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Abstract

the studies of a few specific 14-3-3 targets.

Background: 14-3-3 proteins are considered master regulators of many signal transduction cascades in eukaryotes.
In plants, 14-3-3 proteins have major roles as regulators of nitrogen and carbon metabolism, conclusions based on

Results: In this study, extensive novel roles of 14-3-3 proteins in plant metabolism were determined through
combining the parallel analyses of metabolites and enzyme activities in 14-3-3 overexpression and knockout plants
with studies of protein-protein interactions. Decreases in the levels of sugars and nitrogen-containing-compounds
and in the activities of known 14-3-3-interacting-enzymes were observed in 14-3-3 overexpression plants. Plants
overexpressing 14-3-3 proteins also contained decreased levels of malate and citrate, which are intermediate
compounds of the tricarboxylic acid (TCA) cycle. These modifications were related to the reduced activities of
isocitrate dehydrogenase and malate dehydrogenase, which are key enzymes of TCA cycle. In addition, we
demonstrated that 14-3-3 proteins interacted with one isocitrate dehydrogenase and two malate dehydrogenases.
There were also changes in the levels of aromatic compounds and the activities of shikimate dehydrogenase,
which participates in the biosynthesis of aromatic compounds.

Conclusion: Taken together, our findings indicate that 14-3-3 proteins play roles as crucial tuners of multiple
primary metabolic processes including TCA cycle and the shikimate pathway.

Background
14-3-3 proteins are known to regulate diverse processes
via binding phosphorylated target proteins in all eukar-
yotes [1-5]. Although hundreds of potential 14-3-3-
interacting proteins have been identified [1,5], there
have been limited studies that confirm in vivo interac-
tions and/or elucidate the regulating functions of 14-3-3
proteins [6-10]. The most intensively characterized 14-
3-3 target proteins are nitrate reductase and H*-ATPase.
14-3-3 proteins activate H"-ATPase [11] and inhibit
nitrate reductase activity [12]. Our previous study sug-
gests that three 14-3-3 isoforms (kappa, chi and psi)
also play important roles in nitrogen and sulfur meta-
bolic processes by regulating the activities of phosphoe-
nolpyruvate carboxylase and O-acetylserine lyase [13].
Plant 14-3-3 proteins are mainly thought to be regula-
tors of carbon and nitrogen metabolism [2]. However,
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this assumption is based on studies of only a few target
proteins, such as nitrate reductase and sucrose-phos-
phate synthase [14]. Nitrate reductase is phosphorylated
in the dark by the calcium-dependent protein kinase
(CDPK) and the sucrose non-fermenting related kinase
1 (SnRK1) that initiates the interaction of the enzyme
with the 14-3-3 proteins and its inactivation. In the
light, nitrate reductase is dephosphorylated by a protein
phosphatase 2A, leading to the dissociation of the 14-3-
3 and the activation of nitrate reductase [15-18]. In car-
bon metabolism, some carbon metabolic enzymes such
as sucrose phosphate synthase [19], and the dual func-
tion protein 6-phosphofructo-2-kinase/fructose-2,6-
bisphosphatase [20], have been identified as interacting
targets of 14-3-3 proteins. The functional relevance of
14-3-3 proteins in the regulatory mechanism of their
targets, however, is still not clear. Considering the hun-
dreds of possible 14-3-3 target proteins revealed through
multiple screening studies, the roles so far described are
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likely to be only a small part of the functions of 14-3-3
proteins [5,13,21].

Metabolite profiling is a powerful tool that has con-
tributed to the understanding of plant physiology,
including phenotypic differences, gene annotations,
metabolite regulation, and characterization of stress
responses [22,23]. Moreover, the integration of metabo-
lomics with other ‘omics,” such as genomics, enzymo-
mics, and interactomics, leads not only to construction
of metabolic networks but also to understanding the
roles particular proteins play within the metabolic net-
work [24,25]. In this study, by combining metabolomics
and genetical, enzymological, biochemical, and molecu-
lar approaches, we were able to draw a comprehensive
map of the functional roles 14-3-3 proteins play in
essential metabolic processes.

Our study further confirms that 14-3-3 proteins are
important regulators of both nitrogen and carbon meta-
bolic processes. Specifically, we show that 14-3-3 pro-
teins play roles to control the tricarboxylic acid (TCA)
cycle and the shikimate pathway.

Results
Metabolite profiling: ectopic expression of 14-3-3
proteins altered primary metabolite levels
Our previous studies demonstrated that 14-3-3 chi,
kappa and psi proteins interact with more than a hun-
dred proteins and that these interactions regulate the
activities of some metabolic enzymes [13]. However, it
remained unclear why 14-3-3 proteins interact with so
many proteins and what their true targets are in planta.
To comprehend the biological roles of 14-3-3 proteins,
metabolic profiling was performed on plants overexpres-
sing a 14-3-3 protein (14-3-3 ox) and on previously con-
firmed 14-3-3 kappa knockout plants (kappa-KO), 14-3-3
chi knockout plants (chi-KO) and 14-3-3 psi RNAi plants
(psi-RNAI) that showed 70% reduction of endogenous
14-3-3 psi expression [13]. 14-3-3 ox plants with 14-3-3
contents of at least two times more than wild type in
planta were used [13]. Long day (16 h light/8 h dark)
plate-grown plants were divided into shoots and roots,
and changes in their levels of primary metabolites relative
to wild type plants were determined using GC-TOF-MS
(gas chromatography-time of flight-mass spectrometry).
To visualize the metabolomic changes in 14-3-3 ox
and KO plants, principal component analysis (PCA) was
conducted using metabolite profile data matrix to plot
the samples’ distribution. 14-3-3 kappa-ox, chi-ox, and
psi-ox were distributed in distinguishable clusters, with
kappa-ox having the most significantly different metabo-
lite profile compared to wild type (Figure 1). The subse-
quent supervised method, orthogonal projections to
latent structures-discriminant analysis (OPLS-DA)
reconfirmed that 14-3-3 ox plants have different
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Figure 1 The OPLS-DA score scatter plots of three 14-3-3
overexpressing and wild type samples for (A) shoots and (B)
roots. Each point represents an independent plant sample in the
score scatter plots. We used 55 shoots and 56 roots for the analysis.
(A) The OPLS-DA model for shoot samples shows three significant
components, with R’X, R’Y and Q°Y values of 0.37, 0.67 and 041,
respectively. (B) The OPLS-DA model for root samples shows three
significant components, with R°X, Y and Q°Y values of 0.30, 0.50
and 0.23, respectively. Black square, wild type; blue diamond, kappa-
ox; yellow triangle, chi-ox; green circle, psi-ox.

metabolic profiling patterns compared to wild type (Fig-
ure 1). The scatter plot showed that the metabolites,
such as amino acids, TCA intermediate and carbohy-
drates, of 14-3-3 kappa-ox were clearly distinguishable
from that of 14-3-3 kappa-KO and wild type (Figure
2A); and the chi-ox plants showed similar trends of
metabolites distribution as 14-3-3 kappa-ox (Figure 2B).
The 14-3-3 ox lines and KO lines had clear alterations
of many metabolites (Table 1 and Additional file 1).
Twelve metabolite contents were significantly modified
in the roots; and twenty five, in the shoots (Table 1).
14-3-3 chi-ox and 14-3-3 kappa-ox roots had decreased
levels of some amino acids, such as alanine, phenylala-
nine and glutamate, compared to wild type but fewer
metabolite changes were found in the roots of 14-3-3
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Figure 2 The OPLS-DA score scatter plots (left) and loading scatter plots (right) of shoot samples of (A) kappa-ox and kappa-KO (B)
chi-ox and chi-KO. Wild type samples were used as controls. Each point represents an independent plant in the score scatter plots and an
individual metabolite peak in the loading plots. (A) The OPLS-DA model of kappa samples shows two significant components, with R2X, Y and
Q%Y values of 0.53, 0.95 and 0.65, respectively. (B) The OPLS-DA model of chi samples shows three significant components, with RPX, R°Y and Q°Y
values of 0.31, 0.67 and 041, respectively. These models were validated using analysis of variance of cross-validated predictive residuals (CV-
ANOVA) (pcy < 0.01). (Left) Black square, wild type; blue diamond, kappa-ox; pale-green star, kappa-KO; yellow triangle, chi-ox; green circle, psi-ox;
pink-inverted triangle, chi-ox. (Right) Pale-green circle, amino acids; orange diamond, TCA intermediates; blue star, metabolites that consists of
CHON-elemental composition; pink square, metabolites that consists of CHO-elemental composition; gray triangle, unclassified peaks. Number of
biological replicates: wild type, n = 6; kappa-ox, n = 16; kappa-KO, n = 6; chi-ox, n = 16; chi-KO, n = 6; psi-ox, n = 17; psi-RNAi, n = 6. pcy, p-
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psi-ox and KO plants for all three 14-3-3 proteins.
Interestingly, the changes of metabolites in the shoots
were more pronounced-the levels of many metabolites
that decreased in 14-3-3 ox shoots increased in KO
shoots (Table 1). Metabolites differentially regulated in
14-3-3 ox shoots were divisible into four groups. First,
many amino acids, including alanine, glycine, and lysine,
decreased in 14-3-3 ox plants. Second, sugar levels
decreased in 14-3-3 ox lines. Third, metabolite contents
of TCA cycle, such as malate and citrate, decreased in
14-3-3 ox plants. However, levels of a-ketoglutarate
increased in kappa-ox but decreased in psi-ox. Fourth,
metabolites related to the shikimate pathway were
altered. The contents of phenylalanine decreased in 14-
3-3 kappa-, chi- and psi- ox lines. In addition, tyrosine

amount decreased in kappa ox plants and the contents
of shikimate increased in kappa KO plants (Table 1).
From these results, it can be hypothesized that 14-3-3
proteins are involved in the regulation of TCA cycle,
sugar metabolism and the shikimate pathway.

It has been reported that 14-3-3 proteins and their
targets are regulated by light [26,27]. Therefore, compar-
isons in the levels of metabolites of the 14-3-3 ox lines
with that of wild type were made in light and dark con-
ditions (Figure 3). Light and dark did not affect the
overall metabolic trends in the 14-3-3 ox plants. How-
ever, starch content decrease (with the exception of chi-
ox1 and chi-ox3) was more significant in the dark, at
least 12% more than light; whereas malate content
decrease was more significant in the light, at least 10%
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Table 1 List of signature metabolites that were changed in 14-3-3 overexpression plants compared to wild type

plants.
Fold change compared to wild type plants
Metabolite kappa- kappa- kappa- kappa- chi- chi- chi-  chi-  psi- psi- psi- psi-
ox1 ox2 ox3 KO ox1 ox2 ox3 KO ox1 ox2 ox3 RNAi
Shoot -alanine 0.613 0.741 0.628 1.401 0809 0912 1002 1.642 1.662 129 0999 2087
GABA 0.682 0.527 0.440 1271 0.627 088 0.647 0836 1101 0.571 0.578 0.758
threonic acid 0.616 0.657 0.641 1.178 1106 1324 0859 0945 0973 0.662 0869 1.524
phenylalanine 0.746 0.764 0.572 1050 0702 0.798 1032 1009 1102 0.813 0.692 0.793
1,3-diaminopropane 0.546 0.496 0413 0.875 0.439 0.485 0478 0711 0761 0.574 0.473 0.552
dihydrochloride
ribose 0.747 0.618 0.415 1.501 0.651 0929 0809 1.110 1358 0876 0.740 1.102
citrate 0.825 0.735 0.733 1154 0444 0.654 0.538 0799 1222 0595 0.670 0.712
fructose 0.439 0.447 0.479 0.771 0.335 0.419 0.426 0904 0.670 0.500 0.461 0914
tyrosine 0.639 0.684 0.323 0.681 1013 1107 1.082 0991 1.687 1036 0969 1.130
glycine 0.448 0.402 0.364 0984 0517 0.485 0.722 078 1.384 0935 0.640 0.704
aspartate 0.860 0.707 0.648 1936 0.764 1.115 1068 1.535 1.258 1027 0926 1.181
pyroglutamate 0.855 0.833 0.590 1.709 0.775 1008 1.041 1.444 1051 0873 0.758 0.869
glutamate 0.921 1.044 0.766 1734 0850 1089 0934 1375 1132 1046 0935 1.083
asparagine 0922 0.561 0.350 2.059 0762 1338 0979 1393 1351 0917 0710 1363
glutamine 0.697 0.439 0.214 0.858 069 0986 0703 0.578 1484 1213 0.743 1.283
glucose 0.451 0.387 0.278 0.723 0.294 0.335 0.336 0530 0.567 0.475 0.360 0.720
lysine 0.892 0.687 0.374 1.052 0919 1207 1041 1069 1069 0908 0.729 1016
sucrose 0.550 0.454 0.354 0647 0489 0721 0.603 0820 0.501 0.550 0.251 0681
palmitate 0.813 1.013 0.984 1.193 0878 0922 1069 1.231 098 0919 0.804 0904
shikimate 0.846 0.722 0.602 1.801 0788 0.776 0.678 1.322 1073 0965 0718 0950
1,4-diaminobutane 0.609 0.561 0.484 0.953 1.333 1.522 0986 0973 0912 0.775 0917 1.758
Fructose-6-phosphate 1.156 0.800 0.678 1.655 0.642 0879 0942 1108 1089 097 0.771 1071
malate 0.745 0.665 0.642 1.017 0.674 0866 0.809 0847 1.452 0911 0955 1.008
a-ketoglutarate 0.566 0.991 0.546 0.653 0465 0701 0657 0.583 3.061 1.869 2.120 1.111
myo-inositol 0.746 0.969 0.562 1.487 1251 1039 0805 1275 0971 0933 0.865 1.181
Root B-alanine 0.662 0.830 0.647 1331 0.649 0617 0.703 0891 1009 0621 0749 1.153
phenylalanine 0.739 0.742 0.509 1314  0.697 0.792 0842 1.158 0964 0849 0.722 0.880
proline 2.282 1578 0.762 1.301 2,046 1.700 1254 1908 2318 1678 3.929 2.340
pyroglutamate 0.755 0.734 0.525 1341 0.751 0836 0852 1.250 0923 0.775 0.529 0.801
glutamate 0.685 0.875 0.546 1237 0741 0.766 0783 1077 1055 0.815 0.762 0964
trans-Sinapate 0.447 0.751 0.409 0.697 0616 0.553 0.516 0567 0643 0690 0470 0723
palmitate 0.742 0.945 0.814 1.103 0.800 0.784 0864 1060 0992 0912 0.723 0.845
1,4-diaminobutane 0.960 0935 0.767 1.645 0.635 0.736 0857 0985 1112 0794 0933 1.209
Fructose-6-phosphate 0.780 0.751 0.538 1.251 0.780 0860 0790 1059 0906 0779 0.598 0.908
shikimate 1.946 1912 1.702 3.127 1553 1666 1811 1979 2161 1733 1909 2.311
myo-inositol 0.716 0.806 0.626 1.385 0909 0.763 0821 1249 0980 0867 0.699 1.043
phytol 0.179 0438 0.141 1137 0.233 0.154 0.219 1089 0.374 0418 0.167 0.266

Bold letter indicates statistically significant in metabolite level in the line compared to wild type (P < 0.05).

more than dark. The alteration of metabolite levels in
14-3-3-ox plants was therefore independent of the pre-
sence or absence of light. This indicates that the targets
of the 14-3-3 proteins do not act in an exclusively light-
dependent manner.

Activity levels of primary metabolic enzymes in 14-3-3 ox
plants

The metabolite profile of 14-3-3 ox plants suggests that
starch and sugar metabolism, TCA cycle, and the shiki-
mate pathway are the main target processes of 14-3-3
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Figure 3 Major metabolite changes in 14-3-3 overexpression
plants during day and night. The levels of starch, sucrose,
fructose, malate and amino acids were significantly decreased in 14-
3-3 overexpression plants compared to wild type (WT). Plants were
harvested 1 h before switching light conditions. T-tests were
performed to determine significant difference compared to WT (¥, P
< 0.05; **, P < 0.01; ** P < 0.001).

proteins. To elucidate whether the enzymes of these
metabolic processes are regulated by 14-3-3 proteins,
the activity of 29 enzymes in 14-3-3 ox plants and wild
type plants were analyzed (Figure 4 and Additional file
2). Because the most marked metabolic changes were
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found in the shoots (Table 1), only shoots were used for
determining the enzyme activities.

We consider that there was no general reformatting of
photosynthesis in 14-3-3 ox plants basing on the fact
that: 1) the chlorophyll content in 14-3-3 ox plants and
wild type plants were not significantly different (Figure
4); 2) the activities of 19 enzymes, including phospho-
glucomutase, UDP glucopyrophosphorylase, the sucrose
metabolizing enzymes glucokinase, fructokinase and 3-
fructofuranosidase, and the Calvin-Benson cycle
enzymes triose phosphate isomerase, glyceraldehyde-3-
phosphate dehydrogenase and RubisCO were not altered
in the 14-3-3 ox plants (Additional file 2).

As already known from other studies [15,17,18,28], the
activity of nitrate reductase decreased and the activity of
sucrose phosphate synthase increased in 14-3-3 ox plants
(Figure 4). Our previous findings showing that the activ-
ity of phosphoenol pyruvate carboxylase decrease and
that the activity of glutamate synthase does not change in
14-3-3 ox plants [13] were confirmed in this study (Fig-
ure 4). Interestingly, several enzymes involved in TCA
cycle (malate dehydrogenase and isocitrate dehydrogen-
ase), or closely related to TCA cycle (glutamate dehydro-
genase and aspartate aminotransferase) displayed
decreased activities in 14-3-3 ox plants (Figure 4). The
activity of citrate synthase also decreased in some of the
14-3-3 ox lines (Additional file 2). In addition to enzymes
of TCA cycle, fructose bisphosphate aldolase activity
increased in 14-3-3 ox plants compared to wild type
plants. The decreased activity of glucose-1-phosphate
adenylytransferse (Figure 4), which is involved in starch
synthesis, may be responsible for the decreased starch
synthesis observed in 14-3-3 ox lines (Figure 3).
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14-3-3 proteins function in the shikimate pathway
Shikimate levels significantly increased in kappa-KO
compared with wild type plants (Table 1). In addition,
the enzyme activity of shikimate dehydrogenase was sig-
nificantly reduced in 14-3-3 ox plants (Figure 4).
Because shikimate dehydrogenase is essential for the
biosynthesis of aromatic compounds in plants [29], this
result is in accordance with the reduced levels of pheny-
lalanine in the chi, kappa, and psi ox lines, of tyrosine in
the kappa-ox lines, and of phytol in the 14-3-3 ox roots
(Table 1). Together, these results suggest that 14-3-3
proteins play important roles in the regulation of the
shikimate pathway.

TCA cycle regulated by 14-3-3 proteins through protein-
protein interaction

The metabolomic profiling (Table 1 and Figure 3) and
the analysis of enzyme activities in 14-3-3 ox and wild
type plants (Figure 4) suggest that TCA cycle is regu-
lated by 14-3-3 proteins. Our previous list of proteins
found to interact with 14-3-3 proteins [13] includes two
malate dehydrogenases (At1G04410 and At5G43330), an
isocitrate dehydrogenase (At4G35650), and also an
aspartate aminotransferase (At2G30970), which altered
activities in 14-3-3 ox plants. To confirm whether these
TCA cycle enzymes are direct targets of 14-3-3 proteins,
yeast two-hybrid interaction assays were performed (Fig-
ure 5). The malate dehydrogenases and isocitrate dehy-
drogenase clearly interacted with 14-3-3 kappa, chi, and
psi in yeast (Figure 5), suggesting that 14-3-3 proteins
control TCA cycle through interaction with its meta-
bolic enzymes, malate dehydrogenase and isocitrate
dehydrogenase (Figure 6).
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Figure 5 14-3-3 proteins interact with TCA cycle enzymes in yeast. Three 14-3-3 isoforms interact with isocitrate dehydrogenase (ICDH,
At4G35650) and two malate dehydrogenases (MDH1, At1G04410; MDH2, At5G43330) that were previously isolated as possible targets of 14-3-3
proteins. AC indicates a pGADT7 and BD indicates a pGBKT7 vector. The positive control and negative control were described in methods




Diaz et al. BMC Systems Biology 2011, 5:192
http://www.biomedcentral.com/1752-0509/5/192

Page 7 of 12

=

|NV’ GK AGPIase
- A
-~ }s 1

S ¢ SPS —UGP — PGM < - SREllEeEEE

! _TK -
Fructose-6-P Jid GAPD|;|-NADP ~ \\
| A 1
PFK ! ,
W oreP AP p
7 ,
Fructose-1,6-bisP 14 s
1 ‘KFBPAIE- DHAP .-TPI ,f/
PGK o
1 e
1 e
v e
Enolase >

ng -- shikimate DH > ISy - >
, ~

PK |
«a e i
v __4:' Pyruvate <« - Ala AT -m
BB« ~sorm -2 0nn [T cs

] . \
ﬁ NAD-MDH

Malat NAD-ICDH

; Pyroglutamate | Aminobutryic acid

- = Rubisco ~ 3-PGA L_

(RCCEINEECN- 2~ GloH ->EMl< GS < ---- NR _

Figure 6 The schematic model of metabolic pathways that are regulated by 14-3-3 proteins. Grey box indicates unchanged metabolites;
blue box indicates decreased metabolites in 14-3-3 overepxression plants compared to wild type plants; no colored box indicates that
metabolites were not measured in this study; purple box (a-ketoglutarate) indicates that some overexpression lines showed higher level of
metabolite compared to WT but others showed lower than WT. Black letters indicate that the activities of enzymes were unchanged in 14-3-3
overexpression plants compared to WT; Blue letters indicate that the enzyme’s activity was decreased in 14-3-3 overexpression plants; Red letters

reductase; ASP AT, Aspartate transaminase.

indicate that the enzyme’s activity was increased in 14-3-3 overexpression plants. AGPase, Glucose-1-phosphate adenylyltransferase; INV, B-
fructofuranosidase; SPS, sucrose-phosphate synthase; UGP, UTP-glucose-1-phosphate uridylyltransferase; PGM, Phosphoglucomutase; PFK, 6-
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Citrate synthase; NAD-ICDH, Isocitrate dehydrogenase (NAD"); NAD-MDH, Malate dehydrogenase; GLDH, Glutamate dehydrogenase; NR, Nitrate

Discussion

Numerous studies have shown that there are more than
a hundred potential 14-3-3 target proteins in plants
[3-5,30-34]. In vivo, the cellular distribution of 14-3-3
proteins are altered depending on the interactions with
cellular clients [35]. There are numerous examples of
14-3-3 proteins interacting with and regulating various
target proteins in different subcellular compartments
including cytosol, nucleus, chloroplast as well as mito-
chondria [36-40]. These results suggest that 14-3-3 pro-
teins localize in various subcellular compartments and

play diverse roles in many cellular processes. To better
understand the multi-faceted roles of 14-3-3 proteins in
planta, a combination of metabolomics, enzyme activity
analysis, and protein-protein interaction analysis was
used in this study.

The interaction between nitrate reductase and 14-3-3
proteins was demonstrated in various plant species
using multiple methods [15,16]. However, the decrease
in nitrate reductase activity upon interaction with 14-3-
3 proteins has only been measured in vitro, and the
direct influence of 14-3-3 proteins on nitrogen
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metabolite levels in planta has not been clearly reported
[16]. Through metabolomics, we found decreased levels
of nitrogen containing metabolites, such as glycine,
GABA, glutamine and asparagine (Table 1) possibly
resulting from the alteration of nitrogen metabolic
enzymes by 14-3-3 proteins (Figure 4) [41,42].

In addition to the regulation of nitrate reductase, 14-
3-3 proteins control nitrogen metabolism through inter-
action with glutamine synthetase (GS) enzyme [8]. In
Medicago truncatula, degradation of GS2 by proteolysis
was related to the binding of 14-3-3 proteins to phos-
phorylated GS2 [43]. In contrast, in Brassica napus, 14-
3-3 proteins were shown to positively regulate activity
and to negatively regulate degradation of the cytosolic
isoform of GS1 [38,43]. In healthy plants, the plastid-
localized GS2 isoform is predominant compared to GS1
isoform. However, during senescence, GS2 degrades
with the chloroplast and GS1 becomes the predominant
isoform in leaves [44]. In this study, as well as in the
previous study using 14-3-3 ox lines ([13]), no signifi-
cant changes of GS activities were detected (Additional
file 2). There are several possible explanations for the
unchanged activity of GS in our conditions: 1) the
change of GS activity in 14-3-3 ox plants was not great
enough to be detected by our method; 2) the amount of
GS proteins in 14-3-3 ox plants was a limiting factor
and/or there was enough 14-3-3 protein in wild type
plants to saturate GS activity; 3) alterations of metabo-
lites related to nitrogen metabolism were not due to an
alteration of GS activity but a disruption of the carbon-
nitrogen balance, since drastic changes in soluble sugar
and starch levels were observed in 14-3-3 ox lines
(Table 1) [45-47]; 4) the method used to measure total
GS activity in this study was unable to discriminate GS1
and GS2, or distinguish whether the balance between
GS1 and GS2 had been modified in the 14-3-3 ox
plants.

As photoperiodism is associated with drastic gene
expressions, enzyme activities and metabolite level
changes, samples were analyzed at time points most
representative of these two periods: one hour before
onset of dark when plants have accumulated maximum
photosynthate such as starch, and one hour before onset
of light when they have remobilized photosynthate to
ensure normal growth and development. Since meta-
bolic profiles at these two time points did not change
overall metabolic trend, we can exclude photoperiodism
as a factor affecting the reduction of carbohydrates in
14-3-3 ox plants.

The reduction of starch, sucrose and glucose levels in
14-3-3 ox plants (Table 1 and Figure 3) indicates that
14-3-3 proteins regulate activities of enzymes related to
carbohydrate metabolism. 14-3-3 proteins bind to sev-
eral enzymes of carbohydrate metabolism, such as
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sucrose phosphate synthase, trehalose-6-phosphate
synthase and 6-phosphofructo-2-kinase/fructose-2,6-
bisphosphatase [19,20,48]. Our results suggest that over-
expression of 14-3-3 proteins in planta is associated
with the modification of these carbohydrate metabolic
enzymes and the decrease of sucrose and starch levels
in leaves. In addition, sucrose phosphate synthase has
several putative phosphorylation sites which regulate its
activities by interacting with 14-3-3 proteins [8,19].
Although effect by other levels of regulation such as
feedback control cannot be ignored, we hypothesize that
change in soluble sugar levels in 14-3-3 ox plants
resulted from the regulation of carbohydrate metabolic
enzymes by 14-3-3 proteins and the lower fluxes in
TCA cycle.

In this study, detailed metabolomics analysis clearly
show that overexpression of 14-3-3 proteins is asso-
ciated with drastic changes in the levels of TCA-inter-
mediates (Table 1). The modifications in the levels of
these TCA cycle intermediates coincide with decreased
malate dehydrogenase and isocitrate dehydrogenase
activities (Figure 4). Moreover, we found that malate
dehydrogenase and isocitrate dehydrogenase are inter-
acting partners of 14-3-3 chi, kappa, and psi (Figure 5),
with putative 14-3-3 binding motifs. Another study
identified a different form of isocitrate dehydrogenase
isoform as a possible interacting partner of 14-3-3 pro-
teins [49]. The modifications of metabolites involved in
TCA cycle by 14-3-3s were due to alterations in the
activities of several TCA metabolic enzymes. It is highly
likely that the interactions of 14-3-3 proteins and two
TCA key enzymes, malate dehydrogenase and isocitrate
dehydrogenase, are the crucial factor controlling these
enzyme activities. Considering these results, we con-
clude that 14-3-3 proteins regulate TCA cycle through
protein-protein interaction with several enzymes of
TCA cycle.

In addition to TCA cycle, our findings show that over-
expression of 14-3-3 proteins deregulate the shikimate
pathway, which plays a pivotal role in the production of
precursors for aromatic compounds including aromatic
amino acids in plants [50]. The activity of shikimate
dehydrogenase was down-regulated in 14-3-3 ox lines
(Figure 4), and the shikimate level was higher in 14-3-3
kappa-KO plants (Table 1). The decrease of tyrosine
and phenylalanine in 14-3-3 ox plants (Table 1) also
supports the notion that 14-3-3 proteins affect the shiki-
mate pathway.

Plant metabolic processes are complicate, delicate and
tightly linked reciprocally. Plants therefore need multi-
functional players that can modulate multiple processes
as well as the steps in each process and 14-3-3 proteins
are one of the best candidates for this role. 14-3-3 pro-
teins reversibly interact with selectively phosphorylated
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form of proteins and are involved in affecting targets to
function in multiple ways such as confirmation change,
scaffolding, and altering cellular location [2]. This is
why 14-3-3 proteins have hundreds of target proteins
and their interactions are found ubiquitously. In this
study, we took established individual metabolic pro-
cesses such as nitrogen metabolism, and aimed to
uncover the ubiquitous roles 14-3-3 proteins play in the
tightly linked metabolic processes. In 14-3-3 ox plants,
reduction of starch levels may be due to decreased activ-
ity of Glucose-1-phosphate adenylyltransferase
(AGPase). AGPase catalyzes the synthesis of ADP-Glc,
the glucosyl donor used by starch synthases for starch
biosynthesis [51], and regulates carbon storage in Arabi-
dopsis [52]. AGPase is subjected to transcriptional regu-
lation in diverse tissues and additional regulatory
mechanisms at the posttranscriptional level [53]. The
activities of starch metabolic enzymes are modulated by
effector molecules which are often metabolic intermedi-
ates, or by posttranslational protein modification like
phosphorylation [52]. Recent studies implicate that
reversible protein phosphorylation play a critical role in
the regulation of starch related enzymes such as AGPase
[54,55]. Phosphorylated AGPase is possibly a target of
14-3-3 proteins and the binding can be a way to control
its activity. From our study, we conclude that modifica-
tion of AGPase activity is caused by drastic changes of
carbon compounds in the 14-3-3 ox plants and the
binding of 14-3-3 proteins with the phosphorylated
form of the AGPase. As a consequence, 14-3-3 ox plants
have greatly reduced levels of key metabolites in glycoly-
sis leading to the decrease in carbohydrate supply to
TCA cycle and shikimate pathway. Assimilation of
ammonium to glutamine and glutamate is also nega-
tively regulated in 14-3-3 ox plants, also suppressing
supply to TCA cycle (Figure 6). In our study, we
revealed that malate dehydrogenase and isocitrate dehy-
drogenase are direct targets of 14-3-3 proteins (Figure
5). This result suggests a mechanism in which 14-3-3
proteins bind and regulate key enzymes of TCA cycle
through altering conformational change or scaffolding
via protein-protein interaction. In addition, the decrease
of glutamine and glutamate content due to ubiquitous
interaction with 14-3-3 proteins and nitrate reductase
and GS limit input to TCA cycle (Figure 6). With these
results, we theorize that the ubiquitous interactions
between 14-3-3 proteins and multiple metabolic
enzymes restrict input to TCA cycle and shikimate
pathway and consequently, TCA cycle itself is modu-
lated by 14-3-3 protein via protein-protein interaction.

Conclusions
Integration of metabolome data with a panel of enzyme
assays proved to be a powerful tool to further our
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understanding of the function of 14-3-3 proteins in the
regulation of primary metabolism in Arabidopsis. We
confirmed that 14-3-3 proteins modulate activities of
key enzymes of carbon and nitrogen metabolism and
that these modifications were associated with drastic
changes in the carbon/nitrogen balance in plants. In this
study, we provide a novel functional link between 14-3-
3 proteins and TCA cycle. The modification of the mul-
tiple metabolites involved in TCA cycle may have
occurred due to the modification of enzyme activities of
TCA cycle. Furthermore, our findings suggest that 14-3-
3 proteins regulate TCA cycle through their interactions
with two key enzymes of TCA cycle and that 14-3-3
proteins regulate the shikimate pathway and thus the
production of aromatic compounds.

Methods

Plant materials and growth condition

Plants were grown on low salt media (LSM; 1.25 mM
KNO3, 2 mM Ca(NO3),, 0.75 mM MgSOy, 0.5 mM
KH,PO4, 50 uM H3BO3, 10 uM MnCl, 2 pM ZnSOy,
1.5 pM CuSOy, 0.075 pM NH;Mo0,0,4, 74 pM Fe-
EDTA, pH 5.7) with 1% sucrose and 0.6% Seakem agar-
ose at 22°C with 16 h daylight at 150 pmol m™ s [56].
The all Arabidopsis plants used in this study have the
same ecotype background, Col-0. Plants overexpressing
14-3-3 kappa, 14-3-3 chi and 14-3-3 psi and the knock-
out mutants of 14-3-3 genes were used as described
[13]. For metabolomic profiling and enzyme activity
analysis, three days after germination, plants were trans-
ferred onto new LSM plates and grown vertically. To
reduce the effect by the position of plates in the growth
chamber, plates were moved every two days. After two
weeks, shoots and roots were harvested separately.

Metabolite profiling and statistical analysis

Metabolite profiling using GC-TOF-MS was performed
as described in [57]. Briefly, three of the harvested shoot
or root samples were pooled as a replicate. Six replicates
per line were used for metabolite profiling. A total of 5
mg fresh weight of the shoot and root samples were
subjected to derivatization. An equivalent 6 pug of the
derivatized samples were injected into the GC-MS
instrument. The non-processed data obtained were pre-
processed using the hierarchical multivariate curve reso-
lution method [58].

SIMCA-P +12 software (Umetrics, Umed, Sweden)
were used for multivariate statistical analyses (i.e., PCA
and OPLS-DA) and the R statistical environment http://
cran.r-project.org for other statistical analyses such as
the cross-contribution compensating multiple standard
normalization (CCMN) and calculation of a false discov-
ery rate (FDR). The PCA and OPLS-DA models were
used to visualize the high-dimensional data and
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determine the metabolomic variation between the con-
trol (wild type) and the mutants (ox and/or KO). PCA
was carried out to show how different variables (meta-
bolites) change in relation to each other. OPLS-DA,
which is as an extension of the supervised multivariate
regression method PLS, was employed to remove some
variation which was uncorrelated to class separation.

Outliers in the GC-MS data were identified using
missing value robust PCA [59] and removed prior to
further analysis. Metabolite abundance estimates were
log transformed and scaled to unit-variance where
applicable. Analytical bias was monitored via 11 internal,
isotope-labeled standards and removed using the CCMN
[60]. To validate OPLS-DA models, we applied analysis
of variance of cross-validated predictive residuals (CV-
ANOVA) in the SIMCA-P software [61].

Differentially abundant metabolites were identified using
the LIMMA package [62]. Briefly, a linear model was fitted
to each metabolite to compare the levels of wild type with
levels in the mutants. Significant changes were declared
for metabolites with a FDR level < 0.05 [63].

The day and night change of metabolites were ana-
lyzed as described [64,65]. Three of the harvested shoots
were pooled as a replicate and six to eight replicates per
genotype were analyzed. For day condition, long-day-
grown (16 h light/8 h dark) plants were harvested 1
hour before offset of light and for night condition the
plants were harvested 1 hour before onset of light. All
data sets were analyzed for statistical differences com-
pared to wild type by t-test using Prism 5 program
(GraphicPad software, La Jolla, USA).

Enzyme and metabolite assays

Chemicals were purchased as described in [66]. Fifteen of
the harvested shoots were pooled as a replicate and six to
eight replicates per genotype were analyzed. For enzyme
measurements, aliquots of 20 mg frozen FW were
extracted by vigorous mixing with extraction buffer [65].
6-phosphofructokinase, citrate synthase, isocitrate dehy-
drogenase, and malate dehydrogenase were assayed as
described in [65]. Ribulose-bisphosphate carboxylase was
assayed as described in [67]. Triose-phosphate isomerase
was assayed as described in [68]. Phosphoglucomutase was
assayed as described in [69]. UTP-glucose-1-phosphate
uridylyltransferase was assayed as described [70]. Fructose-
bisphosphate aldolase was assayed by incubating crude
extract or dihydroxyacetone phosphate standards for 20
min in a freshly prepared medium containing 0 or 5 mM
fructose-1,6-Bisphosphate, 1 U ml™ triose-P isomerase, 2
U ml 'glycerol-3P dehydrogenase, 0.3 mM NAD", 5 mM
MgCl,, 1 mM EDTA, 0.05% Triton X 100, and 100 mm
tricine buffer, pH 8.5. The reaction was stopped by addi-
tion of an equal volume of 0.5 M HCI. After incubation
for 10 min at RT and neutralization with 0.5 M NaOH,
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the glycerol-3-phosphate produced was determined using
the glycerol-3-phosphate/dihydroxyacetone phosphate-
based cycling protocol described in [66]. All other
enzymes assays in this study were performed as described
in [66]. The statistical differences between each genotype
and wild type were analyzed by t-test.

Protein-protein interaction assays

The interaction between three 14-3-3 isoforms (14-3-3
chi, At4G09000; 14-3-3 kappa, At5G65430; 14-3-3 psi,
At5G38480), and two malate dehydrogenases
(At1G04410 and At5G43330) and an isocitrate dehydro-
genase (At4G35650) were confirmed using GAL4-based
Matchmaker yeast two-hybrid system (Clontech). Target
proteins were cloned into pGADT7 (Clontech) with the
GATEWAY cassette (Invitrogen) and then transformed
into yeast strain AH109 using the lithium acetate-
mediated method. The 14-3-3 proteins were cloned into
pGBKT?7 with the GATEWAY cassette (Invitrogen) and
then transformed into Y187 and were confirmed that
there were no autocatalytic activities. GFP and empty
vectors were used as a negative control for protein-pro-
tein interaction [71]. Skip1l9 (At4G05460) and ASK2
(At5G42190) were used as a positive control for pro-
tein-protein interaction [72]. Yeast transformation and
protein-protein interaction assays on selective media
(Synthetic Dropout (SD)-Leu/-Trp/-His/-Ade and SD-
Leu/-Trp+X-o-gal) were performed according to the
manufacturer’s instructions.

Additional material

Additional file 1: Changes in metabolite profiles.

Additional file 2: The list of enzymes that were measured in this
study. Enzyme activities were determined in 14-3-3 overexpression
plants and wild type Col-0 plants (WT). The asterisk indicates significantly
different compared to WT as determined by t-test (*, P < 0.05, n > 7).

Abbreviations

14-3-3 ox: 14-3-3 overexpression line; chi-KO: 14-3-3 chi knockout line; GC-
TOF-MS: gas chromatography-time of flight-mass spectrometry; GS:
glutamine synthetase; kappa-KO: 14-3-3 kappa knockout line; PCA: principal
component analysis Pred comp: predictive component; psi-RNAi: 14-3-3 psi
RNAI line; TCA cycle: tricarboxylic acid cycle.
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