipponbare
(reference Japonica variety), Kasalath (reference Indica
variety), and the Pokkari variety were grown in a field in
Tsukuba in 2005 and harvested after maturation [25].
Brown rice kernels were ground and analyzed in parallel
using 4 MS-coupled platforms, i.e. gas chromatography-
(GC) time-of-flight (TOF)-MS (GC-MS) for smaller
compounds, liquid chromatography-quadrupole-TOF-
MS (LC-q-TOF-MS) for large hydrophilic compounds,
ion trap-TOF-MS (IT-MS) for polar lipids [26] and
capillary electrophoresis-TOF-MS (CE-MS) for ionic
compounds (Figure 1). The resulting data were pre-pro-
cessed, normalized [27] and summarized [17,28] (see
Additional File 1, Supplementary Methods). Metabolite
abundances were determined for 156 distinct metabo-
lites and 1496 unknown analytes (Additional File 2, Sup-
plementary Data 1). Principal component analysis (PCA)
of predicted metabolite physicochemical properties indi-
cated that the detected metabolites covered 87% of the
chemical diversity of the metabolites listed in RiceCyc
(Additional File 1, Figure S1). Reference data for 17
quality traits (Additional File 1, Table S1) were collected
from previous analyses and the National Institute of
Agrobiological Sciences (NIAS) genebank [29].

Examining the genetic population structure of the
RDRS using principal coordinates analysis on the
matching coefficient-based genetic distance matrix (Fig-
ure 2a) and the STRUCTURE program (v 2.3.2.1) [30],
we confirmed the presence of 3 major subtypes are
Indica I, Indica II and Japonica type rice (Additional File
1, Figure S2). PCA showed that these subtypes also are
distinguishable among the investigated quality traits as
well as the metabolite profiles (Figure 2b, c), indicating
a distinct influence of the genetic background on the
visible phenotype and the metabolic composition.

Using analysis of variance (ANOVA) to extract the
metabolites that were differentially abundant among the
different subtypes we noted that Indica I was character-
ized by a relatively low abundance of several metabolites
including most amino acids and 5 of the detected phos-
phatidylcholines (Figure 3). Indica II and Japonica were
more similar to each other, differing mainly in the con-
tents of a few of the secondary metabolites such as cate-
chin and trans-4-coumaric acid. With respect to the
investigated quality traits, the subtypes exhibited mor-
phological differences; Indica I- were more narrow over-
all than Japonica kernels and Indica II- longer than
Indica I kernels (Additional File 1, Figure S3a)
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Figure 1 Metabolomics characterization of the RDRS. Seeds were collected from field-grown rice and analyzed on 4 metabolomics platforms
(a). Multi-platform metabolite profiles were summarized to obtain non-redundant data (b). Quantitative quality trait data were gathered and pre-
treated to remove the correlation with genetic population structure (c). MB-OPLS was used to decompose the metabolite profiles to platform-
specific systematic bias (d), noise (e) and the trait-correlated variance used for predicting each trait (f). A novel feature selection method was
used to identify trait-associated metabolites that were used to generate network visualization (g). Cross-validation and an independent
experiment were performed to validate the derived models (h).
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Figure 2 Genetic subtypes in 3 spaces. (a) Principal coordinates analysis of the genetic distances between the varieties indicate the presence
of 3 major sub-populations, Indica | (20 varieties), Indica Il (34 varieties) and Japonica (16 varieties). (b) PCA of the 17 quantitative traits; (c) PCA
of the complete summarized metabolite profile dataset with a total of 1652 peaks. Percentages indicate the ratio of explained to total variance.
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Figure 3 Metabolomic heatmap of the RDRS. Shown are the
annotated metabolites that were differentially abundant among the
3 subtypes Indica |, Indica Il and Japonica at a minimum 2-fold
change from the average and FDR < 0.01 (Student’s t-test.).
Abbreviations defined in Additional File 2, Supplementary Data 1.

Metabolite profiles show a fine-grained correlation with
genetic variation

Our results show a substantial overlap between metabo-
lite profiles and the underlying genetic backgrounds (Fig-
ure 2¢). Although of interest for comparing subtypes, this
type of large-scale correlation between genotype and phe-
notype (metabotype) is obstructive when searching for
functional associations with high-level traits [31]. Using
the Mantel test [32] with 10,000 permutations, we exam-
ined whether the Euclidean distances in metabolite space
between different varieties were correlated with their cor-
responding genetic distances both for the whole RDRS,
and for the 3 subtypes separately. As expected, the high-
est significance was observed for the whole dataset (P =
0.0001) but Japonica (P = 0.0047), Indica I (P = 0.0064),
and Indica II (P = 0.0001) were also significant on their
own, indicating the presence of a fine-grained correlation
between genetic diversity and metabolite abundances
(Additional File 1, Figure S4).
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MB-OPLS regression predicts quality traits from metabolic
composition

Before investigating trait-metabolite correlations we
removed the covariance between the trait data and the
population membership Q-matrix from the STRUCTURE
program by means of multiple linear regression. As con-
firmed by PCA, the resulting data showed no clustering
of the 3 subtypes (Additional File 1, Figure S3). Further-
more, the pre-processed traits exhibited highly individual
variations, except for kernel size-weight and hull- and
kernel width (Additional File 1, Figure S5).

While yielding a good metabolomic coverage (Addi-
tional File 1, Figure S1), multi-platform data may, even
after normalization, contain platform-specific biases that
have adverse effects on data integration methods. MB-
OPLS was designed to overcome this problem by using
the notion that OPLS also can be used for normalization
purposes [33]. We estimated MB-OPLS models for each
of the 17 traits and diagnosed their predictive performance
using the squared correlation coefficient between the true
and the seven-fold cross-validation (CV) predicted trait
data, 12, (Figure 4a). We furthermore calculated the
empirical P-value Pcy that assesses the probability of
observing an equal or higher 12, given randomized data.
For comparison, we also used the original OPLS approach
on each of the 4 data blocks alone. Overall, MB-OPLS per-
formed better than any of the single platforms and pre-
dicted 10 of the 17 traits significantly well (Pcy < 0.05). In
particular, the models of amylose ratio and ear emergence
day were remarkably accurate with 3, =0.72 and
12y = 0.65, respectively. Other traits exhibited less reliable
but still clearly significant predictions, indicating the exis-
tence of subtle but robust trait-metabolite associations.
Given the strong prediction performance of the models
for amylose ratio and ear emergence day, and the high
agricultural interest in kernel size, we chose to examine
these models more closely (Figure 4b-d).

The OPLS regression framework, and therefore also
MB-OPLS, provide correlation loadings, Pc, that can be
used to interpret the relevance of each metabolite for
the corresponding prediction. However, this value does
not assign any statistical significance in terms of com-
parison with a postulated null-hypothesis (no trait-meta-
bolite associations) and the variance of the observed
sampling distribution of Pc. To address this problem we
define a probabilistic statistic for feature selection, log B;
it scores how many times more likely the alternative
hypothesis is over the null-hypothesis.

When screening for trait-associated metabolites we used
both the model-based log B statistic and the nominal
Spearman’s correlation, ps, as a complementary bivariate
method. We extracted the annotated metabolites with log
B >0 and pg with an associated false discovery rate (FDR)
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Figure 4 Predicting quality traits from metabolomic composition. (a) The predictive performance of models based on single datasets using
OPLS and all datasets together using MB-OPLS. Cross-validation based T%V statistics equals 1 for perfect predictions. The stars indicate
significance level as estimated by the empirical Pc-value. (b-d) Prediction performance during the median cross-validation run. Grey lines
indicate identity.

less than 0.05. We visualized the correlation loadings for
all annotated metabolites as word clouds, and listed the
top 10 selected metabolites in Additional file 3, Table 1.
The model for amylose ratio is characterized by high nega-
tive loadings for several fatty acids as well as choline and
putrescine. For ear emergence day, tryptophan and

putrescine have large positive loadings. Succinate, glucose-
6-phosphate, and glycine are all positively correlated with
kernel size whereas 3 lipids (18:1-lysophosphatidyl cho-
lines (lysoPC), 18:2-lysoPC and 14:0-lysoPC) are negatively
correlated. A complete list of trait-metabolite associations
in given Additional File 2, Supplementary Data 2.
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vanillin

To obtain an overview of the trait-metabolite correla-
tions we constructed a correlation network of the meta-
bolites (significance of metabolite-metabolite Spearman’s
correlation P <0.001) for the 10 significant models and
the germination rate since this trait had border-line sig-
nificance with Pcy <0.1 for all 4 independent datasets.
The resulting graph (Figure 5) highlights the strong
internal correlations of the fatty acids as well as the
high overlap between the metabolites used for the mor-
phological traits (1000-kernel weight, -size, -width and
hull width, but not hull length). Several metabolites, like
putrescine, are used for the prediction of more than one
trait even in cases where the traits themselves are not
correlated (Additional File 1, Figure S6).

Independent experiment demonstrates robustness of the

model of amylose ratio

The model for amylose ratio gave very accurate predic-
tions highlighting a tight correlation between fatty acids
and starch synthesis. To confirm the robustness of this
model we selected an external set of samples including
rice varieties outside the RDRS with known high-
(Yumetoiro, Hoshiyutaka), middle- (Kinmaze), and low
amylose ratios (Soft158). Additionally, we included the 2
amylose hyper-accumulating knock-out lines (Tos17
retro-transposon insert) el, an ss/Ila mutant (Nippon-
bare background) and the ssiIla/starch branching
enzyme (be) double mutant 4019 (Nipponbare/Kinmaze
background) [34]. Rice kernels were obtained from dif-
ferent harvests from northern Japan (Akita) [34]. The

selected natural varieties have high variance in their
amylose ratios but all have kernels translucent kernels.
The el mutant manifested a white-core phenotype [34]
and the morphology of the 4019 mutant was almost
completely opaque (Figure 6). The amylose ratio was
assayed using iodine calorimetry (same method as used
for the RDRS), and metabolite abundances were deter-
mined using GC-MS since this platform detects most of
the amylose-correlated metabolites (Figure 5). We then
fitted a subsetted model for the RDRS data using only
the metabolites that had log B >0 and were also
detected in the follow-up experiment. The obtained
model was used to predict the amylose ratio using the
new metabolite profile data (Figure 7a). Of the selected
metabolites, glycerol, linoleic acid, palmitic acid, phos-
phate and putrescine had the highest loadings; all exhib-
ited a negative correlation with the amylose ratio
(Figure 7b). The prediction performance for the natural
varieties was highly significant (R* = 0.52, p = 7.5 x 10°
®, Figure 7a), but not for the 2 knock-out lines that had
a similar or even smaller predicted amylose ratio than
their background varieties.

Discussion

We profiled the metabolomic composition of kernels
from the RDRS and investigated trait-metabolite correla-
tions by means of a multi-platform approach. Using our
multi-block extension of the OPLS algorithm we found
a population structure-independent correlation between
metabolite abundances and 10 of the 17 examined traits.
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With the majority of these traits being only weakly
dependent on each other (Figure 5), this indicates a rich
correlation structure and high a information content in
the metabolomics data. Our study thus confirms, and
widely extends, the results shown for Arabidopsis thali-
ana grown under tightly controlled conditions [11,12],
for an important crop species grown under field
conditions.

The MB-OPLS model for amylose ratio indicated very
strong negative correlations between the amylose ratio
and the abundances of palmitic acid, linoleic acid, gly-
cerol, and putrescine, and positive correlations with 18:2
and 14:0 lysoPC (Figure 4, Additional File 1, Table S1).
The two prevalent forms of starch in rice is amylose
and amylopectin and a high measured amylose ratio
thereby indirectly indicate a low amylopectin ratio. The
link between starch-bound fatty acids/lipids has already
been observed in rice [23] and maize [24], on the meta-
bolic- and gene expression level [35] the biochemical
function of this connection is unclear.

The RDRS-based model was robust enough to give
good predictions for kernels from external varieties
from an independent experiment despite unaccounted
differences between the growth times and locations (Fig-
ure 7). Interestingly, the 2 knock-out lines were excep-
tions to the rule of a negative correlation between
amylose ratio and fatty acid content. This indicates that
the retro-transposon inserts have broken the association
with the metabolite composition, and that the link
between amylose ratio and fatty acids is under feed-back
control. Analysis of the biochemical or genetical back-
grounds of these correlations was not within the scope
of this study but we note that fatty acids and lipids are
good starch-complexing agents and their presence influ-
ences physicochemical properties [36]. In addition, we
observed strong differences in kernel phenotype between
natural varieties and the two mutants (Figure 6). Grain
chalkiness is a complicated trait affected by environmen-
tal changes [37] and genetic background [38]. Our
results suggest that also fatty acids/lipids have an impor-
tant function in modulating the texture and structural
properties of the stored starch.

The model for the ear emergence day was also very
accurate (Figure 4) and gave high weight to putrescine
and tryptophan (Additional file 3, Table 1). Putrescine is
a major amine in rice kernels [39] and has been impli-
cated in the regulation of plant growth and development
[40]. However, transgenic rice over-expressing a gene
encoding a feedback-insensitive a-subunit of rice
anthranilate synthase (OASA1D) had increased levels of
tryptophan and indole-3-acetate as well as other amino
acids in kernels without a significant difference in the
ear emergence day [41].
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For Arabidopsis photosynthetic tissues, it has been
shown that biomass is negatively correlated with glucose-
6-phosphate and succinate levels [11]. Keeping in mind
that the rice kernel is a strong energy sink with very little
own photosynthetic activity, it is not surprising that we
instead observed a positive correlation between glucose-
6-phosphate and kernel size. This result supports the
general idea that energy demand during grain-filling
plays an important role in determining kernel size [42].
In a brief study of metabolite abundances and kernel
sizes using a collection of backcross recombinant inbred
lines between Kasalath (Indica I) and Koshihikari variety
(Japonica), this pattern was not visible indicating the con-
nection is not generally visible among all genotypes (data
not shown). However, detailed dissection of the genetic
background of these patterns is left to a future study.

The model for iron content showed a rather low but
still significant predictive performance with 73, = 0.18
and Pcy = 0.024. However, nicotianamine, known to be
involved in iron metabolism [43], was of the few anno-
tated annotated metabolites with log B >0 (Figure 5,
Additional File 2, Supplementary Data 2). These results
exemplify how metabolic profiling of genetically diverse
varieties can reveal functional relationships between
molecular factors and important quality traits.

Conclusion
We summarize the main conclusions as follows.

» The overlap between metabolic and genetic profiles
in the RDRS was visible with respect to general sub-
types (Figure 2b), and fine differences within the
more homogeneous populations Indica I, Indica II
and Japonica (Additional File 1, Figure S4). This
shows that metabotypic- and genotypic-covariance
could be detected in a field-grown collection of nat-
ural rice cultivars of relatively limited size.

« The metabolic diversity was furthermore found to
be associated with 10 of the 17 studied quality traits
(Figure 4) showing that trait-metabolite associations
are common, and that they can be uncovered by
profiling natural varieties. The resulting network of
the trait-associated metabolites provided an overview
of the molecular backgrounds of the traits (Figure 5)
highlighting known (e.g. fatty acids and amylose
ratio) and novel patterns (e.g. tryptophan and ear
emergence day). From a technical point of view, we
conclude that the applied metabolomics platforms
were complementary and that integrating the data-
sets gave overall better prediction performance than
achievable with data from any single platform.

+ The amylose ratio model showed that trait-meta-
bolite associations can be robust enough to allow for
prediction across independent sets of cultivars
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grown on different occasions in remotely separated
fields (Figure 7). A contributing reason for this
robustness maybe that the mature kernel has little
metabolic activity on its own and is less influenced
by environmental factors than e.g. the leaves.

Taken together, these results show that metabolomics
may be used to factorize important quality traits into
distinct genotype-correlated molecular features. These
features can both aid physiological interpretation and
potentially be used as bridges to identify trait-(metabo-
lite)-associated loci. This concept is similar to the cur-
rent advancements in plant phenomics. There, complex
high-level traits are being modeled using sets of simpler
traits that have tighter relationships with genetic deter-
minants than the high-level trait itself [44]. With meta-
bolomics, traits can be factorized to an even higher
resolution that may point directly to underlying geneti-
cally-dependent molecular determinants. As genetic data
of adequate resolution are currently not available for
RDRS, that analysis was not within the scope of our
study. However, as such data are anticipated, the value
of the dataset presented here is expected to increase.

Methods

Plant material

The RDRS and an external set of rice varieties as well as
two knockout mutants (el and 4019) were used for this
study. Plant growth and harvesting were carried out as
described in Additional File 1, Supplementary Methods.

Metabolite profiling

All data was log, transformed and scaled to unit-var-
iance prior to further data analysis. All peaks with more
than 30% missing values were excluded.

The multi-platform data was summarized by unifying
metabolite identifiers to a common referencing scheme
using the MetMask tool [28]. The four matrices were
then concatenated and correlated peaks with the same
annotation were replaced by their first principal compo-
nent. Coverage of the chemical diversity was calculated
as described by [17]. The summarized dataset is avail-
able at http://prime.psc.riken.jp/?action=drop_index and
as Additional File 4, Supplementary Data 3. Detailed
information of extraction, MS conditions and data pro-
cessing of GC-MS, LC-MS, CE-MS and IT-MS were
performed as described in Chemical analysis metadata
in the section of Metabolomics metadata.

Data analysis

All data analyses were performed using R v2.12.1. Net-
work visualization was done using Cytoscape and the
GOlorize plug-in [45]. Missing value robust PCA was
performed using the pcaMethods package [46]. See


http://prime.psc.riken.jp/?action=drop_index

Redestig et al. BMC Systems Biology 2011, 5:176
http://www.biomedcentral.com/1752-0509/5/176

Page 9 of 11

metabolite.

AR 58
0.2 -
35 - MadRlRlge
~ Afasalath 01 -
o . :
~ Dianyu 1 ] £o13 Harvest year
o 30 - Jumetoiro Linulupot 1
® N umetoii_srememim s | 2005 g 0.0 -
— ima
o poshiylﬁlka = A 2008 =
8 ﬁE doshiyutaka = 2008 > 0.1 o
=25 - & £
% Joshiyutaka g
0.2 -
B X 1 =4
E 20 B & atinmaze ¢ No mutants —
] 7 Kinmaze P=76x10°%
= [ &1 -0.3 -
o a<inmaze $019 2 _ () 54
o) 4019 o I 0.54
& ft158 Al 0.4
0 04 -
15 | *soniss 019 P =018
Soft158 R% =0.03
I T I I T T I I I T T T
20 25 30 35 P pe)
c o %, $/O¢ “ %%%
Measured amylose ratio (%) IR 5 4
© % /%50, %
4 () 7 (]
E X
Kog

Figure 7 Prediction of amylose ratio for independent samples using a model trained on RDRS data. (a) Scatter plots of predicted and
measured amylose ratio for the 4 external varieties (Yumetoiro, Hoshiyutaka, Kinmaze, Soft158) and samples from 9 representative varieties of
the RDRS (Nipponbare [NB], Kasalath, IR 58, Co 13, Vary Futsi, Calotoc, Pinulupot 1, Dianyu 1 and Tima) harvested in 2005 and 2006. P-values
assess the hypothesis that the corresponding slope is zero and R? indicates the model-fit. (b) Barplot showing the importance of the 7
metabolites in the subsetted MB-OPLS model (/). Negative loading implies a negative correlation between amylose and the corresponding

Additional File 1, Supplementary Methods for detailed
description of the data analysis.

Correction for population structure

Each column trait data vector, Z;, was compensated for
the differences arising from the different sub-popula-
tions by setting

Zi=QB+Y,

where Q is the estimated population membership
matrix from the STRUCTURE program and B is the
vector of coefficients estimated by least-squares
regression.
MB-OPLS
The MB-OPLS regression method consists of two steps.
In the first, OPLS models of each block i and pre-pro-
cessed trait vector Y; are formed where the #4mpres x
Hpeaks, Metabolite data matrix, X, is decomposed into a
Yj-correlated part, Ti,,'ng, a Yj-uncorrelated part,

T,',j,oPg]-'o, and the unmodeled variance E as
=T WT - pT .
Xi = TijWL + Tij 0Pl o + B,

and new regressor matrices Xr,p; for each trait j are
formed by concatenation:

T . . T
XTop,j = [TlfjWLj + El,]', ey T"rjwn,j + En,]‘].

Top-level models are then estimated by ordinary
OPLS regression between Xr,p; and Y;. MB-OPLS for a
single block is equivalent to ordinary OPLS.

Each MB-OPLS model has j + 1 parameters corre-
sponding to the number of orthogonal components
(number of columns in T, ; o) used for the block-, and
top-level models respectively. We optimize these para-
meters by seven-fold internal cross-validation (CV).

The diagnostical statistic 72, of the complete model is
estimated in an external seven-fold CV where a set of
samples is held out to serve a test-set and the remaining
are used to construct the internally cross-validated
model. This process is repeated for each CV-segment to
obtain independent predictions of the complete Y;. In
order to test the significance of the model, we shuffle Y;
one-thousand times, calculate 7y, and count the num-
ber of times, 1y, when rév for the shuffled data is more
than or equal to 72y for real data and form the biased
P-value estimate Pcy = (ng + 1)/(1000 + 1). This CV
approach is computationally intensive and was therefore
computed on in parallel using the multicore package
[47]. Since the 1&, depends on the way the samples are
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divided in to training and test sets, we calculate 73, 50
times and report the median of these runs.

Feature selection

We assess how informative each metabolite is in each
model by estimating the density of the sampling distri-
butions for its correlation loading, d(pc), by bootstrap-
ping the regression model, and the density distribution
under the null-hypothesis (X and Y; are independent), d
(pc|Ho), by randomization of Y;. We then calculate a
score for the relevance for each metabolite as

_ d(pc)[1 — P(Ho)]
d(pc)[1 = P(Ho)] + d(pc|Ho)P(Ho)”
setting the a priori expected probability of Hy to 0.95.
Our statistic log B = log 131: is then greater than zero

for metabolites with loadings that are robustly larger
than expected given that H, was true.

Additional material

Additional file 1: Supplementary methods, tables metabolomics
meta-data.

Additional file 2: Supplementary datasets.

Additional file 3: Influential metabolites. Correlation loading, P,
indicate proximity between the metabolite and the trait-correlated
variance. log B indicates how many times more likely the alternative
hypothesis (actual association between trait and metabolite) is than the
null-hypothesis (no association). Spearman’s correlation ps with
associated FDR indicates the direct bivariate correlation. Word clouds are
ordered alphabetically and have font sizes proportional to the
corresponding correlation loading (P). Green and red indicate apositive
and negative correlation with the trait, respectively. The spatial layout is
abitrary. Where present, initial capital letters of the metabolite
abbreviations indicate type of molecule (F, fatty acid; C, alcohol; P,
purine/pyrimidine; S, sugar; N, nitrogen containing; A, amino acid; 2,
secondary metabolite)

Additional file 4: The summarized metabolomics data of the RDRS.
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