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Abstract

Background: Hereditary Hemorrhagic Telangiectasia (HHT) is an autosomal dominant disease with a varying range
of phenotypes involving abnormal vasculature primarily manifested as arteriovenous malformations in various
organs, including the nose, brain, liver, and lungs. The varied presentation and involvement of different organ
systems makes the choice of potential treatment medications difficult.

Results: A patient with a mixed-clinical presentation and presumed diagnosis of HHT, severe exertional dyspnea,
and diffuse pulmonary shunting at the microscopic level presented for treatment. We sought to analyze her
metabolomic plasma profile to assist with pharmacologic treatment selection. Fasting serum samples from 5
individuals (4 healthy and 1 with HHT) were metabolomically profiled.
A global metabolic network reconstruction, Recon 1, was used to help guide the choice of medication via analysis
of the differential metabolism between the patient and healthy controls using metabolomic data. Flux Balance
Analysis highlighted changes in metabolic pathway activity, notably in nitric oxide synthase (NOS), which
suggested a potential link between changes in vascular endothelial function and metabolism. This finding
supported the use of an already approved medication, bevacizumab (Avastin). Following 2 months of treatment,
the patient’s metabolic profile shifted, becoming more similar to the control subject profiles, suggesting that the
treatment was addressing at least part of the pathophysiological state.

Conclusions: In this ‘individualized case study’ of personalized medicine, we carry out untargeted metabolomic
profiling of a patient and healthy controls. Rather than filtering the data down to a single value, these data are
analyzed in the context of a network model of metabolism, in order to simulate the biochemical phenotypic
differences between healthy and disease states; the results then guide the therapy. This presents one approach to
achieving the goals of individualized medicine through Systems Biology and causal models analysis.

Background
Complex diseases with multi-factorial etiologies often
have multiple alternative pathways leading to a particu-
lar pathophysiological state, with a wide range of result-
ing phenotypes. Such diseases provide a significant
diagnostic and treatment challenge, and will require
individual-specific, personalized treatments. Hereditary
Hemorrhagic Telangiectasia (HHT) is an example of a
Mendelian genetic disease with broad variability in pre-
sentation and involvement of different organs. Arterio-
venous malformations (AVM) can occur in multiple
beds, including the brain, liver, lungs, and nose [1]. A

challenge for treatment of this disease is selecting an
appropriate treatment for a given clinical setting. Since
many diseases affect metabolism directly or indirectly,
the field of metabolomics has rich potential for biomar-
ker applications. A challenge however is that a metabo-
lomic profile alone may not provide any direction for
treatment, since there is not biologically coherent inte-
gration of these data. Metabolic network reconstructions
can provide the framework for integration and analysis
of these data [2-16]. We considered the treatment of an
individual patient and through comparative analysis of
her metabolomic profile with non-HHT individuals, dif-
ferences were identified using constraint-based analysis
of a global human metabolic network reconstruction,
Recon 1 [17].
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The patient in this study is a female who began
experiencing syncopal episodes at rest and during exer-
tion at 21 years of age. She was found to have a 28 mm
atrial septal defect (ASD), for which percutaneous clo-
sure was attempted, but failed, ultimately requiring open
heart surgery. The ASD repair resolved the syncopal
episodes, however her dyspnea continued unabated to
the point where she could not walk her dog without get-
ting chest pain and expectorating small amounts of
blood streaked sputum. Further investigation with con-
trast echocardiography showed she had a large right to
left shunt at the pulmonary capillary level but had no
treatable AVMs on computed tomography (CT) scan of
the chest. Her resting oxygen saturations were 97-99%
but with effort could decrease to the high 80’s. Her
pulse was regular but varied between 90 and 120 beats
per minute and variations in blood pressure were also
noted and treated medically when elevated. Because of a
strong family history cancer of the colon and some
occasional blood streaks in her stool, a colonic endo-
scopy was done revealing several small polyps in her
small intestine and telengiectasias in her large intestine
that were ablated with laser therapy. Her Endoglin and
ALK-1 gene analysis were negative including SMAD-4.
Based upon these findings as well as a family history of
familial adenomatous polyposis and a sibling with simi-
lar diffuse AVMs, a presumed diagnosis of HHT was
given based on the Curacao Criteria [18].
In this individual case study, untargeted, quantitative

plasma metabolomic profiling is carried out in a patient
and healthy controls. We sought to use constraint-based
modeling of metabolism on an organism scale to iden-
tify potential differences in metabolism between the
non-HHT and HHT patient through identification of
biomarker signature profiles (as opposed to single bio-
markers) that can be linked to different functional
states. These differences were then used to support the
use of particular drug treatments; post-treatment profil-
ing was carried out to assess whether the treatment
revised the biochemical pathways accordingly.

Methods
Fasting plasma samples drawn from 5 healthy indivi-
duals (no chronic medical conditions, no current daily
medications or herbal supplements; ages 21-37) and 1
patient with HHT (age 24) (UCLA Institutional Review
Board retrospective case report exemption was
obtained). The blood from the healthy volunteers was
taken as part of a general protocol for internal standar-
dization/normalization at UCSD. A set of samples from
individuals in the study were used and are currently
part of an ongoing study that allows acquisition and
analysis of blood from healthy individuals as well as
HHT patients (UCLA Institutional Review Board

Protocol Number 11-000843-AM-00003). Blood draws
from two different time points had been previously
obtained from two of the healthy individuals and for the
patient, resulting in a total of 9 samples. Additionally
one individual provided a fasting as well as non-fasting
blood sample, which served as a non-fasting positive
control. Written informed consent was obtained from
the patient for publication of this report. A copy of the
written consent is available for review by the Editor-in-
Chief. All of the experimental research with volunteers
and the patient were performed with the approval of the
ethics committees of the institutions where the studies
were done.
Blood samples were obtained by a licensed health care

practitioner and spun down for 10 minutes at approxi-
mately 3000 rpm at 20 C. The supernatant was stored
in a freezer, and after all samples were obtained, were
sent for processing and profiling (Chenomx Inc, Edmon-
ton, Alberta). The samples were filtered using 3 kDa
molecular weight cut-off filters (Nanosep 3K Omega
microcentrifuge filter tubes). Internal standard solution
was added to each sample solution, and the resulting
mixture was vortexed for 30s. 600 μL of the mixed solu-
tion was transferred to an NMR tube for data acquisi-
tion. Spectra were acquired on a 600 MHz Varian
INOVA spectrometer with 32 scans per sample at 298
K. Spectra were processed and CNX files were generated
using the Processor module in Chenomx NMR Suite
6.0. Metabolites were identified and quantified using the
Profiler and Library Manager modules in Chenomx
NMR Suite 6.0, using a metabolite reference library of
297 metabolites.

Sample analysis
Unsupervised hierarchical clustering showed clear
separation between the healthy individuals and the
patient. There were not enough replicates to apply con-
ventional statistical tests (seven measurements in one
group and two in another), however two-way hierarchi-
cal clustering with unweighted average distance linkage
of the metabolite profiles demonstrated a clear separa-
tion between the patient and healthy individuals, which
also drove the separation in the clustergram (Figure 1).
The distance measure in Figure 1 is the infinity norm,
but similar separations were observed with other norms
(e.g. 1- and 2-norms). Separation of the pre-treatment
and post-treatment of the HHT patient as well as re-
grouping of the post-treatment HHT patient with the
non-HHT individuals was observed with Principal Com-
ponent Analysis as well (see Additional File 1).
Differences in metabolism between non-HHT indivi-

duals and the HHT patient were assessed using the
plasma metabolomic profiles. Specific metabolites that
were quantitatively and qualitatively different between
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the non-HHT and HHT patient were determined by
identifying those metabolites whose maximum concen-
tration in one group was less than the minimum of the
other group or vice versa. This resulted in two sets of
metabolites that were different in the two conditions; a
high set and a low set. The two general classes of meta-
bolites were labeled the as ‘ketone group’ and the
‘amino acid/carbon rich group’ and used to define quali-
tative metabolic pseudo-reactions.

Network analysis
Recon 1, a global human metabolic network reconstruc-
tion [17], with elementally charge and mass balanced
equations can be used for analysis of transcriptomic,
proteomic, and metabolomic data [19] using constraint-
based analysis methods [20,21].
We predicated our approach on the assumptions that

following 8 hour fasting overnight, the body is at or
moving towards a homeostatic state, the full content of
Recon 1 represents the set of metabolic interactions in
the human body, and that changes in plasma profile
reflect net changes in uptake and/or secretion of differ-
ent metabolites with the set of all organs. We briefly
describe the constraint-based analysis approach for Flux
Balance Analysis, noting there is a rich literature on the
subject that the interested reader can pursue in greater

detail [9,20,21].

S · v = 0 (1)

In which S is the mxn stoichiometric matrix with m
metabolites, n reactions, with each column representing
a metabolic (or transport) reaction and v is a vector of
fluxes corresponding to each reaction in the network.
Constraints area applied to the network as upper and

lower bounds on the fluxes,

α ≤ v ≤ β (2)

In which the a vector specifies reaction flux lower
bounds and the b vector specifies reaction flux upper
bounds.
The next step requires specification of an objective

function which will then be minimized or maximized.
We consider linear objective functions only in this
study, thus,

max(cT · v) or min(cT · v)
are the objectives, in which c is a signed, binary vec-

tor. Flux Variability Analysis (FVA) [22] is a method in
which every reaction in a network is maximized and
minimized under a specified set of constraints, thus pro-
viding a ‘bounding box’ on the current state. This

Figure 1 Two way clustering of plasma metabolomic profiles of non-HHT patients (N1-N5) and HHT patient (Pre1 and Post). All of the
blood draws were taken when patients were fasting, except for NF5 which was a non-fasting profile for individual N5. The non-fasting profile is
clearly distinguished from the other profiles. Also blood draws for the HHT patient prior to bevacizumab treatment (Pre1) is in a distinct branch
from the other profiles. Note that the post-treatment profile (Post) for the HHT patient is concordant with the non-HHT individual’s profiles.
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approach can be useful when one is interested in pro-
viding a general characterization of the fluxes in one
state and how the extrema change from one condition
to another. This method has demonstrated interesting
results in the analysis of human metabolism in the gen-
eral as well as context specific conditions [23,24].
The intravascular space is available for uptake and

secretion of metabolites with all organs of the body,
thus changes in metabolomic profiles may be inter-
preted in the context of a global human metabolic net-
work. Direct flux data for particular reactions were not
available, so the two qualitatively different profiles,
derived from the quantitative differences in the metabo-
lomic profiles of plasma were used to define two sets of
different transport constraints. Changes in the simula-
tion conditions provided information about the changes
in the metabolite profiles, and were used to define con-
straints (see Additional File 2). The changes in metabo-
lite profiles reflect differences in metabolic states
between the HHT patient and the non-HHT individuals.
While the underlying cellular objectives cannot be
directly deciphered from these data, the changes in
metabolite profiles can be implemented as a constraint
to be satisfied, through formulation of a pseudo-reac-
tion, grossly similar to the use of non-growth associated
biomass objectives in bacteria [25].
The COBRA toolbox [26] was used to carry out calcu-

lations in Matlab (The Mathworks, Natick, MA) with
GLPK (GNU software, http://www.gnu.org) for the lin-
ear optimization steps, using Recon 1 [17]. The cyto-
chrome oxidase reactions were adjusted to be
completely charge and mass balanced, as previously
described [5,27] (see Additional File 3 for the stoichio-
metric matrix). FVA was performed on Recon 1 with a
‘rich media’ set of uptake constraints (permission to
uptake 20 amino acids, glucose, palmitate, oxygen and
exchange of protons and water). The flux variability
results were used to define upper and lower bounds on
the reactions for an ‘open set’ of uptake constraints.
The set of metabolites that were elevated in the HHT

patient (i.e. whose minimum measured concentrations
in the HHT patient were greater than the maximum
measured concentrations of all of the non-HHTs) lar-
gely consisted of ketones and were dubbed the ‘ketone
group’. Conversely, the set of metabolites that were
decreased in the HHT patient (i.e. whose maximum
measured concentrations in the HHT patient were less
than the minimum measured concentrations of all of
the non-HHTs) primarily were amino acids and were
dubbed the ‘amino acid group’. The production (i.e.
exchange) maxima for the ‘ketone group’ and ‘amino
acid group’ metabolites were used to specify coefficients
for two different pseudo-objective reaction constraints,
one representing the HHT patient and the other

representing the non-HHT profiles. The ‘ketone group’
objective was scaled by one-half in order to be able to
maintain a feasible solution in the null space (the gen-
eral set of constraints on the model could not simulta-
neously satisfy the individual ketone group metabolite
maxima). These objectives represent the different non-
biomass demands for each condition (using the FVA
calculations to avoid setting an infeasible coefficient, see
Additional File 2, ‘metabolites’ tab). The amino acid
group included tyrosine, taurine, serine, glycine, alanine,
citrate, lactate, methanol, and creatinine. The ketone
group included acetone, formate, and acetate. After each
model (HHT and non-HHT) was optimized for their
respective pseudo-objective and fixed at that value, FVA
was again carried out. Subsequently the Flux Span (dif-
ference between maximum and minimum flux attainable
for all reactions in a particular condition) and the Flux
Span Ratio (the reaction-wise ratio of the Flux Span
between two conditions) were calculated for
comparison.

Results and Discussion
As a means to evaluate possible related metabolic
derangements, fasting plasma metabolomic profiling was
carried out (see METHODS). Fasting blood samples
from 4 non-HHT individuals, was obtained and metabo-
lomic profiling carried out as well. Two of the non-
HHT individuals provided multiple fasting samples (on
two different occasions) and another individual provided
a non-fasting sample. The serum samples were analyzed
using NMR spectroscopy with subsequent quantification
and identification of 30 metabolites.
Clustering of the samples demonstrated clear separa-

tion of the non-HHT individuals fasting sample, the
HTT patient (pre-treatment), and the single non-HHT
individual non-fasting sample (Figure 1). The trends in
the non-fasting sample were in opposite direction in
comparison to all of the other samples, consistent with
different feeding states. The HHT patient’s two fasting
blood samples were in a different branch of the cluster-
gram as well (Figure 1). Since only two measurements
of the patient (pre-treatment) were available, it was not
possible to carry out t-tests or ANOVA analyses and a
different criterion was required to identify the most dis-
tinctive qualitative differences in the profiles. Compari-
sons between the non-HHT and HHT patient (pre-
treatment) were carried out in the following manner:
metabolites whose minimum value in the non-HHTs
was greater than the maximum value in the HHT
patient’s measurements or whose maximum value in the
non-HHTs was less than the minimum value in the
HHT patient’s were used to define qualitative transport
constraints for a non-HHT and HHT network (Figure
2).
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A global metabolic human network, Recon 1 [17], was
used to analyze the metabolomic data in a biologically
germane context [19]. Since the intravascular compart-
ment interacts with all organs of the body as both a
‘source’ and ‘sink’ for nutrients and waste, respectively,
the plasma metabolite measurements were used as con-
straints on the global network, to grossly approximate
whole organism metabolism. The two different condi-
tions were used to specify constraints, resulting in two
different networks. The two different networks were
then globally assessed using FVA and compared for dif-
ferences in individual reactions and pathways.
Comparison of the non-HHT and HHT patient net-

works using flux span ratios (see METHODS) demon-
strated decreased energy production in the HHT
patient, reflective of a ‘starvation-like’ state. Interestingly,
there were noted increased flux potentials in nitrogen
handling and disposition pathways in the HHT patient,
notably with nitric oxide synthase (NOS) (Figure 3).
This observation brought to light a potential link
between vascular endothelial function and the changes
in vascularity found in HHT, with connections to meta-
bolism [1,28,29]. There has been evidence suggesting
that VEGF can decrease blood pressure through
increased nitric oxide production and conversely, that
inhibition of VEGF can increase blood pressure, at least
in part, through the same mechanism [30-32]. The
potential increase in NOS activity based on the network
analysis of the metabolic profile supported the use of
bevacizumab (Avastin), an anti-VEGF drug. The HHT

patient underwent treatment with bevacizumab at a
dose of 5 mg/kg every 2 weeks for 6 total infusions, at
which point another fasting blood draw was obtained.
The patient had a mild response to therapy which lasted
for 2 months. Surprisingly, the patient’s profile had
changed to become more similar to the control indivi-
duals. When clustered with the other samples, the post-
treatment profile clustered with the rest of the non-
HHT individuals (Figures 1 and 2).

Conclusions
An individualized case-study is described for a rare dis-
ease in which we demonstrate how it is possible to pro-
gress from untargeted metabolomic profiling to identify
metabolic profiles that can be then used to constrain a
mechanistic network model which is then used to direct
therapy decisions. Metabolomic data has been recog-
nized as an important ‘omic’ data type, as it represents a
quantitative biochemical phenotype and has potential to
serve as a source of diagnostic and therapeutic biomar-
kers. As with other high-throughput data types however,
a challenge with data interpretation remains. In particu-
lar, in order to achieve any practical realization of indi-
vidual specific, personalized therapies, it will be
important to move away from strictly statistically driven
models towards more mechanistic models.
We employed the use of a global human metabolic

network to interpret plasma metabolite profiling and
help direct the therapy of a patient with a complex dis-
ease. Following treatment, the patient’s metabolomic
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Figure 2 Metabolites that were relatively increased in non-HHT individuals but decreased in the HHT patient (red arrows) included
alanine, glycine, lysine, serine, tyrosine, glutamine, and creatinine. Metabolites that were relatively increased in the HHT patient (black
arrows) included 3-hydroxybutyrate and acetate. Following treatment with bevacizumab, the HHT patient’s profile (bottom panel) reversed the
trend on the above metabolites, and developed a more ‘normal’ profile. Metabolite names: 1: 3-Hydroxybutyrate, 2: Acetate, 3: Acetone, 4:
Alanine, 5: Arginine, 6: Asparagine, 7: Citrate, 8: Creatinine, 9: Formate, 10: Glucose, 11: Glutamate, 12: Glutamine, 13: Glycerol, 14: Glycine, 15:
Glycolate, 16: Isoleucine, 17: Lactate, 18: Leucine, 19: Lysine, 20: Methanol, 21: Methionine, 22: Phenylalanine, 23: Pyruvate, 24: Serine, 25:
Succinate, 26: Taurine, 27: Threonine, 28: Tyrosine, 29: Valine, 30: sn-Glycero-3-phosphocholine.
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profile became more similar to a non-HHT individual’s,
suggesting the treatment was effective, at least in
addressing the metabolic derangements associated with
HHT. While the disease stabilized during this treatment,
the patient did not undergo further cycles of treatment
due to gastrointestinal intolerance of bevacizumab and
long-term assessment of disease status could not be car-
ried out. While deeper analysis with more patients are
needed to further elucidate the directionality of causa-
tion, this ‘individual clinical trial’ illustrates how meta-
bolomic data analyzed in the context of a network
reconstruction can be potentially used to help direct
therapy for complex disease states, using complicated
metabolomic profiles as opposed to individual
biomarkers.
One goal of personalized medicine is to analyze the

data from a particular individual and determine the
appropriate medication or therapeutic intervention. In
this individualized case study of personalized medicine,
we carry out untargeted metabolomic profiling of a
patient and healthy controls. Rather than filtering the
data down to a single value, these data are analyzed in
the context of a network model of metabolism, in order

to simulate the biochemical phenotypic differences
between healthy and disease states; the results then
guide the therapy. Thus, we have found that one
approach to achieving the goals of individualized medi-
cine is to use Systems Biology and causal models to
drive the analysis and interpretation of data.

Additional material

Additional file 1: a summary of the PCA results from the
metabolomic concentration measurements.

Additional file 2: An Excel spreadsheet with 5 worksheets including
the metabolomic data measurements (’metabolomic_profiles’), FVA
results (’simulation_FVA’), FVA summary measures
(’simulation_summaries’), the reaction upper and lower bounds
(’reactions’), the objective coefficients (’metabolites’).

Additional file 3: an archive with the Recon 1 stoichiometric matrix
(as a text file) used in the analyses.
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