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Abstract

Background: RNA interference (RNAi) is a regulatory cellular process that controls post-postranscriptional gene
silencing. During RNAi double-doubletranded RNA (dsRNA) induces sequence-sequencepecific degradation of
homologous mRNA via the generation of smaller dsRNA oligomers of length between 21-23nt (siRNAs). siRNAs are
then loaded onto the RNA-Induced Silencing multiprotein Complex (RISC), which uses the siRNA antisense strand
to specifically recognize mRNA species which exhibit a complementary sequence. Once the siRNA loaded-RISC
binds the target mRNA, the mRNA is cleaved and degraded, and the siRNA loaded-RISC can degrade additional
mRNA molecules. Despite the widespread use of siRNAs for gene silencing, and the importance of dosage for its
efficiency and to avoid off target effects, none of the numerous mathematical models proposed in literature was
validated to quantitatively capture the effects of RNAi on the target mRNA degradation for different concentrations
of siRNAs. Here, we address this pressing open problem performing in vitro experiments of RNAi in mammalian
cells and testing and comparing different mathematical models fitting experimental data to in-inilico generated
data. We performed in vitro experiments in human and hamster cell lines constitutively expressing respectively
EGFP protein or tTA protein, measuring both mRNA levels, by quantitative Real-Time PCR, and protein levels, by
FACS analysis, for a large range of concentrations of siRNA oligomers.

Results: We tested and validated four different mathematical models of RNA interference by quantitatively fitting
models’ parameters to best capture the in vitro experimental data. We show that a simple Hill kinetic model is the
most efficient way to model RNA interference. Our experimental and modeling findings clearly show that the
RNAi-mediated degradation of mRNA is subject to saturation effects.

Conclusions: Our model has a simple mathematical form, amenable to analytical investigations and a small set of
parameters with an intuitive physical meaning, that makes it a unique and reliable mathematical tool. The findings
here presented will be a useful instrument for better understanding RNAi biology and as modelling tool in Systems
and Synthetic Biology.

Background
RNA interference (RNAi) is a well characterized regula-
tory mechanism in eukaryotes [1-3] as well as a power-
ful tool for understanding gene function, thanks to the
discovery that synthetic small interfering RNA oligomers
(siRNAs) can efficiently induce RNAi in mammalian
cells [4,5]. RNAi has also been used extensively as a
novel “biological part” to design synthetic biological cir-
cuits in synthetic biology [6,7]. Artificial gene silencing
has the potential to become a major genetic-geneticased

therapeutic tool for viral infections [8,9], cancer [10] or
inherited genetic disorders [11-13].
Despite its widespread experimental application, the

best way to quantitatively model RNA interference is
still under debate. In systems and synthetic biology,
mathematical models are essential to carry out in silico
investigations of biological pathways, or novel synthetic
circuits. The aim of this work is to find the most appro-
priate quantitative mathematical model that can cor-
rectly describe the RNAi phenomenon in mammalian
cells, for varying concentrations of the siRNA oligomers.
A schematic representation of the RNA interference

mechanism is illustrated in Figure 1. In step 1, the pre-
sence of double stranded RNA (dsRNA) elicits a
response in the cell mediated by the Dicer enzyme,
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which binds and cleaves the dsRNA into fragments of
21-23 base pairs, called small interfering RNA (siRNA).
In step 2, siRNAs are loaded onto a multiprotein com-
plex called RNA Induced Silencing Complex (RISC) and
then separated into single strands of which one (the pas-
senger strand) is discarded and degraded [14], while the
guide strand remains within RISC and serves as a

template in the silencing reaction. In step 3, the guide
strand assembles into a functional siRNA-RISC complex,
which contains the siRNA bound to the Ago protein [1].
Target mRNAs are then recognized by Watson-Crick
base pairing [1] and bound by the siRNA-RISC complex.
Finally, in step 4, mRNA degradation is induced,
target mRNA is dissociated from the siRNA, and the

Figure 1 Schematic representation of RNA interference in a mammalian cell. Step 1: double stranded RNA (dsRNA) elicits a response in the
cell mediated by the enzyme Dicer, which cleaves the dsRNA into fragments of 21-23 base pairs (siRNA). Step 2: siRNAs are loaded into a
multiprotein complex called RNA Induced Silencing Complex (RISC) and one strand (the passenger strand) is discarded and degraded [14], while
the guide strand remains within RISC as template in the silencing reaction. Step 3: the guide strand assembles into a functional siRNA-RISC
complex, which contains the siRNA bound to the Ago protein [1]. Targets mRNAs are then recognized by Watson-Crick base pairing [1] and
bound by the siRNA-RISC complex. Step 4: mRNA degradation is induced, the target mRNA is dissociated from the siRNA, and the siRNA-RISC
complex is released to process further mRNA targets [15].
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siRNA-RISC complex is released to process further
mRNA targets [15]. Here, we will focus on quantitatively
modeling step 2 to step 4 of the RNA interference pro-
cess using, as an experimental tool, synthetic siRNA
oligomers.

Results and Discussion
In order to model the effects of RNA interference on
mRNA expression levels at different concentration of
siRNA oligomers, we carried out in-inivo experiments of
RNA interference on two mammalian cell-cellines stably
expressing the EGFP protein or the tTA protein,
respectively.
In the first set of experiments (set I), Human Embryo-

nic Kidney cells stably expressing EGFP (HEK293-EGFP
cell-celline), were transfected with varying quantities of
synthetic siRNA oligomers directed against the EGFP
mRNA in the range of 0 to 200 pmol. Figure 2 shows
the ratio of EGFP mRNA levels between treated cells
and negative control cells (i.e. transfected with a
non-nonpecific siRNA oligomers) measured 48 hours
after transfection. Error-bars represent the standard-stan-
dardrror from three biological replicates for each point.
Similarly, in the second set of experiments (set II), EGFP
protein levels were measured via FACS analysis 60 hours
after transfection of HEK293-EGFP cells with synthetic
siRNA oligomers directed against the EGFP mRNA, or
with non-nonpecific siRNA oligomers as negative con-
trols. The ratio between EGFP protein levels in siRNA-
treated cells versus negative controls, for the same siRNA
quantities as in the set I experiments, is reported in Fig-
ure 3. In the third set of experiments (set III), we tested
Chinese Hamster Ovary cells (CHO AA8) stably expres-
sing the tetracycline-tetracyclineegulated transactivator
tTA at a low level, using the same protocol used pre-
viously for HEK cells. Cells were transfected with varying

quantities of synthetic siRNA oligomers against the tTA
mRNA in the range of 0 to 200 pmol. Since the tTA is
not fluorescent, no FACS measurement were performed
in this cell-celline. In Additional file 1 Figure 1we shows
the ratio of tTA mRNA levels between cells treated with
the silencing tTA oligomer and cells treated with the
negative control (non-targeting shuffled siRNA).

RNAi Modeling
We were interested in formulating a model that can
quantitatively describe the effects of varying quantities
of siRNA oligomers onto the degradation of the target
mRNA species, and of its corresponding protein
product. A general dynamical model describing tran-
scription of the mRNA species, its siRNA-mediated
degradation, and translation of its protein products, can
be described by a system of ordinary differential equa-
tions (ODEs). Let Xm, Xp and Xs be the mRNA, protein
and siRNA concentrations, respectively. The evolution
of their time-timeependent concentrations can be
described by the following ODEs:

mRNA s[ ] = − − ( ): ,
dX

dt
k d X X Xm
m m m m

protein[ ] = −: ,
dX

dt
k X d Xp
T m p p (1)

The parameter km, represents the transcription rate
from the promoter that transcribes the mRNA species
targeted by the siRNA oligomer; dm represents the
basal degradation rate of the mRNA species. RNAi can
be considered as a mechanism that enhances the degra-
dation of the targeted mRNA, therefore the function δ
(Xm, Xs) is an extra degradation term that represents the
rate at which mRNAs are degraded due to RNAi. This
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Figure 2 Ratio of EGFP mRNA levels between cells transfected
with the siRNAs specific for EGFP, and negative control cells,
transfected with a non-specific siRNAs, measured 48 hours
after transfection. Errorbars represent the standard-error from three
biological replicates for each point. The x-axis reports the different
quantities of siRNA oligomers tested. mRNA levels were measured
using real-time PCR. The error-bars have the length of one standard
error.

0 0.001 0.01 0.05 0.1 1 10 20 40 60 80 100 200
0.6

0.7

0.8

0.9

1

1.1

siRNA (pmol)

pr
ot

ei
n 

E
G

F
P

 (
%

)

 

 

Figure 3 Ratio of EGFP protein levels between cells transfected
with the siRNAs specific for EGFP, and negative control cells,
transfected with a non-specific siRNAs, measured 60 hours
after transfection. Error-bars represent the standard-error from
three biological replicates for each point. The x-axis reports the
different quantities of siRNA oligomers tested. Protein levels were
measured using FACS analysis quantifying EGFP protein
fluorescence. The error-bars have the length of one standard error.
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function, δ (Xm, Xs), depends on both the mRNA and
siRNA levels, Xm and Xs respectively. The parameter kT
is the protein translation rate, whereas dp represents the
basal protein degradation rate. At least four different
models have been proposed in the literature, for the
RNA interference mechanism [15-17]. Each of these
models is based on the general approach described by
equations (1) but each has a different functional form
for δ (Xm, Xs). Table 1, lists all the different models stu-
died here with a description of their corresponding
parameters.
Model 1: The stoichiometric model
One possible way of modeling the effects of RNAi on
the mRNA degradation is to consider a stoichiometric
reaction between the siRNAs and mRNAs. Let siRNA*
denote the concentration of the siRNA-RISC complex,
namely the fraction of the siRNAs that are loaded into
RISC complexes (step 2 of Figure 1). Then the stoichio-
metric reaction between the siRNA* and the mRNA
(step 3 and 4 of Figure 1) can be described as follows:

siRNA mRNA mRNA siRNA* * .⎡
⎣

⎤
⎦ + [ ] ↔ −⎡

⎣
⎤
⎦ → ∅ (2)

Namely, the siRNA-loaded RISC binds to the comple-
mentary mRNA and then both are degraded. According
to this model, following the law of mass action, we pre-
dict that the siRNA mediated degradation will be pro-
portional to the product of the concentration of siRNA
oligomers and the targeted mRNA species:

 X X k X Xm m, s s( ) = 1 (3)

where parameter k1 represents the proportionality con-
stant. In this modeling approach, the siRNA-RISC com-
plex is assumed not to be recycled, but the RISC needs to
be reloaded before it can degrade another mRNA

molecule (i.e. in this model the dashed line linking step
4 to step 3 in Figure 1 is not taken into account). Indeed,
this model was suggested for RNA interference in pro-
karyotes [16,18-20]. RNAi in prokaryotes has important
differences with RNAi in eukaryotes. One of these is that
the interaction between the siRNA and its mRNA target
is non-nonatalytic in nature [16,21]. This is not the case
in mammalian cells. Once the mRNA is cleaved, the
siRNA-RISC complex is dissociated from it, in an ATP-
dependent manner [22] and it is free to process further
targets [1,14,23]. Additionally, in some organisms, such
as C.elegans, the primary dsRNA trigger induces synth-
esis of secondary siRNAs (if the target mRNA is present)
through the action of RdRP enzymes, strengthening and
perpetuating the silencing response [1,24].
Model 2: Stoichiometric model with co-coperativity
This model is a straightforward extension of Model 1,
which additionally takes into account the presence of
multiple sites on the targeted mRNA where the siRNA-
loaded RISC can bind. Model 1 can be easily extended
to include co-coperativity:

mRNA  + siRNA* siRNA* mRNA siRNA[ ] [ ] + + [ ] ↔ −...

h

h

2

2   ** → ∅ (4)

As before, the rate of RNAi-driven degradation, can be
easily obtained applying the law of mass action:

 X X k X Xm
h

ms s,( ) = 2
2 (5)

where k2 is the proportionality constant and h2 is the
number of siRNA binding sites on the targeted mRNA
species. This model was suggested in [17] for modeling
RNAi by miRNAs, since it is experimentally proven that
multiple sites for the same miRNA can boost target
mRNA repression [25]. This model however suffers
from the same limitations as Model 1.

Table 1 The different models RNA interference models for the RNAi-induced mRNA degradation rate δ (Xs, Xm) and
their corresponding parameters

Model 1

( , )X X k X Xm s s m= 1
k1: Rate of mRNA-siRNA* complex formation

Model 2

( , )X X k X Xm s s
h

m= 2
2

k2: Rate of mRNA-siRNA* complex formation
h2: Number of siRNA target sites

Model 3

( , )X X
c k h X

c k h X
Xm s

s

m
m= +

3 3 3

3 3 3

k3: Rate of mRNA-siRNA* complex formation
c3: Cleavage and dissociation rate of mRNA-siRNA*
h3: Number of siRNA target sites

Model 4




( , )X X d
X

X
Xm s

s
h

h
s
h m=

+4
4

4

4 4

d4: Maximal degradation rate of the mRNA due to RNAi
θ4: Michaelis-Menten like constant
h4: Number of siRNA target sites
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Model 3: Enzymatic model
A detailed model of RNAi specific for mammalian cells
was proposed by Malphettes et al [15]. This model
accounts for the catalytic nature of RNAi in mammalian
cells, thus modeling step 2, step 3 and step 4 of Figure 1,
including the recycling of the RISC complex (dashed
line from step 4 to step 3). Specifically, it assumes that
once the cleavage and degradation of the targeted
mRNA is completed, the siRNA-RISC complex (siRNA*)
dissociates from its mRNA target, and it is free to
degrade further mRNA molecules. Additionally, this
model also considers that the targeted mRNA may have
a multiple number, h3, of siRNA binding sites. The
siRNA-RISC complex (siRNA*) can bind to any site on
the mRNA to form an intermediate mRNA-siRNA*
complex, which can either accommodate further siRNA-
RISC complexes on any other free binding sites, or
cleave the target mRNA and dissociate from the clea-
vage products. The reaction of the complex formation
of the target mRNA with the siRNA-RISC complex is
described as follows (for details refer to [15]):

siRNA mRNA mRNA siRNA* * .⎡
⎣

⎤
⎦ + [ ] ↔ −⎡

⎣
⎤
⎦ (6)

The model considers the following reaction between
an intermediate mRNA-siRNA* i-1 complex with
another siRNA-RISC complex (for all i Î [1 : h3]):

siRNA mRNA siRNA mRNA siRNA* * * .⎡
⎣

⎤
⎦ + −⎡

⎣
⎤
⎦ ↔ −⎡

⎣
⎤
⎦−i i1 (7)

The generic cleavage and degradation reaction of the
mRNA by any interacting siRNA-RISC complex (∀i Î
[1 : h3] is represented by:

siRNA mRNA mRNA siRNAi i* * .⎡
⎣

⎤
⎦ + [ ] → + ⎡

⎣
⎤
⎦cleaved (8)

In [15], the authors show that the rate of RNAi-driven
mRNA degradation, δ (Xm, Xs), is given by:

 X X
c k h

c k h X
X Xs m

m
s m,( ) =

+
3 3 3

3 3 3
(9)

where k3 is the rate of mRNA-siRNA* complex forma-
tion for a single siRNA target site (reaction 7) and c3 is
the cleavage and dissociation rate of mRNA-siRNA*
complex (reaction 8). This functional form, for a con-
stant Xs, is a classic Michaelis-Mentenu enzymatic reac-
tion, as can be observed by simply defining Vm = c3Xs

and K
c
k hm = 3

3 3
, and rewriting Eq. (9) as:

 X X V
X

K Xs m m
m

m m

,( ) =
+

(10)

This is in perfect agreement with the experimental find-
ing on the enzymatic activity of both non-nonammalian
and mammalian RISC on mRNA degradation, as reported
in [23,26,27], where the product of the reaction (degraded
mRNA) was measured at varying the concentration of the
substrate (non-degraded mRNA Xm) for a constant
amount of the RISC enzyme.
Model 4 basically assumes that only the maximal rate

Vm of the Michaelis-Menten will be affected when the
concentration of the active RISC (proportional to Xs)
changes. In [23,26] the authors show experimentally
that changing the concentration of RISC indeed changes
the value of Vm but also of Km. This is not captured by
this model.
Note also that when Xm ≪ Km, i.e. low amounts of

mRNA compared to the Michaelis-Menten constant Km,

the model can be simplified to:  X X
V
K

X k h X Xs m
m

m
m m s,( ) = = 3 3 .

This is equivalent to Model 1. On the other hand, when
the mRNA concentration is very high, the model can be
simplified to: δ (Xs, Xm) = Vm = c3Xs. Namely, the rate of
RNAi-driven mRNA degradation will depend only on the
amount of active enzyme, i.e. the siRNA concentration.
The higher the siRNA concentration, the higher the degra-
dation rate that can be achieved, without any saturation
effect.
Model 4: Phenomenological model
In [17] the authors proposed a standard Hill-kinetic
model to describe the post-postranscriptional effects of
microRNAs on the gene expression. miRNAs are pro-
cessed by the cell to produce dsRNAs which then follow
the typical RNAi pathway, schematically described in
Figure 1 [15,28,29]. By considering a Hill-type enzymatic
model with an Hill coefficient h ≥ 1, the model can be
extended to account, either, for multiple binding sites of
the siRNA on the same target mRNA, or, for the coop-
erativity of protein complexes involved in RNAi [17].
Differently from the other three model presented above,
this model is a phenomenological model not derived
from specific biochemical reactions:




X X d
X

X
Xs m

s
h

h
s
h m,( ) =

+4
4

4

4 4
(11)

This model, despite being phenomenological has inter-
esting properties. The kinetic parameters d4 and
θ4 depend on the efficiency of siRNA binding to its sites
on the target mRNA [17]: d4 represents the maximal
degradation rate of the mRNA due to RNA interference;
θ4 the concentration of siRNA oligomers needed to
achieve half of the maximal degradation rate. The above
equation implies that for Xs ≪ θ4, the increase in the

RNAi mediated degradation is linear with X s
h4 (namely,
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it will be identical to Model 1 for h4 = 1, or to Model
2 for h4 = h2), while it saturates at higher levels of Xs,
reaching the maximal degradation rate d4, differently
from Model 3.

Parameter Identification
The four models were fitted to the three mRNA
and protein experimental datasets (I, II and III), by
searching for the parameter values for which the
model-modelenerated data best fitted the experimental
data, according to a squared error measure. The results
of the fitting procedure for each of the models, together
with the optimized values of their parameters, are given
in Table 2 for EGFP and in Additional file 1
Table A1 for tTA.
The fitting results for the mRNA levels (set I) are

shown in Figure 4. Model 4 gives a significant smaller
error than the other three models (see Table 2), in fact,
compared to Models 1 and 3, the error of Model 4 is
two orders of magnitude smaller. Model 2, gives a better
fitting than Models 1 and 3, however it is worse than
Model 4. The optimized value for the parameter d4 in
Model 4, is d4 = 0.0081 min-1, indicating that the
strength of siRNA mediated mRNA degradation is com-
parable to the strength of basal mRNA degradation
(since its value is in the same order of magnitude as the
degradation rate of the EGFP mRNA, namely dm =
0.0173 min-1 [7]).
Note also that the parameters found for Model

2 include a coefficient h2 = 0.126, hence less than unity.
Since h2 describes the number of siRNA binding sites
on the targeted mRNA, it should be greater than, or
equal to, 1 in order to have a clear biological interpreta-
tion. However, if we constrain this parameter to be
greater or equal to one, then the model optimizes at the
value of h2 = 1, which makes Model 2 identical to
Model 1.

We have observed that in all numerical simulations,
Models 1 and 3 are almost indistinguishable. The large
optimized value of parameter c3 of Model 3 (namely c3/
km = 1.33 × 104), the low value of parameter k3h3 =
1.40 × 10-4 suggest c3 ≫ k3h3Xm, and hence the func-
tion δ (Xs, Xm) of Model 3 can be approximated by
k3h3XsXm, which is nothing else than Model 1 (notice
that the parameter optimization for Model 1 gives k1 ≈
k3h3 in Table 2). Therefore, in this parameter space,

Table 2 Numerical fitting results of the four models for in vitro experimental data for the EGFP protein and mRNA

Experiment on EGFP mRNA levels

Fit Err. Pred. Err. Parameters

Model 1 1.00 0.98 k1 = 1.38 × 10-4(pmol min)-1,

Model 2 0.13 0.12 k2 = 5.00 × 10-3(pmolh2 min)-1, h2 = 0.126,

Model 3 1 1 k3h3 = 1.40 × 10-4(pmol min)-1, c3/km = 1.33 × 103a.u.,

Model 4 0.04 0.05 θ4 = 0.105 pmol, d4 = 8.1 × 10-3min-1, h4 = 4.47

Experiment on EGFP protein levels

Fit Err. Pred. Err. Parameters

Model 1 0.97 0.81 k1 = 9.90 × 10-5(pmol min)-1,

Model 2 0.46 0.39 k2 = 1.10 × 10-3(pmolh2 min)-1, h2 = 0.456,

Model 3 1 1 k3h3 = 1.20 × 10-4(pmol min)-1, c3/km = 1.33 × 103a.u.,

Model 4 0.21 0.12 θ4 = 12.9 pmol, d4 = 8.6 × 10-3min-1, h4 = 4.49

The relative value of the error (Fit Error) and the relative value of the prediction error (Pred. Err.) for each model are given, together with the corresponding
optimized values of its parameters. The unit of measurements are reported for the dimensional parameters. (a.u. stands for arbitrary units of concentration).

Figure 4 Numerical fitting of the four models on the in vitro
experimental results on mRNA EGFP expression levels
presented on Figure 2. The optimized parameter values and the
corresponding fit error of each model are given in Table 2.
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Model 3 is almost identical to Model 1. Similar results
were obtained when searching for the parameters
which best fitted the measured protein levels (set II),
shown in Figure 5. Model 4 is again the one with the
smallest error. Model 1 and 3 are again unable to
capture efficiently the experimental data. Model 2 is
better than Models 1 and 3, but it is still worse than
Model 4.
When we fitted the models to the third experimental

dataset (set III), which was performed on a different
cell-celline, with both a different target mRNA and a
different siRNA oligomer, Model 4 still performed better
than the others with the smallest error, although Model
2 was a close match. Model 3 and 4 were again behav-
ing very similarly and had the largest error. It should be
noted that as it happened with the previous fitting
results, also in this case Model 2 has a Hill coefficient
smaller than unity (h2 = 0.126).
Finally we observed, as shown in Additional file

1Figure A1, that the experimental error for set III
experiment was larger when compared to the EGFP
experiment (set I). This was caused by the relative low
expression of the tTA in the CHO cell lines, when com-
pared to the EGFP expression in HEK cells, which made
measurements more noisy.

Assessing the model predictive ability
The models described above have the same number of
unknown parameters to be learned (Methods), but for
Model 4, which has one extra parameter. To be sure
that the improved performance of Model 4 in describing
the experimental data was not due to overfitting, we
computed for each model and for each experimental
dataset, the prediction error, which allows to assess the
generalisation performance of the models [30]. We fol-
lowed a “leave-one-out” cross validation strategy, where
for each model and for each dataset, the parameter
identification procedure was repeated each time remov-
ing one of the experimental points and then predicting
the missing point with the identified parameters. We
thus could estimate a prediction error for each model in
each experimental dataset. This value is reported in
Table 2and Additional file 1Table A1. Model 4 is again
the one with the smallest prediction error, once again
confirming this model superior performance in describ-
ing the data.

Conclusions
Our findings show that the simple Hill function
described by Model 4 is sufficient to quantitatively
describe the effect of RNA interference, at the mRNA
and protein level, in mammalian cells in vitro, for vary-
ing concentration of siRNA oligomers.
One significant feature of Model 4 is that it can pre-

dict the saturation effect of the RNAi process that we
observed experimentally. We considered the possibility
that this saturation could be in fact due to the inability
of the cell to uptake high concentration of siRNA oligo-
mers, however recent experiments [27], prove that
uptake of siRNA oligomers in cells is linear with the
concentration of siRNA oligomers transfected, at least
in the concentration range we used. Additionally, Khan
et al in [31], observed upregulation of mRNA targets of
endogenous micro-RNA when transfecting siRNA oligo-
mers in mammalian cells. In order to explain this effect,
they suggested a saturation of the RISC complex (or
other necessary small RNA processing or transport
machinery).
It has been demonstrated in [23,26,27] that the enzy-

matic activity of RISC can be efficiently modeled
in-initro as a classic Michaelis-Menten reaction, where
the target mRNA is the substrate, the siRNA-loaded
RISC is the active enzyme (at a constant concentration),
and the product is the degraded mRNA. This is one fea-
ture that Model 4 does not capture; namely for a fixed
amount of siRNA-loaded RISC (i.e. Xs), Eq.(11) should
approximate the Michaelis-Menten in Eq.(10), instead
Model 4 becomes simply proportional to Xm, as Model
1 and 2. Nevertheless, Model 4 approximates very well
the experimental data. We believe this happens because

Figure 5 Numerical fitting of the four models of the in vitro
experimental results on protein EGFP levels presented on
Figure 3. The optimized parameter values and the corresponding fit
error of each model are given in Table 2.
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enzymatic reactions have a typical KM much greater that
the physiological concentration of their substrate (Xm)
[23], and the same happens for the RISC complex
[23,26]. In this condition, the Michaelis-Menten equa-

tion becomes V
X

K X
V
K

Xm
m

M m

M

M
m+  and therefore it

is linear in Xm, as predicted by Model 4. When the
siRNA concentration varies, Model 4 predicts that the

parameters
V
K

M

M
will change as a function of Xs as

described by Eq.(11).
The three parameters of Model 4 have a straightfor-

ward biological interpretation, and their values can be
easily tuned to accommodate for different efficiencies of
RNAi. For example, the parameter d4 can be used to
weigh the degradation due to the RNAi compared to
the endogeneous mRNA degradation, and its strength,
i.e. what is the maximal degradation rate that can be
achieved. θ4 quantifies the siRNA oligomers concentra-
tion needed to achieve half of the maximal degradation
of the targeted mRNA. The h4 coefficient can accommo-
date for multiple target sites on the same mRNA, or for
the cooperativity of the RISC complex.
Clearly, the RNAi process is very complex and no

one-oneo-one relationship can be found between para-
meters of Model 4 and RNAi biological components.
Nevertheless, it has been shown in [27] that between
104 and 105 siRNA oligomers per cell (corresponding to
a concentration in the range 10 pM-100 pM) are suffi-
cient to reach half-halfaximal mRNA target degradation.
Model 4 predicts that half-halfaximal degradation is
achieved for an amount of siRNA oligomers equal to
θ4. The value of this parameter when fitting mRNA
levels (Table 2 and Additional file 1 Table A1) is θ4 ≈
0.1 pmol despite of the different cell-cellines and
mRNA-siRNA pairs tested (EGFP and tTA). This value
corresponds to a concentration of 50 pM in our experi-
mental setting, hence in good agreement with the pre-
viously reported range. Altogether these observations
suggest that the quantity θ4 could be cell-cellype,
mRNA, and siRNA indipendent.
It is estimated that the concentration of active RISC in

a cell is about 3 - 5 nM [23,26,32]. Taking into account
that the volume of a mammalian cell is in the range 10-
13L - 10-12L, then we can estimate that the number of
active RISC in a cell is in the range 103 - 104. The
above observations suggest that saturation begins when
the number of siRNA oligomers in a cell becomes com-
parable to the number of RISC molecules.
We observed that the parameters of Model 4 estimated

when fitting protein levels (set II experiments) are very
close to the ones estimated when fitting mRNA levels

(set I experiments). Namely, the optimized values of
d4 and h4 are very similar for both experimental data.
This is important since these are two independent biolo-
gical experiments. This proves the mathematical robust-
ness of Model 4. The only parameter changing between
the two sets of experiment is θ4, which represents the
concentration of siRNA oligomers needed to achieve
half of the maximal degradation rate (d4). This is
reflected in Figure 2and Figure 3, where it is clear that
saturation is achieved at about 1 pmol for the mRNA
data (Figure 2) and at about 20 pmol for the protein
data (Figure 3). This difference may be due to biological
variability, or to the simplified model of protein transla-
tion dynamics we used (steady-state approximation).
We also conformed that Model 4 is cell-celline-inde-

pendent, mRNA-independent, and siRNA-independent,
since it can accurately describe the RNA interference
process on a different cell-celline (CHO) expressing a
different mRNA (tTA), silenced by a different siRNA
oligomer.
Interestingly, the difference in Model 4 parameters,

when testing a different mRNA-siRNA pair (i.e. tTA
versus EGFP), shows that only d4 (the maximal degrada-
tion rate) and h4 (the cooperativity) change significantly,
suggesting that these two parameters can be used to
describe changes in siRNA-mRNA silencing specific
strength, whereas θ4 may be kept constant.
Recently it has been proposed that siRNA and micro-

RNA efficacy, defined as the percentage decrease in the
target mRNA level due to the silencing reaction, could
be limited due to mRNA abundance [33]or to mRNA
degradation rate [34].
Model 4 predicts that the percentage decrease in tar-

get mRNA level (obtained from Eq. (13) simply dividing
by km/dm) is indeed sensitive to dm (the target mRNA
degradation rate), with a higher degradation rate corre-
sponding to a weaker effect of the silencing reaction,
and vice-viceersa. This result is in line with the experi-
mental observation described in Larsson et al [34]. In
addition, according to Model 4, the transcription rate km
of the target mRNA does not have any influence on the
silencing reaction efficacy. The target mRNA abundance,
in absence of the silencing reaction, is simply obtained
from Eq. 1 as km/dm. Smaller dm will correspond to a
higher mRNA abundance (for a constant km) therefore a
correlation between mRNA abundance and sensitivity to
mRNA can be found [33], but this is only an indirect
effect mediated by the degradation rate, at least accord-
ing to our model. Our conclusion is that siRNA-
mediated degradation in mammalian cells can always be
best represented as an enzymatic reaction described by
an Hill function, whose parameters have to be tuned to
the specific siRNA-mRNA pair.
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The models discussed so far consider the average
behavior of a population of cells. In the case of
singe-singeell experiments, these models might not be
efficient enough due to their deterministic nature and
will not be able to capture any stochastic effects.
Since RNA has a plethora of functional properties and

plays many of roles in regulating gene expression, it has
been used in a number of different studies as a tool for
elucidating gene functions. In fact with RNAi it is possi-
ble to selectively knock-knockown any gene and even
modulate its dosage [35]. RNA has also been used in
the design of therapeutic molecules as well as metabolic
reprogramming [36]. The potential uses of this versatile
molecule are still very much under study, but their
effectiveness depend on many variables such as, the con-
centration of the silencing reagent, the transfection tech-
niques, the cell type used and the target type selection.
In the present study we biologically validated for the
first time a mathematical model (Model 4) that has a
simple mathematical form, amenable to analytical inves-
tigations and a small set of parameters with an intuitive
physical meaning that can be used both by the compu-
tational and the experimental community interested in
the analysis and application of RNA interference.

Methods
RNA interference by small interfering oligonucleotides
(siRNA)
The sequence of the 21-mer siRNA double-doubletranded
oligomers targeting EGFP was identical to the one
reported in [37]. This siRNA targets the coding sequence
of the EGFP gene starting at position 237 from the ATG,
on the target sequence AAGCAGCACGACTTCTT-
CAAG. The siRNA HPLC purified, with sequence GCAG-
CACGACUUCUUCAAGtt (concentration 100 μM) was
synthesized by Ambion. As a negative control we used, in
all experiments a shuffled sequence non targeting
siRNA from Dharmacon. A 21-mer siRNA oligonucleo-
tide was designed against the coding sequence of
tetracycline-tetracyclineontrolled transactivator (tTA)
gene using the Ambion technology platform. Custom
siRNA HPLC purified with sequence GGUUUAA-
CAACCCGUAAACtt (concentration 100 μM) were
synthesized by Ambion on the target sequence AAGGTT-
TAACAACCCGTAAAC starting at position 57 from the
ATG in the tTA gene coding sequence.

Cell culture and transfection
HEK 293 stably expressing EGFP (kindly provided by
Mara Alfieri) were maintained at 37°C in a 5% CO2-humi-
dified incubator. HEK 293 cells were cultured in Dulbec-
co’s modified Eagle’s medium (DMEM, GIBCO BRL)
supplemented with 10% heat-heatnactivated fetal bovine
serum (FBS, Invitrogen) and 1% antibiotic/antimycotic

solution (GIBCO BRL). CHO AA8 Tet-Off Cell Line
(Clontech) stably expressing the tetracycline-tetracycli-
neontrolled transactivator (tTA) were maintained at
37degC in a 5% CO2-humidified incubator. CHO cells
were cultured in alpha-MEM (GIBCO BRL) supplemented
with 10% heat-heatnactivated fetal bovine serum (FBS)
(Invitrogen) and 1% antibiotic/antimycotic solution
(GIBCO BRL). Cells were seeded at a density of
300.000 per well in a 6 wells multi-multiell and transfected
1 day after seeding using Lipofectamine 2000 (Invitrogen)
according to manufacturer’s instructions with siRNA
(Silencer Custom siRNA, 100 μM, Ambion) in a range of
quantities from 0.001 pmol to 200 pmol (total concentra-
tion). The amounts of transfected siRNA oligomers were:
0, 0.001, 0.01, 0.05, 0.1, 0.5, 1.0, 10.0, 20.0, 40.0, 60.0, 80.0,
100.0 and 200.0 pmol in a total of 2 mL of medium (so
the final concentrations of siRNA oligomers were 5 × 10-4,
5 × 10-3, 2.5 × 10-2, 5 × 10-2, 2.5 × 10-1, 5 × 10-1, 5.0, 10.0,
20.0, 30.0, 40.0, 50.0, and 100 nM respectively). Each
experiment was performed in biological triplicates, and
the resulting standard deviations were computed and
reported in each graph. One day post-postransfection, the
media and ligand were replaced. Transfected cells were
collected 48 hours post-postransfection for RNA extrac-
tion and subsequent analysis. FACS analysis was per-
formed 60 hours after transfection.

RNA extraction and Real-time PCR
Total RNA extraction from 35 mm culture plates was
performed using the Qiagen RNeasy Kit (Qiagen)
according to manufacturers instructions. Retro-tran-
scription of 1 μg of the total RNA extracted was per-
formed using the QuantiTect®Reverse Transcription Kit
(Qiagen), according to manufacturers instructions.
Quantitative real-realime PCR was performed using a
LightCycler (Roche Molecular Biochemicals, Mannheim,
Germany) to analyze the amplification status of EGFP
and tTA. Amplification of the genes was performed
from the cDNA obtained from the total RNA and using
the LightCycler DNA Master SYRB Green I kit (Roche
Molecular Biochemicals). Primer sequences for Human
GAPDH and Chinese Hampster GAPDH (used as refer-
ence genes) were designed by Primer 3.0 http://frodo.wi.
mit.edu/ (Forward primer Human GAPDH: GAAGGT-
GAAGGTCGGAGTC; Reverse primer Human GAPDH:
GAAGATGGTGATGGGATTTC; Forward primer
Hamster GAPDH : ACCCAGAAGACTGTGGATGG;
Reverse primer Hamster GAPDH: GGATGCAGGGAT-
GATGTTCT). Primer sequences for EGFP and tTA
were also designed with Primer 3.0 (Forward primer
EGFP: ACGACGGCAACTACAAGACC; Reverse primer
EGFP: GCATCGACTTCAAGGAGGAC; Forward
primer tTA: ACAGCGCATTAGAGCTGCTT; Reverse
primer tTA: ACCTAGCTTCTGGGCGAGTT). The
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relative amounts of genes were compared with the
GAPDH reference genes and calculated using the Prin-
ciple of Relative Quantification Analysis according to
the standard formula 2-DCt. To confirm the specificity of
the amplification signal, we considered the primer disso-
ciation curve in each case.

FACS analysis
Cells from 35 mm culture plates were trypsinized, fil-
tered and subjected to Fluorescence-Activated Cell Sort-
ing (FACS) analysis 60 hours posttransfection in a
Becton Dickinson FACSAria.

Models
In the context of the specific in vitro experiments we
carried out, we can make the following assumptions to
derive the mathematical model:

1. Cells express the target mRNA at a constant rate
km which corresponds to the maximum transcription
rate of the promoter.
2. We assume that the siRNA oligomers will be
quickly loaded into the RISC and that step 2 of Fig-
ure 1 takes place in much shorter time scale than
steps 3 and 4.

Therefore, the steps 2 - 4 of RNA interference
mechanism as shown in Figure 1 can be described by
Equations 1. The negative control experiments involved
the addition of non-nonpecific siRNA oligomers, which
are not complementary to the target mRNA and there-
fore are not able to trigger the RNA interference
mechanism. Namely, δ (Xm, Xs) = 0. Therefore, the
equations corresponding to the negative control experi-
ments are:

[ ] : ,mRNA
dX

dt
k d Xm
m m m= −

protein[ ] = −: ,
dX

dt
k X d Xp
T m p p (12)

Steady-state equations
For the numerical fitting of the in vitro experiments we
used the steady state equations for the mRNAs or pro-
teins. For example, for the in vitro experiments on RNA
levels, the experimental period of 48 hours before
extracting the RNA is considered long enough for the
mRNAs to approach their equilibrium value. In order to
solve for the mRNA or protein steady state we assume
that siRNA concentration remains constant through the
48 hours of the in vitro experiments. In general, the

siRNA-RISC complex, is considered very stable and one
can assume that the degradation of siRNA is so slow
that it does not have any effect on the overall dynamics.
The steady state equations for the mRNA concentra-
tions of the four models are:
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The corresponding mRNA equilibrium of the negative
control experiments is simply Xm = km/dm (for all the
models since δ (Xm, Xs) = 0). Therefore, when fitting the
ratio of the mRNA levels between positive and negative
control, we multiply equations (13) by dm/km. For mod-
els 1,3 and 4 this results in the cancellation of term km,
making the numerical fitting independent of the
strength of the promoter. However, this is not the case
for Model 3 (because these terms cannot be cancelled
out). Throughout the numerical optimization, the degra-
dation rate of mRNA EGFP was fixed at the value of dm
= 0.0173 min-1, which corresponds to a half-halfife of
40 minutes, as estimated in [7]. We used the same value
of dm also when fitting the experimental datset III for
the tTA mRNA since this is in the reported range for
this mRNA as well [7]. In order to optimize Model
3 with the smallest possible number of parameters, we
clustered its 4 different parameters (k3, h3, c3, km) in
order to have only two optimized quantities: k3 h3 and
c3/km. For the in vitro experiments in protein levels, we
fitted numerically the protein steady-steadytate equa-
tions. The equilibrium concentration of protein is given
by:

X
k

d
Xp

T

p
m=  (14)

where Xm is the mRNA equilibrium, which is differ-

ent for each model (equations 13). Additionally, the pro-
tein steady-steadytate of the negative control model is:

X
k

d

k

dp
T

p

m

m

= . (15)

For the numerical fitting of the ratio of protein levels
between negative and positive control, one needs to
divide equation (14) by equation (15).
Parameter fitting and Prediction Error
For the numerical fitting of the mRNA levels from in
vitro experiments, we used the following error function:
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where N is the number of experimental points, Ydata
i

is the experimental measurement of experiment i,

Ymodel
i model is the model prediction for experiment i

and SEi is the standard error of experiment i. A genetic
algorithm implemented in the “Genetic Algorithm and
Direct Search Toolbox” of Matlab (the ga command)
was then used to find the parameters which minimised
the error function.
The absolute value errors of each model were then

normalized against the largest error. Namely, the error
of Model 3 (which in both case was the largest one) was
set to 1 and all the other errors of the remaining three
models, were normalized against error of Model 3.
The Prediction Error (PE) for each experimental data-

set was computed by repeating the parameter fitting
procedure described above, but this time using a
leave-leavene-out cross-crossalidation procedure. The
PE was then computed as the average error (Eq. 16)
between the predicted value and the experimental value
across all the experimental points. As done for the error
function, we then computed a relative value for the PE
in order to compare the performance across the differ-
ent models by normalising against the maximum PE
across the four models, and reported it in Table 2 and
in Additional file 1 Table A1.
Please observe that in the case of the tTA mRNA the

cost function used was as in Eq. 16 but without dividing
by the standard error SE since in this case the experi-
mental data were more noisy and the SE could not be
estimated accurately.

Additional material

Additional file 1: Supplementary material for Modeling RNA interference
in mammalian cells. Results and fitting of in vitro experiments on
hamster ovary cell line (CHO) constitutively expressing tTA protein. We
measured mRNA levels, by quantitative Real-Time PCR for a large range
of concentrations of siRNA oligomers, from 0.001 pmol to 200 pmol
(total concentration). The amounts of transfected siRNA oligomers were:
0, 0.001, 0.01, 0.05, 0.1, 0.5, 1.0, 10.0, 20.0, 40.0, 60.0, 80.0, 100.0 and 200.0
pmol in a total of 2 mL of medium (so the final concentrations of siRNA
oligomers were 5 × 10-4, 5 × 10-3, 2.5 × 10-2, 5 × 10-2, 2.5 × 10-1, 5 × 10-
1, 5.0, 10.0, 20.0, 30.0, 40.0, 50.0, and 100 nM respectively). Each
experiment was performed in biological triplicates, and the resulting
standard deviations are computed and reported in each graph. In
Additional file 1 Table A1, numerical fitting results and predicted error for
the four models, in Additional file 1 Figure A1, graphic representation of
the numerical fitting.
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