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Abstract

Background: Epidermal growth factor receptor (EGFR) signaling plays an important role in the regulation of cell
proliferation, survival, metastasis, and invasion in various tumors. Earlier studies showed that the EGFR is frequently
overexpressed in non-small-cell lung cancer (NSCLC) and EGFR mutations at specific amino acid residues in the
kinase domain induce altered responsiveness to gefitinib, a small molecule EGFR tyrosine kinase inhibitor. However,
the mechanism underlying the drug response modulated by EGFR mutation is still largely unknown. To elucidate
drug response in EGFR signal transduction pathway in which complex dynamics of multiple molecules involved, a
systematic approach is necessary. In this paper, we performed experimental and computational analyses to clarify
the underlying mechanism of EGFR signaling and cell-specific gefitinib responsiveness in three H1299-derived
NSCLC cell lines; H1299 wild type (H1299WT), H1299 with an overexpressed wild type EGFR (H1299EGFR-WT), and
H1299 with an overexpressed mutant EGFR L858R (H1299L858R; gefitinib sensitive mutant).

Results: We predicted and experimentally verified that Mig6, which is a known negative regulator of EGFR and
specifically expressed in H1299L858R cells, synergized with gefitinib to suppress cellular growth. Computational
analyses indicated that this inhibitory effect is amplified at the phosphorylation/dephosphorylation steps of MEK
and ERK.

Conclusions: Thus, we showed that L858R receptor mutation in combination with expression of its negative
regulator, Mig6, alters signaling outcomes and results in variable drug sensitivity.

Background
The ErbB family receptors belong to the receptor tyro-
sine kinases (RTKs) and consist of four members; ErbB1
(also known as EGFR; epidermal growth factor recep-
tor), ErbB2, ErbB3 and ErbB4 [1-4]. EGFR is distributed
various tissues of the human body [5-7], and plays a cri-
tical role in the regulation of a variety of cellular
responses ranging from cell differentiation, growth, pro-
liferation, apoptosis, migration and adhesion [2,8].
EGFR is frequently overexpressed in various human

tumors including non-small-cell lung cancer (NSCLC)
and is associated with poor outcome [9,10]. In many

cases, enhanced EGFR signaling leads to abnormal cellu-
lar processes and often induces cancer [11,12]. Certain
NSCLC patients have mutations at specific amino acid
residues in the kinase domain of EGFR and show altered
responsiveness to gefitinib (Iressa), an EGFR tyrosine
kinase inhibitor. The L858R substitution (an arginine for
leucine substitution at amino acid 858) is one of the most
frequently reported mutations [13] and shows good
responses to gefitinib [14-16]. It was reported that the
L858R mutation enhances gefitinib sensitivity due to a
structural change in the kinase domain resulting in an
increased binding affinity of gefitinib for its ATP binding
pocket in vitro [16]. On the other hand, a large scale
binding assay using different types of kinases showed that
the difference in binding affinity of the EGFR itself may
not have a great effect on gefitinib sensitivity [17]. Based
on these observations, we speculated that other unknown
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factors affect gefitinib sensitivity in vivo rather than
alteration of the binding affinity. So far, cells with the
L858R-mutated EGFR have been reported to have two
characteristics. First, Mig6 (mitogen-inducible gene 6) is
highly expressed in the L858R-mutated EGFR cells [18].
Mig6 is an adaptor molecule that binds to an activating
kinase domain of an EGFR [19] and functions as a nega-
tive regulator of EGFR kinase [19-21]. Mutation and
downregulation of Mig6 are often observed in human
lung cancer cell lines [22] and also correlate with a
reduced survival rate in breast cancer patients [23,24].
Secondly, ubiquitin-dependent EGFR degradation
mediated by Cbl is enhanced in the L858R cells [15].
Both of these two characteristics seem to contribute to
the negative regulation of the EGFR signaling pathway.
However, no mechanistic explanation has been found for
the contributions of these molecules to the gefitinib sen-
sitivity of the L858R mutation.
Recent studies showed that dynamics and regulation

of the intracellular signaling cascades are efficiently elu-
cidated with an assistance of computational simulations
[25-37]. To obtain a logical understanding of the gefiti-
nib sensitivity associated with L858R mutation, the
mathematical analysis of the EGFR signaling pathway
should be more preferable rather than sole experimental
representations.
In this study, we used experimental and computational

approaches to investigate regulatory mechanisms that dis-
tinguish cell-specific gefitinib sensitivity in H1299 human
NSCLC cell lines. We have modified the existing kinetic
model of the EGFR signaling pathway and built new mod-
els for H1299 wild type (H1299WT), H1299 with
overexpressed wild type EGFR (H1299EGFR-WT), and
H1299 overexpressing the EGFR with L858R mutation
(H1299L858R). The three types of cells showed different
signaling dynamics in response to EGF stimulation. Over-
expression of wild type EGFR induced high and sustained
phosphorylation of EGFR, Shc, MEK (mitogen-activated
protein kinase kinase) and ERK (extracellular signal-regu-
lated kinase), while the L858R mutation reduced these
response levels. In addition, H1299L858R, which is sup-
posed to be more sensitive to gefitinib than H1299EGFR-
WT, was effectively inhibited by gefitinib administration at
the downstream part of the signaling pathway (MEK and
ERK) compared with H1299EGFR-WT, but, surprisingly,
not at the upstream part of the pathway (EGFR and Shc).
The model incorporated Mig6, but not Cbl overexpres-
sion, successfully captured the signaling behavior observed
in our experimental data, implying that Mig6 is responsi-
ble for enhancing gefitinib sensitivity. Detailed computa-
tional analyses revealed that Mig6 amplifies gefitinib
sensitivity at the steps of MEK phosphorylation/depho-
sphorylation and ERK phosphorylation/dephosphorylation.
We experimentally verified that overexpression of Mig6

contributed to suppressing cellular growth in the presence
of gefitinib. Our analysis further suggested that the combi-
nation of Mig6 and gefitinib exhibits a synergistic effect in
inhibiting EGFR signaling pathway.

Methods
Cell culture
H1299 human lung cancer derivatives, H1299WT,
H1299EGFR-WT and H1299L858R, were established as
described elsewhere [15]. Cells were maintained in
RPMI1640 medium supplemented with 10% fetal bovine
serum and 1 mM sodium pyruvate. Prior to growth
hormone treatment, the cells were serum-starved for
16-24 hours. For the EGFR kinase inhibition, gefitinib
(a generous gift from Astra Zeneca, UK) was added
20 minutes prior to the growth factor treatment. The
cells were incubated with 10 nM of EGF for 1, 5, 10, 30,
120 and 360 minutes and then washed two times with
phosphate buffered saline (PBS) and lysed with Bio-Plex
lysis buffer (Bio-Rad laboratories, Hercules, CA). Cell
lysates were cleared by centrifugation, and the total pro-
tein concentration of the supernatant was determined
using a protein assay reagent (Bio-Rad laboratories) and
analyzed by western blot. Cells that were not treated
with growth hormone were used as the control.

Western blot analysis
SDS-PAGE and membrane transfer were performed
using standard protocols. Antibodies against anti-phos-
pho-EGFR (PY1068), doubly phosphorylated p44/42 ERK
(Thr202/Tyr204), ERK, phospho-MEK1/2 (Ser217/221),
MEK, Mig6 and actin were purchased from Cell Signaling
Technology, Inc. (Beverly, MA). Anti-phospho-Shc
(Tyr317), anti-Shc antibodies and anti-EGFR antibodies
were purchased from Upstate Biotechnology (Lake Pla-
cid, NY). Protein band intensities were quantified using a
densitometer (Fuji Film Corp., Japan). Normalization
procedure is described in earlier study [33]. Briefly, the
maximum value of protein phosphorylation level among
three cell lines (for example, phospho-EGFR at 10 min in
EGFR-WT cells) was set to 1 and the values at t = 0 min-
utes were set to 0 under the assumption that all the
proteins were inactive before EGF stimulation. We con-
sidered that total protein level of EGFR is equal in EGFR-
WT and L858R cells. All concentrations of Shc, MEK
and ERK were considered to be equal in three cell lines
(Additional file 1, Figure S1).

Mig6 overexpression
The MIG6 gene was amplified from a human ERRFI1
cDNA purchased from OriGene (Rockville, MD) using
the primers; MIG6 Forward 5’ GCT TGT CGA CTC
TAG AGA TGT CCC AGA ATA AGG CAC AAT G-3’
and MIG6 Reverse 5’-GCG GCC GCA ATC TAG ATC
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TGC TGA ACC ATG ACC CCA AG-3’. The resulting
DNA fragment was cloned into the vector pCMV-6-Neo
(OriGene) using the Xba I restriction site. Cells were
seeded in 96 well plates at 1 × 105 cells/well. Transfec-
tion of the MIG6 gene was performed using the Lipofec-
tamine LTX (Invitrogen, Carlsbad, CA) and CombiMAG
magnetofection kit (Chemicell GmbH, Berlin, Germany)
according to manufacturer’s protocol. Control cells were
transfected with pCMV-6-Neo vector. After 8 hours of
transfection, cells were supplemented with serum free
RPMI1640 media. The following day, cells were treated
with 10 nM EGF in the presence or absence of gefitinib.

Cell Viability Assay
Cell viabilities of H1299 cells were measured by an
MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazo-
lium bromide) cell proliferation assay 3 days after stimu-
lation with or without 10 nM EGF in the presence of
various doses of gefitinib (0, 0.1, 0.5, 1, and 5 μM) using
the Cell Count Kit SF (Nacalai Tesque, Kyoto, Japan).
The cell viability was determined by optical density
(OD) at 450 nm.

Computation
To model EGFR signaling network, we adopted a deter-
ministic ordinary differential equation (ODE) model.
Model scheme is described in Additional file 1, Table
S1-5. Additional file 1, Table S1 and 2 summarize the
biochemical reactions with 29 components and 27 dif-
ferential equations, which are given by mass action or
Michaelis-Menten kinetics. Additional file 1, Table S3
and 4 list the parameter values and the initial concentra-
tions of the cellular signaling molecules. These values
were estimated based on the parameter ranges which
were listed in Additional file 1, Table S5. Our pathway
network is drawn by Cell Designer 4.1 which is an Sys-
tems Biology Markup Language (SBML)- compliant
application, and is available with this publication (see
Additional file 2).
The parameter estimation problem is defined as a

function optimization problem to minimize the sum of
the squared error:
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where the sets P = {phosphorylated EGFR, Shc, MEK,
ERK} and D = {1, 5, 10, 30 minutes after EGF stimula-
tion} are an experimentally observed values (Additional
file 1, Table S6). We used a technique to decompose the
parameter estimation problem of our model into two
subproblems, reaction steps from 1 to 17 (A) and from
18 to 27 (B). The problem decomposition technique is
an effective means to resolve the high-dimensionality

and can only be applied to enzymatic reactions given by
Michaelis-Menten kinetics. Since the upstream region
affect the downstream subproblem, the subproblems
were solved in order, from the upstream (A) to the
downstream (B). As a parameter estimator, we used the
genetic algorithm with Genetic Local Search with dis-
tance independent Diversity Control (GLSDC) by
extending the basic idea of a genetic algorithm with Dis-
tance Independent Diversity Control (DIDC) to coarse
grained parallelization [38]. The GLSDC program was
executed on the the RIKEN Integrated Cluster of Clus-
ters (RICC) system.
The model was implemented with MATLAB R2008a

(The Mathworks, Inc.), and ‘’ode15s’’ function was
applied to solve the ODEs (http://www.mathworks.com/
access/helpdesk/help/techdoc/ref/ode113.html).
“ode15s” function is a variable order solver based on

the numerical differentiation formulas (NDFs) and is
a multistep solver. The function is used when the
problem is a differential-algebraic or stiff equation
(http://www.mathworks.com/access/helpdesk/help/tech-
doc/ref/ode23.html#f92-998740).

Additive, antagonistic, or synergistic effect classification
analysis
Classification of additive, antagonistic, or synergistic
effect is determined by comparing the response to a
combinatorial perturbation with that to a single pertur-
bation [39,40]. This classification analysis has been
mainly used to categorize the efficacy of combinatorial
drugs into three types, considering drug dose as a per-
turbation. In the present analysis, we made some modi-
fications not to lose the original meaning so that we
could categorize the ERKPP inhibitory effect by the
combinatorial perturbations of Mig6 effect and gefitinib.
As an index for the efficacy of perturbation, we used the
concentration of ERKPP at t = 5 minutes. The perturba-
tion for the administration of gefitinib was expressed by
varying the parameter k3 (the rate constant for the for-
ward reaction of EGFR phosphorylation). The perturba-
tion for the effect of Mig6 was expressed by varying
both k3 (the rate constant for the forward reaction of
EGFR phosphorylation) and k8 (the rate constant for the
forward reaction of binding of EGFR to Shc), because
only these two parameters contribute to the strong inhi-
bition of ERKPP, although we assumed that four para-
meters (k3, k5, k7, and k8) were affected by Mig6 in
L858R model A. Given the values of k3 or k8 that indivi-
dually achieve X/2% ERKPP inhibition, the value of
paired perturbation additively produces X% ERKPP inhi-
bition. Therefore, the combinatorial effect at an inhibi-
tory intensity X is categorized as additive, antagonistic,
or synergistic according to whether the paired perturba-
tion produces ERKPP inhibition equal to, less than, or
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more than X%. For example, the combination of the
value of k3 and k8 which result in 10% inhibition of
ERKPP individually is categorized into additive, antago-
nistic, or synergistic effect, according to whether the
inhibition level in ERKPP is equal to, less than, or more
than 20%.

Results
Mathematical model of EGFR-ERK signaling in H1299 lung
cancer cells
To evaluate the dynamics of the signal transmission
from EGFR to its downstream elements, we used the
network model introduced by Kholodenko et al [25],
Hatakeyama et al. [28], and Wolf et al [34] with some
modifications. Figure 1 shows the EGFR signaling path-
way considered in the current study. The pathway starts
from the EGFR located in the cell membrane and is
composed of 27 reaction steps. EGF first binds to the
EGFR and causes receptor dimerization, then receptor
autophosphorylation occurs at particular tyrosine resi-
dues in the cytoplasmic domains (steps 1-3) [41-43].
Phosphorylated EGFR is dephosphorylated by protein
phosphotyrosine phosphatases (step 4) [44,45]. Some of
the phosphorylated dimers are internalized by binding
of Cbl and subsequently degraded (steps 5 and 6)
[46,47]. This receptor degradation is one of the most
important processes for preventing over-signaling. Other
phophorylated dimers associate with the Grb2 (growth
factor receptor-bound protein 2)/SOS (son of sevenless)
complex via Shc (Src homology and collagen domain
protein) (steps 8, 9, and 12) [48-50]. This complex can
dissociate, yielding the EGFR dimer, the Grb2/SOS com-
plex, and Shc (steps 10, 11, 13, and 14). After recruiting
Grb2/SOS with the phosphorylated EGFR dimer to the
plasma membrane, SOS activates Ras by exchanging
GDP for GTP (step 15) [51,52]. In an opposing reaction,
deactivation of Ras is accelerated by GAPs (GTPase-
activating proteins) associated with EGFR (steps 7, 16,
and 17). Binding of GAP to the phosphorylated EGFR is
a key step to control the output of the signaling pathway
[53-55]. EGF stimulation induces recruitment of GAP to
the membrane [31], and GAP is strongly activated after
binding to the phosphorylated EGFR. Ras deactivation
normally keeps its GTPase activity low. The GTP-bound
Ras can then translocates Raf1 to the cell membrane for
its activation (step 18) [56,57], which is also reversible
(step 19). Activated Raf1 activates MEK by phosphoryla-
tion of two serine residues (steps 20 and 22), and the
activated MEK phosphorylates ERK on threonine and
tyrosine residues (steps 24 and 26) [58,59]. The MAPK
cascade is negatively regulated by PP2A (protein phos-
phatase 2A) for the dephosphorylation of MEK (steps 21
and 23) and by MKP3 (MAPK phosphatase 3) for the
dephosphorylation of ERK (steps 25 and 27) [60,61].

After its translocation to the nucleus, activated ERK reg-
ulates gene expression by phosphorylating transcription
factors such as Elk and Myc [58,62-65].
To investigate cell-specific EGFR signaling dynamics,

we constructed an H1299WT model (WT model), an
H1299EGFR-WT model (EGFR-WT model), and two
alternate H1299L858R models (L858R model A with
Mig6 overexpression and L858R model B with Cbl over-
expression). The differences among these models are
summarized in Table 1. To simulate the effect of EGFR
overexpression in H1299EGFR-WT and H1299L858R
cells, the initial concentrations of EGFR in the respective
models were assumed to be higher than that in the WT
model. Also, we constructed two L858R models based
on H1299L858R cell-specific characteristics. In the first
model (L858R model A), Mig6 was added to the EGFR-
WT model because Mig6 is highly endogenously
expressed in H1299L858R cells [18]. For simplicity, the
effect of Mig6 was not described explicitly, but was rea-
lized by modifying four parameters in the EGFR-WT
model. The modified parameters were the rate constant
for the forward reaction of the EGFR phosphorylation
(k3), the binding of EGFR to Cbl (k5), GAP (k7), and Shc
(k8) (steps 3, 5, 7, and 8). These modifications were
included to mimic the effect of Mig6 overexpression,
which leads to suppression of EGFR phosphorylation
and binding of the EGFR dimer to other proteins
[19,21]. In the second model (L858R model B), the
initial concentration of Cbl was increased compared to
that in the EGFR-WT model, because H1299L858R cells
showed an increase in ubiquitination compared to
H1299EGFR-WT cells [15] and receptors in Cbl overex-
pressing cells underwent more rapid ligand-induced ubi-
quitination compared to control cells [66]. The values of
other parameters were the same as those in the EGFR-
WT model.

Time-course and dose-dependent phosphorylation by
EGF stimulation
First, we used experimental and computational approaches
to investigate the time-course of EGFR signaling dynamics.
Figure 2 and Additional file 1, Figure S1A show the
experimental results. The graphs show the time-courses
of phosphorylation levels after stimulation with 0.1, 1, and
10 nM EGF measured for four key proteins: EGFR, Shc,
MEK and ERK. H1299EGFR-WT cells showed the highest
level of phosphorylation in all four proteins, whereas the
H1299WT cells showed the lowest and the H1299L858R
cells were intermediate. Overexpression of EGFR induced
sustained and strong signaling activity, while the L858R
mutation reduced signaling particularly in the upstream
part of the signaling pathway (EGFR and Shc). In contrast,
the differences in the time-course kinetics among the
three derivatives became less obvious in the downstream
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Figure 1 Reaction scheme for EGFR signal transduction pathway in H1299 cells. The reaction steps of the EGFR signaling pathway are
labeled from 1 to 27. These numbers correspond to the biochemical reactions in Additional file 1, Table S1. Steps 4, 11, and 15-27 are described
by Michaelis-Menten kinetics and the other reactions by mass action. The individual reaction equations, the estimated parameters, and the
estimated ranges are explained in Additional file 1, Table S2-5. The inhibitory effects of Mig6 and gefitinib are indicated by red lines. E11: EGFR
homodimer; ShcP: free phosphorylated Shc; E11P: phosphorylated EGFR homodimer; Raf1A: activated Raf1; MEKP: singly phosphorylated MEK;
MEKPP: doubly phosphorylated MEK; ERKP: singly phosphorylated ERK; ERKPP: doubly phosphorylated ERK.
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Table 1 Differences in characteristics among the four H1299 models

Circumstances Model description

WT model ——— ———

EGFR-WT
model

EGFR overexpression Increased EGFR initial concentration

EGFR overexpression Increased EGFR initial concentration

Slow rate for the forward reaction of EGFR phosphorylation (k3)

L858R model A Mig6 overexpression Slow rate for the forward reaction of binding of phosphorylated EGFR to Cbl
(k5)

Slow rate for the forward reaction of binding of phosphorylated EGFR to GAP
(k7)

Slow rate for the forward reaction of binding of phosphorylated EGFR to Shc
(k8)

EGFR overexpression Increased EGFR initial concentration

L858R model B Increased ubiquitin-dependent EGFR
degradation

Increased Cbl initial concentration

(comparison with WT model).
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Figure 2 Time-course of the EGF-induced phosphorylation in the H1299 cells. Phosphorylation patterns of EGFR, Shc, MEK, and ERK in
H1299WT (first panel from left), H1299EGFR-WT (second panel from left) and H1299L858R (third and forth panel from left) cell lines. Experimental
results are shown as symbol plots. Western blot experiment was repeated twice, and mean values of the signal intensities were calculated. The
values were normalized for each protein so that the maximum values were equal to 1 and the values at t = 0 minutes were equal to 0 under
the assumption that all the proteins were inactive before EGF stimulation. Cells were treated with three concentrations of EGF: 10 nM (red circle),
1 nM (blue square), and 0.1 nM (green triangle). Representative western blot images are shown in Additional file 1, Figure S1A. Simulation results
are shown as solid lines. The lines represent the time-course phosphorylation levels in silico. Red, blue, and green lines correspond to simulation
results with three concentrations of EGF: 10 nM, 1 nM, and 0.1 nM, respectively.
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part of the signaling pathway (MEK and ERK). The simu-
lation results of WT, EGFR-WT, and two L858R models
for EGF stimulation (0.1, 1 and 10 nM) are shown in
Figure 2 and Additional file 1, Figure S2. As described in
the previous section, most of the parameters were com-
mon among the four models. Despite using these common
parameters, the models successfully captured the varia-
tions in time-course activation dynamics, and the simula-
tion results were fairly consistent with the experimental
results for all three H1299 cell derivatives (Figure 2).
Next, the EGF ligand-dose response was examined to

investigate how the L858R mutation affects cooperativ-
ity of EGFR signaling. Figure 3 and Additional file 1,
Figure S1B show the experimental results in the phos-
phorylation levels of EGFR, Shc, MEK, and ERK in the
EGFR pathway when the dose of EGF was varied. The
phosphorylation levels of EGFR and Shc gradually
increased as a function of the EGF concentration in
both H1299EGFR-WT and H1299L858R cells, while
MEK and ERK were highly phosphorylated even at
EGF concentrations as low as 1 nM. The phosphoryla-
tion of EGFR and Shc in the H1299L858R cells showed
a smaller dynamic range compared to that of the

H1299EGFR-WT cells, whereas there was no signifi-
cant difference between the two cell types in MEK
and ERK phosphorylation patterns. Again, the L858R
mutation reduced the phosphorylation levels in the
upstream part of the signaling pathway (EGFR and
Shc) in an EGF-dose dependent manner, but had little
effect on the downstream part (MEK and ERK). The
simulation results imply that the models fairly repro-
duced the ligand-dose dependent behavior of the
H1299EGFR-WT and H1299L858R cells (Figure 3).
Also, both L858R models A and B seem to equally
reproduce the time-course and the EGF dose-depen-
dency obtained with the H1299L858R cells. Additional
analyses are required to distinguish the model that
represents the behaviors of the signaling dynamics
associated with L858R mutation.

Mig6 plays a role in transmitting the effect of gefitinib to
the downstream part of the EGFR signaling pathway
To clarify unknown other factors that affect gefitinib sensi-
tivity, we investigated the gefitinib-dose response effect on
the EGFR signaling pathway. Figure 4A and Additional
file 1, Figure S1C show the experimental results of
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phosphorylation of the signaling proteins in the presence
of different doses of gefitinib. The H1299EGFR-WT and
H1299L858R cells showed similar dose-dependent
responses in the upstream proteins EGFR and Shc. How-
ever, the H1299L858R cells were more sensitive to gefiti-
nib administration at the phosphorylation of the
downstream proteins, MEK and especially ERK, compared
to the H1299EGFR-WT cells, which were essentially
insensitive to gefitinib for ERK phosphorylation (Figure
4A). Figure 4B shows the simulation results of the gefitinib
dose-response. The effect of the gefitinib was mimiced by
changing the kinetic parameter k3 of EGFR phosphoryla-
tion. a indicates the multiplying coefficient for k3. The
results indicate that the L858R model A, including Mig6,
successfully reproduced the inhibitory effect for ERK at
higher concentrations of gefitinib, whereas model B, which
included the effect of Cbl, failed to reproduce this
response. We confirmed that L858R model A with other
parameter sets that have similar cost function values yields
the same trends with regard to the role of Mig6 in gefitinib
sensitivity (data not shown). Also, we found that EGFR-
WT model at lower concentrations of EGF is as sensitive

to gefitinib for ERK phosphorylation as L858R model A
(data not shown). Based on these results, model B is inap-
propriate as the mechanism to explain the gefitinib sensi-
tivity, whereas model A remains as a viable candidate.
Although the sensitivity to inhibition of phosphorylation

by gefitinib was different in the downstream proteins
(MEK and ERK) between H1299EGFR-WT and H1299
L858R cells, the difference was small in the upstream pro-
teins (EGFR and Shc). Therefore, it seemed likely that par-
ticular reaction steps in the pathway would amplify the
small difference observed in the upstream proteins (EGFR
and Shc). To identify the critical steps, we analyzed the
contribution of each parameter to the downstream phos-
phorylation influenced by gefitinib. We used an index that
indicates the ratios of the upstream signaling activity to
the downstream signaling activity in the presence of gefiti-
nib. The output of the upstream signaling was the total
phosphorylated Shc, and the downstream output was the
total phosphorylated ERK. When RX is defined as the
ratios of total phosphorylated X with gefitinib to total
phosphorylated X without gefitinib, the index RShc/RERK

was calculated for every combination of the four
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Figure 4 Gefitinib-dose dependent effects on the phosphorylation of signaling molecules. (A) Experimental results. Phosphorylation of
EGFR, Shc, MEK, and ERK in H1299EGFR-WT (green circle) and H1299L858R (red square) cells was measured after 5 minutes of EGF (10 nM)
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parameters (k3, k5, k7, and k8) affected by Mig6. As a result,
the combination of a lower k3 (the rate constant for the
forward reaction of the EGFR phosphorylation) and k8
(the rate constant for the forward reaction of binding of
EGFR to Shc) contributed to effectively inhibit the total
phosphorylation of ERK in the presence of gefitinib
(Figure 5A). The values in each panel indicate RShc/RERK

calculated by using the values of parameters in L858R
model A for two changing parameters and those in EGFR-
WT model for two unchanging parameters. The value of
RShc/RERK for L858R model A is 10.6520. Next, we ana-
lyzed which downstream reactions were influenced by the
combination of these two parameters. In this case, E11P/
ShcP/Grb2/SOS was used as the upstream output, and the
downstream outputs were RasGTP, Raf1A, MEKP,
MEKPP, ERKP, and ERKPP. When RY is defined as the
ratios of Y with gefitinib to Y without gefitinib, Figure 5B
shows RE11P/ShcP/Grb2/SOS/RY by varying the values of k3
and k8 (Y: RasGTP, Raf1A, MEKP, MEKPP, ERKP, and
ERKPP). The values in each panel indicate RE11P/ShcP/Grb2/
SOS/RY calculated by using the values of k3 and k8 in
L858R model A and k5 and k7 in EGFR-WT model. Based
on this analysis, we found high gefitinib sensitivity in
MEKPP, ERKP, and ERKPP. These results indicate that
the steps of MEK phosphorylation/dephosphorylation
(steps 22 and 23) and ERK phosphorylation/dephosphory-
lation (steps 24-27) amplify the gefitinib sensitivity.

The combination of Mig6 and gefitinib has a synergistic
effect in inhibiting EGFR signaling
The only difference between the EGFR-WT model and
the L858R model A is in the negative EGFR regulation
produced by Mig6, therefore, which can be experimen-
tally verified by overexpressing Mig6. We have known
that expression level of Mig6 is reversely correlated with
ERK phosphorylation level in the H1299 derivatives with
various EGFR mutations [18]. To study its effect on the
upstream signaling, we performed western blotting for
phosphorylated EGFR. Figure 6A shows that Mig6 over-
expression more inhibited EGFR phosphorylation in the
presence of gefitinib. Therefore the effect of Mig6 for
gefitinib administration was further studied using MTT
cell proliferation assay. At a high concentration (5 μM)
of gefitinib, cell growth was suppressed in the cells with
Mig6 overexpression, but not in the H1299EGFR-WT
cells (Figure 6B). This result indicates that Mig6 indeed
enhances the inhibitory effect of gefitinib as our mathe-
matical model had predicted.
We next analyzed the effects of a combinatorial per-

turbation of Mig6 and gefitinib on the signaling inhibi-
tion. Combinations of perturbations can be categorized
into three interaction types: additive, antagonistic, or
synergistic, according to whether the combination of
two perturbations produces an effect equal to, less than,

or larger than that expected based on the individual
effects of the single perturbations [39,40]. We analyzed
the effect of the combination of Mig6 and gefitinib on
ERKPP (see Material and Methods section for a detailed
description of the analysis method) and found that the
combination of Mig6 and gefitinib exhibits a synergistic
effect (Figure 6C). This result indicates that synergism is
produced by the dual inhibition of the step of EGFR
phosphorylation (k3) which both Mig6 and gefitinib
inhibit and the step of binding of EGFR to Shc (k8)
which Mig6 alone inhibits.

Discussion
Overexpression or mutation of EGFR has been observed
in lung cancers [9,67,68], and these molecular changes
affect the prognosis and treatment sensitivity of patients
[10,69-74]. Those abnormalities could cause changes in
overall titers of signaling networks at the molecular, the
cellular, and even the individual levels. Mathematical
model is helpful for understanding of the mechanical
aspects of interconnected signaling network and predict-
ing input-output behaviors in the pathway. However, it
is often very difficult to explain the variation of reac-
tants in signal transduction pathway using a single uni-
fied mathematical model. In this paper, we attempted to
build such a unified model that could uncover the cell-
specific regulatory mechanisms produced by overexpres-
sion and mutation of the EGFR and the association with
gefitinib sensitivity.
The model used in this paper successfully reproduced

the experimental observations concerning the activation
of the key proteins in the pathway and discriminated
the roles of Mig6 and Cbl in gefitinib sensitivity. The
model was based on kinetic equations, and most of the
parameters for these equations were common for all
models. The differences in the parameters were confined
to specific steps and proteins - EGFR overexpression,
inhibitory effects caused by Mig6, and Cbl overexpres-
sion leading to the degradation of EGFR.
Our results revealed that the effectiveness of gefitinib

in cells is largely affected by not only on its direct binding
affinity with EGFR but also on the presence of an addi-
tional molecule, Mig6. According to recent reports, the
sensitivity to kinase inhibition reflects intrinsic differ-
ences in the binding affinity of the EGFR mutants such
as L858R, G719S, and exon19 deletions [16,75-78]. Yun
et al [16] showed that gefitinib directly binds more tightly
to the L858R mutant than to the wild type EGFR in vitro,
while Fabian et al [17] indicated that EGFR with gefitinib
sensitive mutations does not differ from wild type EGFR
in terms of gefitinib binding affinity. This would suggest
that the stronger interaction of the mutated EGFRs with
gefitinib may not be the only one mechanism for the
good clinical response to gefitinib in NSCLC [17]. This
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inconsistency in previous reports suggested to us that
unknown factors may play an important role in gefitinib
sensitivity. The gefitinib-dose response study (Figure 4)
showed that the difference in the phosphorylation levels
of the downstream proteins (MEK and ERK) inhibited
by gefitinib is large between H1299EGFR-WT and
H1299L858R cells, whereas the difference in the
upstream proteins (EGFR and Shc) is small. By a
detailed computational analysis, we found that Mig6 has
an important role in propagating the gefitinib effect at
the steps of MEK phosphorylation/dephosphorylation
and ERK phosphorylation/dephosphorylation. Addition-
ally, the combination of the inhibition of EGFR phos-
phorylation (the effect of Mig6 and gefitinib) and the
inhibition of binding of EGFR to Shc (the effect of
Mig6) produced a synergistic inhibitory effect on EGFR
signaling. Therefore, Mig6 could be one of the critical
factors to explain gefitinib sensitivity at cellular level.
We constructed the model by referring to the earlier
studies on Mig6 functions [20-22]. However, the model
could be modified and improved when novel mechan-
ism of Mig6 in the regulation of EGFR or new regula-
tors associated with the EGFR L858R mutation are
identified by further studies.
Our results shown in Figures 2 and 3 are consistent

with a previously published report that EGFR with the
L858R mutation did not have stronger EGFR phosphor-
ylation upon EGF stimulation when compared to the
wild type EGFR in H1299 cells [15]. On the other hand,
Guha et al [79] and Yun et al [16] observed significantly
high phosphorylation of the L858R-mutated EGFR com-
pared with wild type EGFR expressed in HBEC cells and
Sf9 cells. This inconsistency among cell types may be
explained by the relative levels of Mig6, which is highly
expressed when EGFR kinase is in an active state.

Conclusion
Overall, the analysis presented in this paper allows
understanding of the impacts of cancer-related abnorm-
alities on the EGFR signaling pathway. Also, we demon-
strate the feasibility of using computational models to
predict one of the determinants for the evaluation of
drug sensitivities. Despite the fact that a new drug may
help prevent the deaths of thousands of patients, there
are many instances where the patients become severely
ill or die because of serious unwanted side-effects.
Hence, in prescribing medications appropriate for indivi-
dual patients, there is a clear need for guidance in pre-
dicting side-effects and drug sensitivity. It would be no
exaggeration to say that the side-effects could not be
predicted in advance, since signaling pathways are very
complex. We believe that in part such guidance can be
predicted by computational modeling of appropriate sig-
naling pathways.

Additional material

Additional file 1: Supplementary Information. This PDF file contains
all additional figures and tables referenced in the text.

Additional file 2: H1299 model. This XML file contains our model
represented by SBML.
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