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A chemokine gene expression signature derived
from meta-analysis predicts the pathogenicity of
viral respiratory infections
Stewart T Chang1, Nicolas Tchitchek2, Debashis Ghosh3, Arndt Benecke2 and Michael G Katze1,4*

Abstract

Background: During respiratory viral infections host injury occurs due in part to inappropriate host responses. In
this study we sought to uncover the host transcriptional responses underlying differences between high- and low-
pathogenic infections.

Results: From a compendium of 12 studies that included responses to influenza A subtype H5N1, reconstructed
1918 influenza A virus, and SARS coronavirus, we used meta-analysis to derive multiple gene expression signatures.
We compared these signatures by their capacity to segregate biological conditions by pathogenicity and predict
pathogenicity in a test data set. The highest-performing signature was expressed as a continuum in low-, medium-,
and high-pathogenicity samples, suggesting a direct, analog relationship between expression and pathogenicity.
This signature comprised 57 genes including a subnetwork of chemokines, implicating dysregulated cell
recruitment in injury.

Conclusions: Highly pathogenic viruses elicit expression of many of the same key genes as lower pathogenic
viruses but to a higher degree. This increased degree of expression may result in the uncontrolled co-localization
of inflammatory cell types and lead to irreversible host damage.

Background
The threat of a highly lethal viral pandemic remains
large in the 21st century. In 2003 SARS-coronavirus
(CoV) appeared in Asia and then spread globally, caus-
ing greater than 40% mortality in individuals over 60
years of age [1]. Since 1997 highly pathogenic avian
influenza, influenza A subtype H5N1, has resulted in
high mortality rates (between 33% and 100% depending
on the population) [2]. Finally in 2009 swine-origin
influenza virus A (SOIV) subtype H1N1 emerged in the
Americas and led to a pandemic. As Neumann et al.
have observed, this virus shares many characteristics
with 1918 influenza which resulted in an estimated 50
million deaths [3]. Furthermore, as Ilyushina et al. have
shown, SOIV may mutate into more pathogenic forms
in as little as ten passages in cell culture [4].
Injury to the host during respiratory viral infections

such as influenza now appears to be the result of

inappropriate host responses [5]. Deriving gene expres-
sion signatures of high pathogenicity that are robust to
biological and experimental variation would be immen-
sely valuable, both in the understanding of pathogenicity
as well as in the surveillance of emerging infections. We
define a signature as the minimum number of biological
variables (here, expressed genes) required to (a) discrimi-
nate the phenotype of interest from other phenotypes, (b)
identify replicates of the same phenotype, and (c) provide
cohesive information about the underlying biological
complexity [6]. However, the derivation of gene expres-
sion signatures from multiple, independent studies is hin-
dered by a number of factors including the absence of
standard experimental protocols, biological variability,
and limited sample sizes. Meta-analysis, the analysis of
independent but related studies, offers one strategy for
overcoming these obstacles.
What host responses are the hallmarks of high patho-

genicity? To approach this question we assembled a
compendium of host transcriptional responses to low-,
medium-, and high-pathogenic infections (which we
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designate as LPIs, MPIs, and HPIs, respectively) and
applied a battery of meta-analysis techniques. Using
these techniques we identified signatures of either a
digital nature (oppositely expressed in LPIs and HPIs
with respect to mock infections) or an analog nature
(expressed in a continuum from LPIs to HPIs). We then
compared these signatures on the basis of their capacity
to predict the outcome of an independent transcriptome
experiment. The most accurate signature was analog in
nature and implicated excessive chemokine expression
and cell recruitment in the development of lethal
respiratory infections.

Results
Compendium assembly and signature derivation
We assembled a compendium of microarray data from 12
studies that measured host transcription in mouse lungs
following infection with respiratory viruses (Table 1). Six
of these studies contained experiments where 100% of
the animals succumbed to infection; these involved influ-
enza A subtype H5N1 ("avian influenza”), reconstructed

1918 influenza A, or SARS-CoV strain icHC/SZ/61/03
(Table 1). After merging technical replicates the compen-
dium comprised 733 individual transcriptome measure-
ments with similar numbers of arrays associated with
LPIs, MPIs, and HPIs (Figure 1). Data were quality-con-
trolled, further pre-processed, and converted to gene-
level data.
We then applied three different methods of meta-ana-

lysis to derive gene signatures from the compendium.
Hierarchical clustering of the log-ratio data showed that
two clusters of genes differed in expression with respect
to each other and with respect to HPI vs. LPI (Addi-
tional File 1, Figure. S1). This suggested that gene signa-
tures could be identified on the basis of opposite
directionality with respect to mock infections. To iden-
tify these signatures more rigorously we applied two
methods of meta-analysis. The first signature comprised
74 genes identified on the basis of statistical tests for
differential expression in each biological condition
whose results were combined by Fisher’s summary sta-
tistic (Additional File 2, Figure. S2A; gene list as

Table 1 Data sets included in the host response compendium

Virus Virus strain Mouse
strain

Time
points*

Outcome Reference

Influenza A
H1N1

r1918, 2:6 r1918 (1918 HA, NA in Tx91),
5:3 r1918 (1918 HA, NA, M, NP, S in
Tx91), Tx91 (A/Texas/36/91)

BALB/c 1, 3, 5
dpi

0% survival (with r1918, 2:6 r1918, 5:3 r1918), 100%
survival (with Tx91)

Kash 2006 [30],
Tumpey 2005
(for outcome
data)[31]

Influenza A
H1N1

r1918, PR8 C57BL/6 1, 3, 5
dpi

0% survival (with r1918), 65% survival (with PR8) Goodman 2009
[32]

Influenza A
H3N2

HKx31 (A/HKx31) BABL/c,
C57BL/6

30 hpi 45% survival (in BALB/c), 80% survival (in C57BL/6) Ding 2008 [33],
Toth 1995 (for
outcome data)
[34]

Influenza A
H5N1

HK213 (A/Hong Kong/213/03) C57BL/6,
DBA/2J,

3 dpi 0% survival (in DBA/2J), 30% survival (in C57BL/6) Boon 2009 [35]

Influenza A
H5N1

HK483 (A/HK/483/97), HK486 (A/HK/
486/97), HK486PB2MT (A/HK/486 PB2-
627K/97)

BALB/c 2, 4 dpi 0% survival (with HK483, HK486PB2MT), 25% (with
HK486)

Fornek 2009 [36]

Influenza A
H5N1

VN/1203 (Vietnam/1203/04), r1918
(H1N1)

SvEv129 1, 3, 4
dpi

0% survival (with VN/1203, r1918) Cilloniz 2010 [37]

Mengovirus vMC0 (UV-inactivated mengovirus) BALB/c 18 hpi 100% survival Rosenthal unpub.

RSV A2 BALB/c 1, 3 dpi 100% survival Janssen 2007 [38]

RSV A2 B6:129PF1/
J

1 dpi 100% survival Minor 2010 [39]

SARS-CoV Urbani BALB/c
(young,
aged)

1, 2, 5,
7 dpi

100% survival (in young, aged) Baas 2008 [40]

SARS-CoV icUrbani, icGZ02, icHC/SZ/61/03 BALB/c
AnNHsd
(young,
aged)

12 h, 1,
3 dpi

0% survival (in aged with icHC/SZ/61/03), 40%
survival (in aged with icGZ02), 100% survival (in
young with all 3 virus strains, in aged with Urbani)

Rockx 2009 [41]

SARS-CoV MA15 129 2, 5, 9
dpi

100% survival Zornetzer 2010
[42]

Influenza A
H1N1

A/CA/04/2009, MA1 (a mouse-adapted
strain of A/CA/04/2009)

BALB/c 1, 3, 5
dpi

0% survival (with MA1), 100% survival (with A/CA/
04/2009)

Josset in
preparation

* Note “dpi” refers to days post-infection. Other annotations are stated as in primary publications. The last row (below line) refers to a data set external to the
compendium that was used as a test set for predictions.
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Additional File 3, Table S1). The second signature com-
prised 265 genes identified as a module by similar pat-
terns of co-expression and annotation co-membership
(Additional File 2, Figure. S2B, S2C; gene list as Addi-
tional File 4, Table S2). Due to their opposite direction-
ality in different pathogenicities, we referred to these
signatures as digital in nature. A third signature com-
prised 57 genes and was derived from the direct com-
parison of expression in HPIs vs. LPIs without reference
to mock infections. Additional normalization allowed
inter-array comparisons, and a fold-change-based z-test
was used to determine differential expression (gene list
as Additional File 5, Table S3). Because these genes var-
ied directly between pathogenicities, we referred to this
signature as analog in nature. Limited degrees of overlap
were observed among the different signatures indicating
that the three methods identified different features in
the data.

Capacity of analog and digital signatures to classify host
transcription
We initially compared the signatures on the basis of their
capacity to structure the biological conditions in the

compendium. The expression of each signature set of
genes was analyzed by principal components analysis
(PCA), and the degree to which LPI-, MPI-, and HPI-
associated conditions clustered proximally to conditions
of the same pathogenicity and distally from conditions of
other pathogenicities was compared. We also compared
the ordering and overall separation of the pathogenicity
clusters, both by visual inspection and by percentage var-
iance explained. We reasoned that a more effective signa-
ture would result in greater separation of pathogenicities
oriented along a dimension that also explained a higher
proportion of the total variance [7]. Using all the genes in
the compendium as input for PCA (i.e., no signatures),
the native compendium showed little apparent structure
(Figure 2A). Conditions did not discretely cluster by
pathogenicity, nor did pathogenicities separate along
either first or second principal components (PC1 or PC2,
respectively). Using the digital gene signatures, more
structure became apparent (Figure 2B, C). Conditions
were ordered by severity of pathogenicity along PC1, and
the total variance explained by PC1 ranged from 9% to
13% (for the module map- and Fisher’s statistic-derived
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Figure 1 Meta-analysis workflow. Briefly the compendium was
assembled from multiple microarray data sets and either separated
into intensity-level measurements or converted to log-ratios of
measurements in infected samples to their respective mock infections.
Different meta-analysis methods were applied and resulted in two
classes of signatures. Various criteria were used to evaluate signatures.
“INF” refers to infected samples, “CTR” to matching mock-infected
control samples, “PCA” to principal components analysis, and “PCCS” to
Pearson correlation coefficient scatter plot.
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Figure 2 Separation of biological conditions as determined by
PCA in the native compendium (all genes) vs. different gene
signature subsets. Clustering and separation of samples along PC1
as well as percentage variance explained by PC1 (in parentheses)
were used as indicators of signature effectiveness. (A) PCA of native
compendium (all genes). (B) PCA of Fisher’s summary statistic-
derived digital signature profiles. (C) PCA of module map-derived
digital signature profiles. (D) PCA of z-test-derived analog signature
profiles.
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signatures, respectively; x-axis in Figure 2B, C). However,
the highest degree of clustering and separation was
obtained using the analog signature. Conditions clustered
more tightly by pathogenicity (particularly in the case of
HPI) using this signature than other signatures, and PC1
accounted for a greater proportion of the total variance,
18% (Figure 2D). PCA therefore indicated that the analog
signature resulted in the most effective discrimination of
host profiles by pathogenicity. We note that the relatively
low amount of variance explained by PC1 in the case of
each signature was consistent with the presence of signif-
icant heterogeneity in the compendium. This heterogene-
ity may be attributable to a number of different factors
including the variety of viruses, times post-infection,
mouse strains, laboratories, and technical platforms
represented in the compendium. Therefore, we compared
signatures on the basis of the relative increases in var-
iance explained by PC1 which aligned with pathogenicity
in each case.
We also compared signatures by their capacity to gen-

erate sample expression profiles that correlated with
other profiles of the same pathogenicity. We reasoned
that a more effective signature would result in stronger
correlations (higher Pearson correlation coefficients, or
PCCs) among similar pathogenicities and weaker corre-
lations (lower PCCs) among dissimilar pathogenicities.
On a scatter plot of PCCs to exemplar LPI and HPI
profiles, more samples would appear in two quadrants,
with more LPI samples in quadrant II (LPI-high/HPI-
low) and more HPI samples in quadrant IV (LPI-low/
HPI-high) where quadrants are defined by an equal par-
titioning of the PCC scatter plot plane at (0.5, 0.5).
Using all of the genes in the native compendium, LPI
and HPI samples appeared primarily in one quadrant,
high for both LPI and HPI (Figure 3A). This indicated
that LPI and HPI transcriptional profiles were correlated
overall (for the majority of genes) and that LPI and HPI
samples separated poorly from each other on the basis
of overall transcriptional profiles. Digital gene signatures
resulted in improved segregation of samples by patho-
genicity, as indicated by increased numbers of LPI and
HPI samples in quadrants II and IV, respectively (white
regions in Figure 3B, C). However, the analog signature
resulted in the largest overall segregation of biological
samples, with the highest number of LPI and HPI sam-
ples appearing in opposite quadrants (Figure 3D).
Therefore PCA and PCC scatter plots were consistent in
indicating that the analog signature achieved the best
separation of transcriptional profiles by pathogenicity.

Capacity of the analog signature to predict test set
pathogenicity
We then tested the capacity of each signature to pre-
dict the pathogenicity of a data set external to the

compendium. Specifically we utilized a microarray data
set measuring transcription in the lungs of mice
infected with either swine-origin influenza A virus
(SOIV) subtype H1N1 strain CA/04 (non-lethal in
mice) or the mouse-adapted variant MA1 CA/04
(lethal in mice) at days 1, 3, and 5 post-infection (Jos-
set et al., in preparation). PCC scatter plots were gen-
erated using the test set samples and the same LPI and
HPI exemplars as above (in Figure 3). We again rea-
soned that the most effective gene signature would
yield the best opposite-quadrant separation of LPI and
HPI samples. Comparing the better-scoring digital sig-
nature (i.e., generated by Fisher’s statistic) and the ana-
log signature, we found that the analog signature
yielded the best segregation of test set samples (Figure
4). In particular samples from the lethal variant MA1
CA/04 correlated strongly with the exemplar HPI, indi-
cating that this and other HPIs resulted in similar
transcriptional profiles for these genes (Figure 4C).
Counting the number of LPI and HPI test set samples
appearing in quadrants II and IV, respectively, and
considering these as correctly predicted, we found that
the analog signature resulted in an accuracy rate of
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Figure 3 Correlation of compendium samples to exemplar HPI
and LPI transcriptional profiles based on different gene
signature subsets. PCC values of sample profiles to exemplar HPI
(x-axis) and LPI (y-axis) transcriptional profiles were plotted, and
quadrants were defined with respect to (0.5, 0.5). LPI and HPI
samples located in quadrants II and IV, respectively, were considered
accurately classified. (A) Using all genes in the compendium. (B)
Using Fisher’s statistic-derived digital signature genes. (C) Using
module map-derived digital signature genes. (D) Using z-test-
derived analog signature genes.
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83% (15 of 18 samples), exceeding the rates obtained
using all genes (0 of 18) or the better-scoring digital
signature (3 of 18).

Characterization of the digital and analog signatures and
the role of chemokines
Signature genes may in turn identify mechanisms of
pathogenesis. To identify functions and pathways dysregu-
lated across HPIs, we analyzed the annotations associated
with each set of signature genes. Annotations for the bet-
ter-performing digital signature (derived from Fisher’s sta-
tistic) indicated that a number of pathways may have been
altered during HPIs. Genes up-regulated in HPI were asso-
ciated with inflammation, apoptosis, cell signaling, and cell
proliferation, while genes down-regulated in HPI were
associated with cytochrome P450-related enzymatic activ-
ity. Protein-protein interactions linked many of these
genes together indicating possible cooperative effects
(Additional File 6, Figure. S3A, S3B). Similar annotations
were found to be enriched among the genes of the remain-
ing digital signature (derived by module mapping) includ-
ing cell differentiation, inflammatory response, and
chemical homeostasis.
The analog signature, which outperformed both digital

signatures in our tests, was significantly enriched in genes
associated with the inflammatory response (11 genes, Ben-
jamini-Hochberg-adjusted p = 2.7 × 10-7) and chemokine
activity (6 genes, Benjamini-Hochberg-corrected p = 1.9 ×
10-5). A network showing known interactions among ana-
log signature gene products highlighted cooperativity
between the inflammatory/interferon-response pathway
and chemokines such as CXCL10 (Figure 5A). This analy-
sis indicated that different gene signatures identified

inflammation as dysregulated during HPIs despite limited
overlap at the gene level.
Closer examination of the analog signature genes indi-

cated a relationship between signature expression and
pathogenicity. We determined the proportion of signa-
ture genes whose expression was ordered by pathogeni-
city (from least to greatest in LPI, MPI, and HPI, or vice
versa) and compared this proportion to those expected
by chance or observed among all genes. Assuming an
equal distribution of genes among pathogenicity groups,
we expected 33% to display one of these two patterns by
chance. By comparison we observed that 43% of all genes
in the compendium displayed these patterns (Figure 5B).
However, an even greater proportion of analog signature
genes displayed these patterns, 81%, consistent with a
correlation between expression and pathogenicity (Figure
5C). Using a binomial distribution we calculated the
chance enrichment of genes being proportionally
expressed with pathogenicity to be p < 0.0019 in the case
of Figure 5B (among all compendium genes) and p < 6.6
× 10-23 in the case of Figure 5C (among analog signature
genes). Furthermore, if we considered the distribution of
gene profiles among all compendium genes to be
expected, the enrichment of proportionally expressed
genes in the analog signature was statistically significant
at p < 1.6 × 10-13.
Analog signature genes expressed in proportion to

pathogenicity could in turn be ranked by level of expres-
sion in HPIs (Additional File 7, Figure. S4). The most
highly expressed signature genes in HPIs were inter-
feron-induced including IFIT3, CXCL10, IIGP1, and
IGTP, consistent with the prominence of these genes in
functional and network analyses (Figure 5A).
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We also examined the temporal expression dynamics
of analog signature genes during infection. More
detailed examination of the PCC scatter plot (Figure
3D) showed that early time points during HPIs clustered
closely with early time points from LPIs and middle
time points from MPIs (Figure 5D). These conditions
were in turn intermediate to extrema from other HPI
and LPI conditions (i.e., early LPI and late HPI condi-
tions). This suggested that LPI, MPI, and HPI may have
activated (or suppressed) the same set of genes but that
HPI may have done so more rapidly or to higher levels,
resulting in levels of expression not reached during LPI
or MPI (Figure 5E).
Finally to gain an overall perspective of the expression

of analog signature genes in all pathogenicity groups, we
generated a PCC scatter plot that included all samples in
the compendium, including MPI-associated samples (Fig-
ure 6). New exemplars were generated for each patho-
genicity group representing the average expression of
signature genes during LPIs, MPIs, and HPIs, and PCCs
were calculated to each new exemplar. The resulting
scatter plot showed that analog signature genes were
expressed similarly within each pathogenicity group (Fig-
ure 6). In particular LPI samples correlated highly with
each other (i.e., with high PCCs) as did MPI and HPI
samples. However, expression also varied continuously
among different groups, with expression overlapping
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between LPI and MPI, as well as between MPI and HPI,
consistent with an analog relationship between this sig-
nature and pathogenicity.

Discussion
Experiments on the host responses to infection have gen-
erated a wealth of data over the past decade. A number
of these have focused on respiratory viruses including
several which resulted in lethality in experimental animal
models. What distinguished these infections from others
where experimental animals recovered was the subject of
our analysis. To this end we assembled a compendium of
transcriptome measurements from the lungs of mice and
used meta-analysis to determine gene signatures that dis-
tinguished high- from low-pathogenicity infections. To
our knowledge ours is the first meta-analysis study to
focus on high-pathogenicity infections (HPIs). Previous
studies have applied meta-analysis to infection data but
focused on more general features of disease. For example,
Jenner and Young analyzed the transcriptomes of various
host species (mice, macaques, and humans) infected by
bacteria or viruses and identified a signature of approxi-
mately 500 genes [8]. This signature showed that TLRs
and pathogen-mediated signalling were broadly activated
during infection but did not identify features resulting in
animal lethality. Likewise Pennings et al. examined the
transcriptional profiles of lung inflammation (in mice
and macaques) due to various factors (including viruses,
bacteria, chemicals, and allergens) and derived a 383-
gene signature up-regulated during inflammation [9].
This signature focused on the interferon response and
immune signalling, but likewise no correlate of patho-
genicity was identified. In addition both studies relied
mainly on hierarchical clustering to determine signatures
of interest. While hierarchical clustering provides a useful
overview of high-dimensional data, it has the disadvan-
tage of lacking a strong statistical basis (i.e., hypothesis
testing) and its results (gene clusters) can be difficult to
relate to specific outcomes.
In contrast to previous studies, our goal was to deter-

mine a gene signature specific for HPIs. We therefore
applied an ensemble of meta-analysis methods and
derived multiple signatures which we compared by mul-
tiple criteria including the capacity to predict the out-
come of a test data set. Each method had a different
statistical rationale and could be expected to identify
different features of the compendium. We had no a
priori expectation of which signature would produce the
best outcome in terms of these criteria.
The 74-gene signature derived using Fisher’s summary

statistic showed a modest capacity to separate samples
into pathogenicity groups and to predict test set patho-
genicity. A number of the genes in this signature have
known connections to the immune response and the

outcome of respiratory infections, e.g., genes for the
chemokines osteopontin (SPP1) and RANTES (CCL5)
and the chemokine receptor CCR2. In previous studies
mice lacking SPP1 and CCL5 were found to clear influ-
enza infection with no adverse effects [10,11], while
mice lacking CCR2 survived infection by a mouse-
adapted influenza A virus that killed wild-type mice
[12]. These studies suggest that at least some of the
genes up-regulated during HPIs are non-essential to
resolving influenza infection and that dysregulated acti-
vation may even be detrimental to the host.
The best performing signature, however, comprised 57

genes derived using the fold change-based z-test. Strikingly
the majority of the genes in this signature were expressed
at levels that corresponded with pathogenicity. For the
majority of these genes, expression was lowest in LPI,
highest in HPI, and intermediate in MPI (which had not
been used in the derivation of the signature). In this case
the signature appeared to provide a continuously variable
signal that matched with output, a characteristic of analog
signals. This finding also suggests that high- and low-
pathogenic infections may result in the expression of the
same key genes but with different kinetics. In particular
HPIs may result in increased expression of signature gene
products beyond the capacity of the host to cope, resulting
in irreversible damage.
Genes of the analog signature largely differed from those

in the digital signatures but overlapped at the pathway
level. For example, chemokine genes were present in both
Fisher’s statistic-derived and analog signatures. However,
the analog signature displayed additional coherence,
encoding multiple chemokines for the same receptor,
namely MIG (CXCL9), IP-10 (CXCL10), and I-TAC
(CXCL11) which all serve as ligands for the receptor
CXCR3 [13]. CXCR3 is expressed on the surface of Th1
cells as well as NK and NKT cells and regulates the migra-
tion of these cells to sites of infection. Recent evidence
indicates that CXCR3 engagement may drive further
recruitment and inflammation, resulting in a positive feed-
back loop that may contribute to pathogenicity [13]. The
analog signature also included genes for chemokines that
bind the CCR3 receptor, specifically MCP-3 (CCL7) and
MCP-4 (CCL13). CCR3 is the major receptor expressed
on eosinophils and has previously been shown to have a
role in the promotion of lung inflammation [14]. Interest-
ingly CXCR3 ligands have been postulated to be antago-
nists for CCR3 [15], and the expression of both sets of
chemokines may reflect a high degree of dysregulation
during HPIs and the recruitment of multiple immune cell
types that may not normally co-localize during a con-
trolled infection.
In addition our signatures also identified genes that

were down-regulated during HPI, relative to either
mock infection or LPI. For example the Fisher’s
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statistic-derived signature included several genes whose
products may normally help to resolve infection. Hepsin
(HPN) has been found to cleave influenza hemagglutinin
directly resulting in non-infectious virus particles [16].
Likewise surfactant-associated protein A1 (SFTPA1) and
surfactant-associated protein D (SFTPD) maintain pul-
monary structure but have also been found to inhibit
infectivity by mechanisms that remain to be elucidated
[17,18]. The analog signature contained a similar set of
genes but expressed at lower levels in HPIs compared to
LPIs rather than to mock infections. Among these genes
were several members of the secretoglobin family
including SCGB1A1, SCGB3A1, and SCGB3A3. Interest-
ingly many secretoglobins are expressed specifically in
the lung epithelium and may contribute to lung repair
following damage [19,20]. For example, uteroglobin/
CC16 (SCGB1A1) is secreted by bronchiolar Clara cells
and postulated to have a role in reducing airway inflam-
mation, though its exact function remains to be eluci-
dated [21].

Conclusions
Together these results implicate dysregulated cell
recruitment and inflammation (up-regulated in HPI)
and impaired lung protection (down-regulated in HPI)
in the events leading to lethality in mice. The different
meta-analysis methods all aimed to identify pathology-
relevant gene expression, and concordance at the path-
way level offered a degree of cross-validation. However,
our results also demonstrate that the methods identified
different features of the data and argue for the applica-
tion of multiple methods in future studies when the
most predictive features of the data are not known in
advance.
Finally our finding that pathogenicity corresponds to

the expression levels of a defined set of genes may help
to inform future therapies. Altering the outcome of
infection may not require opposite regulation to be
achieved in particular pathways; instead, adequate tem-
pering or delay of those pathways may be sufficient. For
example a large number of potential CXCR3 antagonists
have been developed recently in the context of other
inflammatory diseases [22]. These may provide the basis
for novel therapeutic strategies that reduce, but need
not completely eliminate, receptor activation to effect
control of highly pathogenic respiratory infections.

Methods
Data
A literature search for microarray data pertaining to
respiratory viral infections in mouse models was per-
formed, and candidate data sets were identified. Data
were included in the compendium if they were derived
from experiments on wild-type mice, as this ensured

normal development. We also required that raw data be
measured on whole-genome array platforms. Data were
sourced from either in-house or external studies (Table 1).
In the latter case, data were downloaded from public repo-
sitories or obtained directly from study authors. Patho-
genicities of the corresponding experiments were
determined by examination of the published outcome data
(e.g., mortality or morbidity data or in cases of LPIs, state-
ments attesting to the survival or recovery of all animal
subjects). We defined HPIs as experiments resulting in 0%
survival, LPIs as experiments resulting in 100% survival,
and MPIs as experiments resulting in intermediate levels
of survival (between 0% and 100%, non-inclusive). A biolo-
gical condition was defined as any unique study/time
point/virus strain/mouse strain combination.

Data pre-processing and quality control
Data from Agilent platforms were obtained from Agilent
Feature Extraction software and pre-processed in Gene-
Spring GX 11 (Agilent Technologies, Santa Clara CA)
using median-background subtraction on a per-study
basis. Data from the Affymetrix platform were pre-pro-
cessed in GeneSpring GX 11 using the MAS5 algorithm.
Quality control was restricted to probe-level filtering.
Probes with present flags in all of the technical repli-
cates for at least one biological condition in a given
study were retained in the data set for that study. For
ratio-based meta-analysis, two-channel data were refor-
matted as log2-ratios (infected/mock-infected), and one-
channel data were converted to a two-channel-like for-
mat where mock-infection intensities were averaged
prior to ratio. For meta-analysis based on direct com-
parison of intensities, two-channel data were separated
into individual channels, and inter-array normalization
was performed using NeONORM [23]. Additional data
preparation involved converting probe- to gene-level
data. Measurements for probes mapping to multiple
genes were duplicated for each gene, and probes map-
ping to the same gene were averaged. RefSeq IDs were
chosen as the common gene identifier. Probes not map-
ping to RefSeq IDs were excluded. Biological and techni-
cal replicates were averaged for the intensity-based
approaches. Log-ratio measurements from all studies
were combined resulting in measurements for 27,567
genes by 397 biological conditions. All data-handling
tasks were performed using custom scripts in Perl.

Fisher’s summary-statistic method
We applied the Fisher’s summary-statistic method based
on the previous application of Rhodes et al. [24]. Our
implementation was derived from MADAM (Meta-Ana-
lysis Data Aggregation Methods), a toolbox for the R
statistical language [25]. Statistical tests were performed
on a per-gene basis for all arrays associated with a given
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biological condition. Specifically log-ratio measurements
for each array were re-normalized by dividing by the
standard deviation of the array, and one-sided t-tests
were used to identify genes up- and down-regulated
relative to mock infection, i.e., for the null hypotheses
H0: log2 (infected/mock) ≤ 0 and H0: log2 (infected/
mock) ≥ 0, respectively. p-values for each directionality
(up- or down-regulation) and pathogenicity (HPI or
LPI) were combined according to Fisher’s summary sta-
tistic S = -2 ∑ log p [26]. The significance of S was
determined by a permutation test whereby p-values
were shuffled 1000 times among biological conditions, S
was re-derived each time, and the resulting S values
constituted the null distribution. An FDR-corrected p-
value of 0.05 was used as a threshold for significance.
Genes that were found to be both up- and down-regu-
lated for a given pathogenicity (HPI or LPI) were
excluded from further analysis. The signature comprised
genes found to be oppositely regulated in HPI and LPI.

Module map method
The module-mapping method of Segal et al. identifies
modules of co-expressed genes from microarray data
based on co-expression within the compendium and co-
membership in previously annotated gene sets [27]. We
used the module-map method as implemented in the
software package Genomica (available at http://geno-
mica.weizmann.ac.il) using the log-ratio compendium
and default settings. Modules were tested for associa-
tions with HPI and LPI outcomes, and the signature
comprised the largest module found to be oppositely
regulated in HPI and LPI.

Fold change-based z-test
Intensity-based measurements were used to test for dif-
ferential expression in all HPIs vs. all LPIs. Specifically a
fold-change-based z-test was used to compute the statis-
tical significance of log2 (HPI/LPI) values according to
intra- and inter-group variability. Statistically significant
log2 (HPI/LPI) values were then ranked by size, and
genes with log2 (HPI/LPI) < -1.6 or > 2 were retained.
The cut-offs were selected based on a histogram of fold-
changes over all statistically significantly differentially
expressed genes.

Functional and network analysis
We used NIH DAVID (Database for Visualization and
Integrated Discovery) and Ingenuity Pathways Analysis
(Ingenuity Systems, Redwood City CA) for further ana-
lysis of meta-analysis results. DAVID identifies GO
terms and other functional annotations enriched in gene
lists [28]. An enrichment score is calculated for clusters
of similar annotations as -log10 of the geometric mean
of the hypergeometric test p-values within the cluster

[29]. We assessed enrichment of the GO categories
GOTERM_BP_ALL, GOTERM_CC_ALL, and
COTERM_MF_ALL and pathway categories BIOCARTA
and KEGG_PATHWAY; otherwise, default options in
DAVID were used. We identified significant annotations
by enrichment scores > 1.30 representing a mean cluster
p < 0.05.

Additional material

Additional file 1: Figure S1. Hierarchical clustering identifying gene
clusters oppositely regulated across various conditions in the
compendium. Shown are log2-ratios of intensities in infected to mock-
infected samples for genes whose ratios were non-zero across all the
measurements in the compendium. The two clusters of interest are
boxed in yellow and enumerated to the right of the heat map. Heat
maps were generated using the heatmap2 function from the gplots
package in R statistical environment with clustering by Euclidean
distance and the complete linkage method.

Additional file 2: Figure S2. Derivation of digital gene signatures.
(A) The 74-gene signature comprised 44 and 30 genes derived from the
intersection of four parent gene sets: those up-regulated in HPI ∩ down-
regulated in LPI and those down-regulated in HPI ∩ up-regulated in LPI.
Each parent gene set was derived using Fisher’s summary statistic
following one-tailed t-tests on each biological condition in the
compendium. Each intersection was found to represent a significantly
larger proportion of its two parent gene sets than expected by chance
(as determined by hypergeometric test, p < 0.05). (B) Module map
resulting from applying Genomica to the log-ratio compendium. Module
up-regulation in a given condition is indicated in red, and module
down-regulation in green. (C) Expression of Module 5 comprising 265
genes. HPI-associated arrays are indicated in purple, LPI-associated arrays
in blue. Values shown are consistent with the overall pattern of module
expression in those arrays in which the module is significantly expressed.
Module 5 completely subsumed Module 6 and was used in subsequent
analysis.

Additional file 3: Table S1. Digital signature genes by Fisher’s
summary-statistic.

Additional file 4: Table S2. Digital signature genes by module-
mapping.

Additional file 5: Table S3. Analog signature genes by fold change-
based z-test.

Additional file 6: Figure S3. Characterization of the 74-gene digital
signature of pathogenicity by networks of known interactions.
Genes present in the signature are indicated in gray shapes. (A) For the
44-gene subset up-regulated in HPIs and down-regulated in LPIs. (B) For
the 30-gene subset down-regulated in HPIs and up-regulated in LPIs.

Additional file 7: Figure S4. Expression levels of select analog
signature genes in HPI, MPI, and LPI conditions. These genes met the
criterion of being expressed from greatest to least or from least to
greatest (inset) by pathogenicity. Error bars represent standard errors of
the means across all HPI, MPI, or LPI conditions in the compendium.
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