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Stochastic adaptation and fold-change detection:
from single-cell to population behavior
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Abstract

Background: In cell signaling terminology, adaptation refers to a system’s capability of returning to its equilibrium
upon a transient response. To achieve this, a network has to be both sensitive and precise. Namely, the system
must display a significant output response upon stimulation, and later on return to pre-stimulation levels. If the
system settles at the exact same equilibrium, adaptation is said to be ‘perfect’. Examples of adaptation mechanisms
include temperature regulation, calcium regulation and bacterial chemotaxis.

Results: We present models of the simplest adaptation architecture, a two-state protein system, in a stochastic
setting. Furthermore, we consider differences between individual and collective adaptive behavior, and show how
our system displays fold-change detection properties. Our analysis and simulations highlight why adaptation needs
to be understood in terms of probability, and not in strict numbers of molecules. Most importantly, selection of
appropriate parameters in this simple linear setting may yield populations of cells displaying adaptation, while
single cells do not.

Conclusions: Single cell behavior cannot be inferred from population measurements and, sometimes, collective
behavior cannot be determined from the individuals. By consequence, adaptation can many times be considered a
purely emergent property of the collective system. This is a clear example where biological ergodicity cannot be
assumed, just as is also the case when cell replication rates are not homogeneous, or depend on the cell state.
Our analysis shows, for the first time, how ergodicity cannot be taken for granted in simple linear examples either.
The latter holds even when cells are considered isolated and devoid of replication capabilities (cell-cycle arrested).
We also show how a simple linear adaptation scheme displays fold-change detection properties, and how rupture
of ergodicity prevails in scenarios where transitions between protein states are mediated by other molecular
species in the system, such as phosphatases and kinases.

Background
Chemical reactions inside cells have long been correctly
described as both discrete and stochastic [1-3], often
entailing acute spatial patterns or dependencies [4-6].
Despite the intrinsic uncertainty in the occurrence of
these chemical events, and basically against all odds,
cells prevail as efficient decision makers. Not only are
their fate decisions influenced by stochastic events and
embedded within widely fluctuating environments, but
they are stochastic themselves [7], the underlying
mechanisms of which remain widely unknown.
So, one cannot help but wonder: how do cells process

widely varying information from their environment,

control their own chemical ‘noise’, and still manage to
produce appropriate responses? The key to this question
lies in signal transduction pathways, a series of intercon-
nected chemical events that lead to highly specific cell
responses. One such mechanism is adaptation, a com-
mon term used to represent sets of chemical reactions
that generate a transient response in the presence of a
sustained stimulus [8]. These transient responses have
been shown to affect gene expression and regulatory
processes, where the cell decision is determined by the
strength and duration of the input signal [9].
Adaptive behavior can result from three basic signal-

ing motifs: integral control, negative feedback, and feed-
forward regulation [8]. The first is an abstraction of an
engineering principle, where regulation is achieved by
integrating the differences between a desired response
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and the state of the system. A cellular system may pro-
ceed in a similar fashion, by comparing ‘actual’ to
‘desired’ conditions, as has been found to be the case in
bacterial chemotaxis [10-13] or calcium homeostasis
[14].
Integral control can be achieved through appropriate

combination of negative feedback loops, the latter of
which are ubiquitous elements of signaling pathways,
allowing for myriads of types of physiological homeosta-
sis. In a self-regulating gene, a transcriptional repressor
negatively regulates its own expression and, within cer-
tain network architectures and ranges of feedback
strength, noise can be effectively reduced. In this sense,
negative feedback allows a system to respond by
decreasing the magnitude of any input perturbation,
generally resulting in stabilization of the input signal.
However, while the latter is true in a deterministic
setting, several types of non-classic behavior can
be observed once considering discrete signals and
stochasticity [15].
In contrast, feed-forward architectures let the system

respond to known cues (input signals) in a predeter-
mined way, independently of the system’s response. This
is the essential difference from feedback mechanisms,
where the output influences (’feeds back’) the system to
create a new response. For feed-forward to produce
adaptation, two signal-dependent pathways must affect a
third component, in opposite ways, otherwise known as
‘incoherent’ feed-forward loops [16].
Several exhaustive studies have shown that negative

feedback regulation rarely yields perfect adaptation,
whereas integral control and feed-forward regularly do
so [8,10,11,17]. Nevertheless, it should be noted that
negative feedback can produce adaptation states close to
‘perfect’, and basically indistinguishable in terms of bio-
logical functions [8]. By perfect adaptation it is generally
understood that the system will return to the exact state
where it was before the input signal was introduced,
provided the system was already in equilibrium.
Furthermore, in order to consider a system adaptive,

certain eligibility criteria in terms of amplitude and
duration of the system response have to be met. It
should be noted that no homogeneous criteria exist in
the literature, and comparison between different adapta-
tion models can become a daunting task. Quite gener-
ally, though, amplitude has been assessed in terms of
sensitivity and precision, namely, the difference between
maximal response and pre-stimulation values, and the
difference between equilibrium values before and after
stimulation, respectively [18,19].
Recently, some types of adaptive systems (such as the

incoherent feed-forward loop) have been shown to dis-
play fold-change detection (FCD) properties. Namely,
that the system generates a response to fold-changes in

the input signal, rather than absolute levels [20,21]. The
latter is related to Weber’s law, which describes the rela-
tionship between a stimulus and its perceived intensity,
a widely used concept in perception studies.
In this respect, some experimental studies have shown

how important transduction mechanisms (such as ERK2
translocation [22] or Wnt signaling [23]) display robust
fold-change responses. From these studies, several
hypotheses have already arisen, such as whether cells
detect and process information in relative rather than
absolute terms, or whether fold-change detection facili-
tates the production of adjustable noise filters. Proving
such hypotheses would greatly aid our understanding of
cell signaling pathways, as FCD could rescale meaningful
signal changes with respect to the background noise.
With all these points in mind, and in response to

some of the open questions posed in [18], we study the
effects of stochasticity in a minimalistic adaptation
architecture, a ‘two-state protein’ scheme [24,25]. For
such, we wanted to analyze how stochastic profiles in a
single-cell system propagate to population behavior, and
what this actually entails in terms of system predictabil-
ity. Surprisingly, our preliminary simulations highlighted
how single cell and population behavior can be comple-
tely different, adaptation largely being an emergent
property of a large ensemble. This led us to analyze
adaptation in an exact stochastic setting, and understand
why one should think of adaptation processes in prob-
ability space, rather than in numbers of molecules.
Until now, no one had noticed how ergodicity breaks

down in simple linear scenarios devoid of cell growth
and replication properties. Hence, our results provide
key novel insights that need to be considered in any
future study of adaptation, as well as any study where
biological ergodicity is readily assumed. An example of
the latter is linear and nonlinear signaling pathway
studies.
Additionally, we also respond to some of the open

questions in [21] and show how the simple linear ‘two-
state protein’ scheme in a stochastic setting displays
fold-change detection properties, both for consecutive
stimulation inputs and separate fold-stimulations. This
is the first study of FCD under stochasticity, the impor-
tance of which extrapolates to any cell signaling study.
Lastly, we discuss how extensions of the ‘two-state

protein’ scheme (by considering discrete mediators, e.g.
kinases and phosphatases) retain many of the properties
observed in the purely linear system, including rupture
of ergodicity.

Results
In what follows we shall consider the simplest adaptive
architecture, previously described in the literature as a
single ‘two-state protein’ scheme [24,25]. The idea
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behind this model is to consider a protein in an unmo-
dified and modified state, denoted as P and Pm, respec-
tively. The switch between the two states of the protein
has basal rates kf and kr, and is additionally influenced
by an input signal A with rate ka. Moreover, the total
protein concentration is allowed to vary in time, and
neither the synthesis of the unmodified protein (ks), nor
the distinct degradation of the two states of the protein
(dP and dpm ), depend directly on the input signal
(Figure 1A).
The analysis in [25] highlights several key issues. First,

the steady state values of the protein states are propor-
tional to the input signal, one being inversely propor-
tional, the other being directly proportional. Second,
when either protein degradation rate is close to zero (or
much smaller than the other), the steady state concen-
tration of the other protein is (nearly) independent of
the signal. Such independence hints at the potential
adaptation to changes in the input signal, a feature that
can be readily observed when considering several para-
meter combinations. Furthermore, the choice of para-
meters will determine the sensitivity with respect to
repeated stimulation. Namely, whether the system
responds and adapts to consecutive input signals, or not.
The key questions here are: (1) which of the above

mentioned properties hold when discreteness and sto-
chasticity are taken into account, (2) do these properties
only hold at the single-cell level, or extend to multi-cell
schemes implying a kind of biological ergodicity, and
lastly (3) does this system display fold-change detection
properties?

Adaptation in a stochastic setting
The chemical master equation (CME) describes the time
evolution of the probability P(X, t), for having x = [x1,...
xN] molecules at time t in a system with R elementary
reactions, N molecular species, and volume Ω. Namely,
it describes the evolution of all possible states of a che-
mical system in probability space.
If we consider the ‘two-state protein’ scheme (Figure

1A) in a stochastic setting, its time evolution will be
described by the following CME:
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where the index n (m) in Pn.m denotes the number of
proteins in state P (Pm). Additionally, we prescribe an
input signal following the step function A= S·Fi, where S
is in units of μM
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the factor Fi is the ith signal scale parameter of F =
(0.01,0.1,1,10,100), and the macroscopic reaction rate
constants are set as follows: ks = 0.01, ka = 1, kf = 1,
kr = 10, dP = 0.01, dPm

 1 . As is usual in a stochastic
analysis, concentrations and 0th/2nd order reaction rates
have to be scaled by the factor V·Av, where V is the
volume and Av denotes Avogadro’s constant (approxi-
mately 6.02214179 × 1023 molecules-1). Here, we con-
sider a volume of 1 femtoliter and selected initial values
close to equilibrium. Namely P = 0.1 and Pm = 0.01 μM,
corresponding to 60 and 6 molecules, respectively.
Now, stochastic processes can be studied by trajectory

based approaches or by obtaining their underlying prob-
ability distribution function (PDF), which tracks how the
probability of having specific numbers of molecules in
the system changes over time. This is a daunting - many
times unfeasible - task, given the combinatorial explo-
sion of the number of coupled differential equations to
consider, corresponding to increasing numbers of possi-
ble states of the system.

Figure 1 Two-state protein models. (a) Basic linear scheme, and
(b) extension to account for kinases and phosphatases mediating
changes between states.
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In fact, whenever a system is solely composed of 0th/
1st order reactions, exact analytical PDF solutions can
be obtained [26,27]. Thus, exact analytical expressions
can be derived for the first two moments, which have
been shown to match the solution of the system trans-
lated to a stochastic differential equation (SDE) problem
[28]. Moreover, in such linear cases the first moment of
the SDE solution will converge to the ODE solution, a
consequence of the linearity in the drift term.
Hence, in our case, if we compare the mean of 10,000

stochastic trajectories, the corresponding deterministic
solution, and the expectation of the CME reported as
the sum over equal numbers of molecules of Pm in the
exact PDF solution, it comes as no surprise that all solu-
tions nicely match (Figure 2). As had been previously
reported, the time evolution of Pm can show near-
perfect adaptation when d dP Pm

 , while dP = 0 yields
perfect adaptation. However, and quite intriguingly, if
we focus on individual SSA trajectories, no adaptive
behavior can be inferred from single trajectories for cer-
tain values of the input signal (e.g. Figure 3C, corre-
sponding to Fi = 1). The key behind this issue lies in
what the solution of the CME really entails: a set of
time dependent values in probability space. In this
sense, computing the expected value masks how often
discrepancies from this mean can happen, as well as
their potential magnitude, possibly leading to entirely
different dynamics. Hence, a more appropriate descrip-
tion of the system lies in describing the evolution of the
probability, and not the expectation, in time.
To analyze this further, let us focus on perfect adapta-

tion systems considering Fi = 1, P Î [0,110] and Pm Î

[0,30], for which we will obtain exact PDF solutions of
the CME by using finite state projections [29]. This
implies the solution of the CME will be both exact and
complete whenever these ranges cover all possible
reachable states, portraying the full probability space
instead of solely describing single exact trajectories.
One can notice the deterministic adaptation value in

our ‘two-state’ protein scheme lies close to 6 molecules
of Pm. If we now track the evolution of the probability
(i.e. the exact solution of the CME) in three separate
sets: 0 to 4, 5 to 6, and 7 to 30 molecules of Pm it can
be observed there is indeed sensitivity to the input sig-
nal and relaxation to pre-stimulus values, albeit in a
probabilistic context (Figure 4). To understand what
this entails, let us first focus on the system at time t =
50 Here, the probability of all states containing 0-6
molecules of Pm will decrease once the signal is intro-
duced (Figure 4A), as would be expected by the sud-
den shift of Pm to higher values in the deterministic
setting. In contrast, as we approach t = 100, the prob-
ability of all states containing 5-30 molecules of Pm

decreases (Figure 4C). However, one should notice
that, at t = 100 (and any other end of each stimulation
interval), the system will revolve around states with
5 to 6 molecules of Pm with a probability of occur-
rence of roughly 32% (Figure 4B). This leaves ‘a lot of
room ’ (the remaining ~68%) for the system to be
located elsewhere, as can be readily observed from sin-
gle cell simulations (e.g. Figure 3C). Furthermore, of
these 32%, only half belong to having 6 molecules of
Pm in the system, which is closest to the deterministic
solution. Most importantly, differences in equilibrium

Figure 2 Solutions match when using different modeling regimes (Fi = 1). Mean of 10,000 simulations using (A) dP = 0, yielding perfect
adaptation, and (B) dP = 0.01, corresponding to near-perfect adaptation. Trajectories portray SSA simulations (blue), the first moment of exact
CME solution using finite state projections (red), and solution of corresponding ODE system (yellow). Input signal ‘stimulation’ intervals were
spaced by 50 units of time between one another, while each subinterval was subdivided into the following time points: [50/214 50/212 50/210

50/28 50/26 50/24 50/22 25 50]. We restricted our state space to all combinations of (P, Pm) such that P Î [0,110] and Pm Î [0,30], guaranteeing
our obtained PDF is closer than 99.99% to the exact solution of the CME, at all considered time points.
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values entail wide variations for initial conditions of
the next simulation interval, yielding the observed het-
erogeneity in single cell behavior.
The description above highlights a property of any

stochastic description: a system cannot be guaranteed to
be in any state, and probabilistic bounds are the maxi-
mal level of information. However, one should notice
the signal in this example is at least 2 orders of magni-
tude larger than any other component of the system.
Hence, the ‘two-state protein’ scheme provides for a
counter-intuitive example where local noise overrides
the effect of a strong external signal, and adaptation
behavior can become an emergent property only
attained at the (mean) population level. Moreover, as

could be expected from the deterministic solution, the
probability profile also portrays loss of sensitivity with
repeated stimulation.

Population behavior
Ensemble measurements (such as those obtained from
flow cytometry) display cell characteristics as distribu-
tions of values calculated over large samples of cells
and, many times, distributions of cells at certain station-
ary states are used to infer the stochastic behavior of a
single cell. By doing so, a biological version of ergodicity
is necessarily implied: the percentage of the cell popula-
tion in a particular state is identical to the probability to
find a single cell in that state [30].

Figure 3 Stochastic trajectories for chemical species Pm in the basic two-state protein model. (A-E) Single and (F-J) mean over a
population of 50 cells. Subfigures correspond to different signal tuning parameters: (A, F) Fi = 0.01, (B, G) Fi = 0.1, (C, H) Fi = 1, (D, I) Fi = 10, and
(E, J) Fi = 100. Trajectories portray SSA simulations (blue) and input signal in numbers of molecules (red).
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Mathematically, the ergodicity of a stochastic process
is guaranteed if (i) the stochastic process is a finite-state
Markov process and (ii) the stochastic process converges
to a stationary state for any initial condition [1]. How-
ever, such assumptions have many times been relaxed
or misinterpreted and, in such cases, erroneous conclu-
sions with respect to single cell behavior could have
been derived from population data [30].
Recently, many studies in the literature have addressed

this issue. Population distributions have been based on
chemical Langevin equations [3,31,32], and clever solu-
tion methods have been developed by noticing a Sturm-
Liouville operator. For instance, the authors in [31]
highlight the potential bias of population measures
when cell replication rates are not homogeneous, or
depend on the cell state. Similarly, the authors in [30]
support the latter findings and further discuss how ergo-
dicity breaks down whenever there are chemical interac-
tions between cells, and when single cells display
‘complicated’ behavior (such as bistability).
Our exact solution of the two- state protein system

shows how ergodicity cannot even be assumed in mini-
malistic linear examples. Our linear system underlies a
finite-state Markov process, is expected to relax to a sta-
tionary state, and is devoid of possible effects via cell
replication and chemical interactions between cells.
However, for certain input signal strengths, biological
ergodicity still breaks down. In a nutshell, when the sig-
nal tuning parameter is set as Fi < 1, no adaptive beha-
vior is observed in either single cells or populations. In
contrast, when considering Fi > 1, both single cells and
populations exhibit adaptation. However, when Fi = 1,

single cells need not display any apparent sensitivity to
the input signal, while both sensitivity and adaptive
behavior can be observed at the population level (Figure
3C and 3H).
This brings us back to the arguments presented in the

stochastic adaptation section. Namely, that adaptive
behavior may not be inferred from single stochastic tra-
jectories, since relaxation states revolving around the
mean value do not necessarily represent the weighted
majority in terms of probability. This can be readily
observed from the values at the end states, represented
as a heat map in Figure 5 implying large initial condi-
tion variations for the computation of each subsequent
time interval. Actually, such wide variation can be analy-
tically expected: it has been shown that a system com-
posed of first order reactions that is both ‘open’ (i.e.
including protein synthesis from source, hence violating
conservation of mass) and has an initial Poisson distri-
bution will remain a Poisson distribution at any time t >
0 [27]. Our results are entirely consistent with the the-
ory (Figure 6). Hence, an adequate sample size and any
other implications of the model have to be inferred
from the underlying properties of this distribution (or
else be thought as independent Binomial trials, the limit
of which is the Poisson distribution).
Lastly, it should be noted there exist analytic results

for ‘open’ and ‘closed’ systems of first order reactions,
with arbitrary initial probability distributions. Hence,

Figure 4 Evolution of the probability using finite state
projections, for separate sets of numbers of molecules of Pm.
Here, we consider the perfect adaptation system (dP = 0) with Fi =
1, and distinguish between: (A) 0 to 4, (B) 5 to 6, and (C) 7 to 30
molecules of Pm.

Figure 5 Heat map of CME solution in PDF form, perfect
adaptation case (dP = 0). Input signal ‘stimulation’ intervals were
spaced by 50 units of time between one another, while each
subinterval was subdivided into the following time points: [50/214

50/212 50/210 50/28 50/26 50/24 50/22 25 50]. We restricted our state
space to all combinations of (P, Pm) such that P Î [0,110] and Pm Î
[0,30], guaranteeing our obtained PDF is closer than 99.99% to the
exact solution of the CME, at all considered time points. Probability
values are colour-coded between values of 0 and 25%, where the
end value corresponds to 25% or above.
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one can benefit from extracting an adequate sample size
(or other properties) for arbitrary applications, provided
all underlying reactions are unimolecular. In such cases,
an appropriate PDF can be derived by the convolution
of Poisson and Multinomial distributions, for any time t
> 0 [27].

Fold-change detection properties
Recent studies have highlighted the peculiar capability of
certain systems to respond to fold-changes in the input
signal, rather than to absolute differences in numbers of
molecules [20,21]. This is the essence of Weber-Fech-
ner’s law, which states that the maximal response to a
change in signal is inversely proportional to the back-
ground signal or, in other words, that the ratio of the
smallest increment and the background intensity of a
signal is constant. This can be better understood by
quoting an analogy used in [33]: while it is easy to
understand whispered voices (increment signal) inside a
quiet room (background signal), it is very hard to notice
someone shouting in our ear during a Rock concert.
The recently coined term fold-change detection (FCD)

implies both Weber’s law and perfect adaptation. How-
ever, simultaneous application of Weber’s law and per-
fect adaptation do not necessarily yield FCD [20], and
sufficient conditions have been presented to obtain it.
Namely, if a system can be described by x f x u ( , , )y
and y g x u ( , , )y , where y corresponds to the output, u
to the input signal, and x to the remaining chemical
species, FCD can be achieved if the system is stable,
shows perfect adaptation, and for l > 0 it can be shown

that f(lx, y, lu) = lf(x, y, u) and g(lx, y, lu) = g(x, y, u)
[20].
It can be easily seen that the ‘two-state protein’

scheme does not satisfy these conditions, since:
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Perhaps more intuitively, strict FCD properties could
not be expected, since the ‘two-state protein’ scheme
shows remarkable loss of sensitivity to repeated stimuli.
Nevertheless, the criteria posed in [20] is only sufficient,
and not necessary, so two questions are worth consider-
ing. First, to how many repetitions of the stimulus does
FCD refer to? And second, to what extent are consecu-
tive relaxations to a steady state expected to match?
In the analysis published in [21], parameter variations

in an incoherent feed-forward loop architecture are
explored, and FCD is reported whenever the response to
the two step stimuli is identical to within 10% in ampli-
tude. By using this criteria in the ‘two-state protein’
scheme with fold-change input signal profiles A1 = [20 21

... 210] and A2 = 2*A1 introduced at identical time points,
FCD properties hold in two perspectives (Figure 7).
Both as an absolute ratio or by following the criteria

used in [21], fold-stimulation yields responses within
10% of the amplitude not only for any two consecutive
inputs, but also for a number of consecutive steps. So,
even when the system looses sensitivity to the input sig-
nal, repeated stimulation preserves fold-change detection
properties. Moreover, all responses in profile A2 are
within 10% of the amplitude of those obtained with A1

(Figure 8 and 9). Most importantly, these results hold in
the deterministic regime, and the first moment of the
stochastic system.
Lastly, in near-perfect adaptation systems, consecutive

inputs yield slightly different steady states. With increas-
ing numbers of input stimuli, the equilibrium values
converge to the perfect adaptation case (Figure 10). This
was readily observable from the equilibrium analysis (cf.
Methods) as the input signal term would dominate,
yielding convergence of the steady state solutions.

Discussion
Our study of the ‘two-state protein’ in a stochastic set-
ting lead us to simple yet illustrative examples on how
biological ergodicity may be invalid, even in simple lin-
ear settings devoid of cell replication properties. A fol-
low-up question could be: what would happen if the

Figure 6 PDF of adapted system and Poisson distribution. The
exact solution of the CME is shown at the endpoint of all input
signal stimulation intervals (blue), as compared with 100,000
randomly generated samples of the Poisson distribution (red),
where the parameter l is equal to the first moment of the CME at
any of those particular time points.
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transitions between protein states were mediated by
other molecular species in the system? In this case, one
could consider discrete mediators (activators and deacti-
vators, e.g. kinases and phosphatases) switching back
and forth between the two protein states, as depicted in
Figure 1B. Here, signal changes could refer to varying
concentrations of the kinase and/or phosphatase.
Preliminary simulations show that all the properties

studied for the simple two-state protein model can be
achieved by this network topology. Such properties
include perfect and near-perfect adaptation, as well as
rupture of ergodicity, as exemplified by a varying kinase
‘signal’ in Figure 11. Qualitatively similar results can still
be obtained by considering variations on the initial
kinase and phosphatase concentrations (A(0), B(0) Î
[0.01,0.1,1] μM) and single parameter values
( ,, [ . , , ])k k ka d d2 1 3

0 1 10 103 . The same holds for
simultaneous variations of ( , )k kd d1 3

or ( , )k ka a1 2

while, interestingly, a completely different profile
is obtained by simultaneous key variations of

( , , )k k ka a a1 2 3
. For instance, if we set these parameter

values to (103, 0.1, 0.1) a response that correlates nega-
tively with changes in the signal is obtained (Figure 12).
The latter can be explained by the high value of the
ratio k ka a1 2

/ , effectively ‘trapping’ P molecules in a
bound configuration with the kinase, hence decreasing
the numbers of molecules of both P and Pm temporarily.
As can be intuitively expected, a similar effect in Pm

can be obtained by considering key variations of para-
meters ( , , )k k kd d d1 2 3

with a varying phosphatase ‘sig-
nal’ (data not shown). Nonetheless, the profile of P will
differ from the previous case, as the reaction set is not
symmetric (Figure 1B), while it should be kept in mind
a separation of timescales in the protein degradation
rates was necessary to achieve adaptation. Additionally,
changes in the kinase/phosphatase signal are not equiva-
lent to the minimalistic ‘two-state protein’ system, since
these discrete mediators are treated as molecular species
and, as such, their numbers can fluctuate in time. More-
over, changes to the signal intensity only refer to

Figure 7 Fold-change detection properties in two-state protein model. Perfect adaptation two-state protein model with (a) A1 = [20 21 22

23 24 25 26 27 28 29 210] and (b) A2 = 2*A1. Trajectories portray SSA simulations (blue), and solution of corresponding ODE system (yellow).
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unbound signal molecules and, in contrast to the linear
case, the total number of signal molecules within the
system can accumulate in time. The latter can be readily
observed in distinct chemical scenarios (such as Figure
12) where a considerable number of kinase/phosphatase
molecules can be ‘trapped’ in a bound configuration, the
molecules of which remain within the system irrespec-
tive of changes in the signal.
In our kinase/phosphatase mediated adaptation exam-

ple, obtaining an exact PDF solution of the CME would
be computationally expensive, if not unfeasible, given
the explosion in the number of reachable states. In this
case a finite state projection using Krylov subspaces,
such as [34] would be preferable. Alternatively, if the
mediators are highly concentrated, one could ‘decouple’
them from the rest of the molecular species, yielding

sets of unimolecular reactions, which in turn allows for
obtaining an analytic closed solution. We will leave such
analysis for a separate publication, given the high discre-
pancy of parameter values so far encountered and the
significant deviation from the main focus of this work.
However, considerations such as this, or deriving alter-
native closure of moments of the CME to account for
non-linear terms, will greatly enhance future adaptation
studies.

Conclusions
In this paper, we have studied the effects of stochasticity
in a ‘two-state protein’ scheme, providing an explanation
of what adaptation means and entails in a stochastic set-
ting. Namely, that an adaptation profile can be achieved
by calculating the first moment of the CME, but that

Figure 8 Relative difference in amplitude response with fold-changes in input signal. Perfect adaptation case with input profile A1 = [20

21 22 23 24 25 26 27 28 29 210] μM and A2 = 2*A1. Relative differences were computed in three different ways: |y1j+1/y
1
j|, |y

1
j/y

1
j+1|, and |y1j/y

2
j|,

where y1 and y2 are the ODE solutions using profiles A1 and A2, respectively, and index ‘j’ refers to the time point within interval ‘j’ where
maximal response is attained.

Marquez-Lago and Leier BMC Systems Biology 2011, 5:22
http://www.biomedcentral.com/1752-0509/5/22

Page 9 of 16



the underlying probability distribution might be wide
enough to prevent one from making definite quick-and-
dirty assertions going from a single cell to the popula-
tion level, or the other way around.
In this sense, adaptation can many times be consid-

ered an emergent property of the collective system,
restricting modelers/experimentalists to obtain large
samples of time courses in order to infer properties of
the system as a whole. The characteristics of such sam-
ples (e.g. a minimum number of single cells to depict
population behavior), are necessarily described by the
underlying probability distribution corresponding to the
solution of the chemical master equation. Here, we have
presented the overlap of an exact solution (the CME
solved in matrix form), an analytical solution (the con-
volution of Poisson and Multinomial distributions,
which is reduced to solely the Poisson distribution in

our case), as well as trajectorial and deterministic solu-
tions. Our analysis highlights the source of variability in
single-cell scenarios, explaining the cause for rupture in
ergodicity in a simple linear reaction network. We have
also provided a clear perspective on how systems analy-
sis with varying inputs can be addressed.
Additionally, we have shown how the minimalistic

‘two- state protein’ scheme displays fold-change detec-
tion properties in a stochastic setting. The latter refers
to consecutive stimulation inputs and independent sti-
mulations, and extends FCD properties to a system with
near-perfect adaptation. Moreover, repeated stimulation
preserved fold-change detection properties, despite loss
of sensitivity to the input signal.
Lastly, we discussed extensions of the ‘two-state pro-

tein’ scheme by the consideration of discrete mediators
(e.g. kinases and phosphatases). Our preliminary

Figure 9 Relative difference in amplitude response with fold-changes in input signal. Perfect adaptation case with input profile A1 = [20

21 22 23 24 25 26 27 28 29 210] μM and A2 = 2*A1. Relative differences were computed in three different ways: |(y1j+1 - y
1
j)/y

1
j|, |(y

1
j - y

1
j+1)/y

1
j+1|,

and |(y1j - y
2
j)/y

2
j| where y1 and y2 are the ODE solutions using profiles A1 and A2, respectively, and index ‘j’ refers to the time point within

interval ‘j’ where maximal response is attained. This analysis is equivalent to the criterion used in [21].
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simulations show how such extensions retain many of
the properties observed in the purely linear system,
including loss of ergodicity.
To the best of our knowledge, this is the first time

biological ergodicity has been shown to break down in a
minimalistic linear architecture. The latter had been
readily observed when cell replication rates are not
homogeneous, or depend on the cell state, but never
before in cell-cycle arrested scenarios composed of
solely linear non-delayed terms. Furthermore, this is the
first time fold-change detection properties have been
studied in a stochastic setting.

Methods
Brief explanation of the Finite State Projection (FSP)
method
For the purposes of this paper, the models are both
bounded and finite, so we restrict our notation to N

dimensions. If we define a vector p Î ℝn such that each
entry corresponds to the probability P(x;t) for each
reachable state x, we can think of its time evolution as
p A p( ) ( )t t , where the matrix A = [aij] contains the
propensities and ajj = −Σi≠j aij, which basically means
that each row of the matrix sums up to zero and the
probability is conserved. Given an initial distribution p
(0), the solution at time t is p(t) = exp(tA) p(0), where
the matrix exponential is generally defined through its
Taylor series expansion. If the reachable state space is
large it may come in handy to consider a finite state
projection [29], in which matrix A is replaced by Ak, a k
× k submatrix of the true operator A, the corresponding
indexed system states form the finite state projection
and p(tf) ≈ exp(tfAk) pk(0) is the approximation to p(t) =
exp(tA) p(0) at time tf. An approximation can be gradu-
ally improved by adding reachable states up to a pre-
specified tolerance level.

Figure 10 Convergence of equilibrium values to the solution of a system with a degradation rate equal to zero. Here we considered
input profile A1 = [20 21 22 23 24 25 26 27 28 29 210] μM. Solutions denote a system with dP = 0.01 (red) and dP = 0 (blue).
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In our case, the organization of the reachable states is
shown in Figure 13 where (i, j) denotes the of molecules
of (P, Pm), and corresponds to the enumerated state of
the system j(MP + 1) + i + 1. MP is the maximum num-
ber of molecules of P considered in the finite projection.

Single cell vs. population measurements, from the
simulation perspective
In general, there are two ways in which stochasticity
can be considered. The ‘single cell’ type or the ‘multi-
ple-cell’ type (Figure 14). The first corresponds to
studying possible states of the system in a single cell, by
tracking molecular concentrations in time, once the

system has reached ‘equilibrium’. The second refers to
comparison of multiple cells at one (or several) time
point(s). In this study, preliminary stochastic simula-
tions did not yield similar results for both types of ana-
lysis, the reason why we decided to report our results
under both frameworks. In other applications, both fra-
meworks yield similar simulation results as intrinsic sto-
chastic noise is inherently a Markovian process and, by
consequence, both cases can be considered mathemati-
cally equivalent. However, this is no longer the case in
the two-state protein model presented here, which high-
lights how ergodicity can break down even in simple
linear models.

Figure 11 Two-state protein model with kinases and phosphatases as discrete mediators. (A-E) Single and (F-J) mean over a population
of 50 cells, with initial concentration D(0) = 0.1 μM. Subfigures correspond to different levels of the signal A, in this case the kinase: (A, F) Fi =
0.01, (B, G) Fi = 0.1, (C, H) Fi = 1, (D, I) Fi = 10, and (E, J) Fi = 100. Trajectories portray SSA simulations (blue), and input kinase signal (red). The
following parameter values were used: k k k d d k k k k ks f P P a a ar d dm

        0 05 1 0 1 0 01 10 10
1 2 3 1 2

3. , , . , . , , ,  kd3
10 .
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Solution methods and equilibrium values for the two-
state protein model
The ‘two-state’ protein system (Figure 1) consists of six
elementary reactions.



 



  

 

k

k

m

k A

m m

k

d

m

d

s

f a

p pm

r

P

P P P P P

P P

P, ,

,

•

In a deterministic setting, the time evolution of such a
system can be described as:

dP

dt
k k P d k k A P

dP

dt
k k A P k d P

s m P f a

m
f a P m

r

r m

    

   

( ) ,

( ) ( ) .

where A = A(t), and in this case A(t) is piecewise con-
stant. The latter allowed us to use finite state projec-
tions in time intervals where A(t) = c, c Î ℛ.

It can be easily seen that, at equilibrium

P
k k d

d k d d k k A

P
k k k A

d k d d

s P

P P P f a

m
s f a

P P P

r

r

r

m

m

m

*

*

( )

( )

( )

(




  




  kk k Af a )

and if dPm
 0 , then P *= ks/dP and Pm * = ks(kf +

kaA)/(dPkr). Similarly, if dP = 0 we have
P k k d d k k As P P f ar m m

* ( ) / ( )   and P k dm s Pm
* / .

As can be readily observed, when one of the degrada-
tion rates is equal to zero, the steady state solution of
one molecular species is independent of the input
signal.
In order to obtain transient solutions, we can formu-

late this as a matrix ODE problem. We shall consider
here even more generalized problems, where b = g(t):

P A t P g t

P P P b k P t Pm
T

s
T

  

  

( ) ( ),

[ , ] , [ , ] ( ) .

where

0 0 0 and

Figure 12 Variations of key parameters in the two-state protein model, with kinases and phosphatases as discrete mediators. Columns
correspond to simulations using (A-D) parameter values of Figure 11; (E-H) ka2= ka3= 0.01. Rows correspond to single-cell time courses of (A, E) P
and (C, G) Pm; and the mean of a population of 50 cells of (B, F) P and (D, H) Pm. Trajectories portray SSA simulations (blue), and input kinase
signal (red).
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Figure 14 Two different types of collecting sample points of stochastic simulations. (A) Independent runs (corresponding to different
cells) where for each simulation the number of molecules of Pm is collected at the same time, T*. (B) Single run (single cell experiment) where
the number of molecules of Pm is collected at equally spaced time steps, all of which lie beyond T*. T* is assumed to be a point in time beyond
the average time it takes for a system to reach its steady state.

Figure 13 Scheme used in finite state projections.

Marquez-Lago and Leier BMC Systems Biology 2011, 5:22
http://www.biomedcentral.com/1752-0509/5/22

Page 14 of 16



Once a fundamental solution �(t) for the homoge-

neous problem P A t P P t P   ( ) , ( )0 0 has been

obtained, we can use the method of variation of para-
meters to construct a particular solution:

P t t t P t s g s ds
t

t
( ) ( ) ( ) ( ) ( ) ( )     1

0 0
1

0

As a stochastic differential equation (SDE) system with
piecewise linear input signals, the ‘two-state’ protein sys-
tem translates into:

dP

dP

k d k A k k

k A k k d
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and given the drift term is linear, the first moment of
the SDE system will be identical to the ODE solution.
It is worth keeping in mind any system

d t t t t dt t dW tx a x a b( ) ( ( ) ( ) ( )) ( ) ( )  1 2

with a fundamental solution t t, 0
yields a transient

solution prescribed by
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The fundamental solution will be

 t t, exp( ( ) )
0

0

1  a s ds
t

t

if matrix a1(t) commutes for all times t1 and t2 such
that t1 ≠ t2 . Otherwise, methods such as the Magnus
expansion (or Fer, symmetric Fer, Cayley, etc.) can be
used to obtain a fundamental solution.
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