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Codon usage variability determines the
correlation between proteome and transcriptome
fold changes
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Abstract

Background: The availability of high throughput experimental methods has made possible to observe the
relationships between proteome and transcirptome. The protein abundances show a positive but weak correlation with
the concentrations of their cognate mRNAs. This weak correlation implies that there are other crucial effects involved in
the regulation of protein translation, different from the sole availability of mRNA. It is well known that ribosome and
tRNA concentrations are sources of variation in protein levels. Thus, by using integrated analysis of omics data, genomic
information, transcriptome and proteome, we aim to unravel important variables affecting translation.

Results: We identified how much of the variability in the correlation between protein and mRNA concentrations
can be attributed to the gene codon frequencies. We propose the hypothesis that the influence of codon
frequency is due to the competition of cognate and near-cognate tRNA binding; which in turn is a function of the
tRNA concentrations. Transcriptome and proteome data were combined in two analytical steps; first, we used Self-
Organizing Maps (SOM) to identify similarities among genes, based on their codon frequencies, grouping them
into different clusters; and second, we calculated the variance in the protein mRNA correlation in the sampled
genes from each cluster. This procedure is justified within a mathematical framework.

Conclusions: With the proposed method we observed that in all the six studied cases most of the variability in
the relation protein-transcript could be explained by the variation in codon composition.

Background
The integration of large scale transcriptome and proteome
data along with genome-wide sequence information can
give insights into the molecular mechanisms that control
cellular functions. Moreover, formulation of mathematical
models, either mechanistic or statistic, to express such
molecular mechanisms remains a challenging task to
understand system properties [1]. The correlation between
mRNA transcripts and their corresponding cognate pro-
teins has been found to be positive, but it is not sufficiently
good to predict protein levels based on their cognate tran-
script [2,3]. If all the mRNAs were translated at a constant
rate the correlation between mRNA and protein concen-
tration would be high. The observed lack of correlation is
therefore due to the particularities of the translation

mechanism. For instance, in yeast 73% of the variance in
protein abundance is explained by the translation mechan-
ism and only 27% due to the variations of the mRNA con-
centration [4,5]. To explain the differences in the
responses between protein and transcript levels recent stu-
dies attempted to include information of the translation
mechanism by using mechanistic modeling [6] or by using
DNA sequence variables and statistic modeling [7]. Several
publications have focused on the kinetics of translation;
consisting of initiation, elongation and termination phases.
For instance, using a gene-sequence-specific mechanistic
model, Mehra and Hatzimanikatis [8] studied the rates of
initiation, elongation and termination and found that the
different response to mRNA levels is mainly dependent on
the initiation step. Following these results, Zouridis and
Hatzimanikatis [9] suggested that maximization of transla-
tion rate can be achieved by an interplay between riboso-
mal occupancy and ribosome distribution along the
translated mRNA fragment. Subsequently, in a following
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study by the same authors [10], it was found that not only
initiation is a controlling step, but also the elongation
phase, which is function of the of tRNA concentration.
The mentioned authors reformulated their mathematical
model to include the competition between the different
aminoacyl-tRNA’s.
Codon usage has been shown to be correlated with

the abundance of transcripts and proteins [11]. Sharp
and Li [12] observed that the variability in mRNA levels
of different genes is related to their codon usage and
the genome-wide codon usage is related to the number
of copies of tRNA genes [13]. Recent studies in E. coli
have demonstrated experimentally that perturbation in
the codon usage of a set of 40 proteins affected both the
translation of the proteins and the tRNA levels in the
cell [14].
Based on the analysis of published experimental pro-

teome and transcriptome data for the yeast Saccharomyces
cerevisiae (Additional file 1) we tried to evaluate how
much the variance in the protein-mRNA correlation is
affected by differences in codon usage; which has been
demonstrated to be a relevant factor that affects the trans-
lation efficiency, either, by increasing the proofreading effi-
ciency of the codon or modifying the folding energy of the
mRNA [15,16]. The protein datasets used in this analysis
are the result of experimental setups to quantify the pep-
tides associated to each protein, therefore these techniques
account for the amount of translated protein and, as it was
suggested by Greenbaum et al [17], the protein level can
be defined as the “translatome”.

Methods
Molecular mechanisms of translation
Translation in yeast starts by the formation of the PIC
(pre-initiation complex) which is formed in three steps:
first, binding of the specific initiation Met-tRNA to the
small ribosomal subunit; second, the resulting complex
binds to the mRNA molecules localizing the start
codon; and third, the attachment of large ribosomal sub-
unit to generate the polysome structure. All these events
are assisted by cis-acting proteins called translation fac-
tors. For the elongation process the polysome structure
generates three binding sites (E,P,A). In each step an
AA-tRNA has to reach the position of site A to place
the correct amino acid in the peptide sequence [18,19].
Nevertheless, the existing wobble interactions generate a
competition between the cognate and near cognates of
charged tRNA (AA-tRNA). Thus, the elongation rate is
the result of the time needed to transport the cognate
AA-tRNA molecule to the site A in the ribosome [20].
As this is not an efficiently selective step, near cognates
can interact in place causing delay due to proof reading
and rejection (Figure 1).

Mathematical framework
Conceptually there is a remarkable difference between
correlating abundance expressed in molecules per cell
units compared to fold change in abundance. For our
analysis we have collected six datasets where fold
changes were studied. For instance, in Figure 2a), the
plot contains the values of protein and mRNA fold
changes for different genes. If the protein concentration
were proportional to mRNA concentration, the fold
changes (fj) between conditions should be equal:

f fj
P

j
R (1)

for j = 1...number of genes in the dataset. The super-
script P and R correspond to Protein and mRNA quan-
tities, respectively. If such relation were true, the
experimental values should fall along the dashed line
which is the one-to-one relationship, Figure 2a). If the
proportionality constant between mRNA and protein
concentrations changed between conditions, the
expected graph would be a straight line with slope dif-
ferent from one. However what we found experimentally
is a set of scattered points. This means that the propor-
tionality constant not only changes between conditions
but also does it differently for each protein.

f fj
P

j j
R=  (2)

where the constant a can take different positive
values; plot b) in Figure 2. This constant can be seen as
an amplification factor that implicitly contains the varia-
tion from different sources such as: posttranscriptional
events, modification in the translation rates and protein
half-lives.
The differential equation governing the concentration

of a particular protein is the following one [21-23]:

d P

dt
k mRNA k P Pj
s j j d j j j

 
        , ,  (3)

Where [P] is the concentration of each protein,
[mRNA] is the concentration of mRNA, ks,j and kdj are
the protein synthesis and degradation rate constants;
the dilution term is equal to the growth rate μ. In our
approach we write the constant ks,j as the ratio of two
characteristic parameters, the number of ribosomes
united to each mRNA molecule rRj and the elongation
time of the protein tj. Note that this substitution is
absolutely rigorous. The number of proteins synthe-
sized per unit of time is equal to the number of ribo-
somes synthesizing the corresponding protein divided
by the time that each ribosome takes to synthesize a
protein.
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d P

dt t
mRNA k P Pj Rj

j
j d j j j

 
        


, (4)

The two negative terms in the equation correspond to
the degradation rate and dilution of proteins as a result
of the cellular growth. On the other hand, the elonga-
tion time depends on the gene codon composition in
the following way

t Sj ij i

i

  (5)

Where Sij is the number of codons i in the gene j and
τi is the average time that will take to add the corre-
sponding amino acid to the nascent peptide. This aver-
age time is specific for each codon and it depends on
the concentration of the corresponding tRNA. The
lower is the concentration of a particular tRNA, the
longer the time that it takes to add it. The specific time
also increases with the number of wrong proof readings
that the ribosome performs before adding the right
tRNA [20,24].
Assuming steady state for each protein and supposing

that only the elongation time changes between proteins
and all the other parameters can change in between
conditions but not between proteins, we obtained the
following relation between mRNA and protein fold
changes.

f CT fj
P

j j
R= (7)

Where the non-dimensional groups are,
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The factor Tj depends on the protein composition and
the tRNA concentrations in each of the two compared
conditions, while the factor C groups all the effects that
have been considered to vary only between conditions
and do not depend on the protein. If this hypothesis
were true, the genes with similar codon frequencies
would show a similar behavior in their relation between
protein and mRNA fold changes.

Clustering
In this paper we want to evaluate the effects of the
codon frequency on protein translation. Proteins with
similar codon contents (Sij) will have similar values for
the coefficient Tj, if our hypothesis is correct, in a clus-
ter of proteins with similar Tj the variability of the ratio
fj
P/fj

R will be smaller than in the full proteome. We clus-
tered genes using information about the codon compo-
sition which was extracted from the genome sequence
downloaded from SGD (http://www.yeastgenome.org/).
The codon usage has already been shown to be one of

Figure 1 Translation of mRNA into proteins consists in three steps, initiation, elongation and termination. The elongation process
consists in the attachment of the cognate tRNA in the right sequence position. Due to Wobble interactions near cognates compete for the
position in the ribosome site A causing a delay in elongation time.
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the sequence features most highly associated with pro-
tein expression [14,25]. The data were normalized using
the total codon content of each gene (ΣiSij).
To cluster the proteins according to the codon usage

data we used an unsupervised clustering method analy-
sis, SOM, which is a clustering method based on neural
networks, and it helps to visualize datasets by mapping
a high dimensional data space into a two dimensional
space [26]. SOM analysis provides a robust clustering
method for outliers or data dispersion [27,28]. There is

no theoretical background that dictates the number of
map units (neurons) to build the grid; therefore we
selected 20 units as it gave the best distribution of genes
across the clusters (see Figure 3).

GO enrichment analysis
To elucidate if the genes in each cluster shown func-
tional enrichment we performed a Gene Ontology (GO)
enrichment analysis. We performed hypergeometric
tests using GO functional annotation from SGD to

 

                a) 

 

 
      b) 

Figure 2 Transcriptome and proteome correlations. a) the plot presents transcriptome and proteome experimental data where it is observed
that there is a substantial deviation from the correlation one-to-one represented by the dashed line; b) the relationship between proteome and
transcriptome is a function of the amplification factor a which accounts for different parameters such, tRNA availability, ribosome density,
protein and transcript degradation rates, among others.

Olivares-Hernández et al. BMC Systems Biology 2011, 5:33
http://www.biomedcentral.com/1752-0509/5/33

Page 4 of 9



identify which GO biological process terms are enriched
in each category. GO enrichment analysis was per-
formed using BINGO tool [29]; a Cytoscape plug in. To
identify which GO terms where significant we used a
p-value less that 0.01 as a cutoff.

Analysis of variance
For each of the clusters obtained from the SOM analysis
we calculated the ratio between the fold changes in
transcriptome and proteome obtaining the value of a
and applied the log2 transformation. Logarithmic trans-
formation of data is commonly used as this transforma-
tion tends to provide values that are approximately
normally distributed and for which ANOVA tests are
appropriate [30]. Box plots and histograms showing the
distribution of the data are in Additional File 2.
This was done for each protein within each cluster.

The subsequent statistical tests will be performed on the
following random variable:

x
f

f
j

j
P

j
R= log2 (9)

ANOVA is a hypothesis test method suitable to com-
pare the means across different groups; clusters in our
case. Nevertheless, in this study we focus on quantifying
the variance inside the clusters compared with the var-
iance in the complete dataset. In this manner, the
results will shed light on the amount of variance in
expression levels due effects of the codon frequency and
the associated tRNA competition in each of the different
clusters. To calculate how much of the total variance for
the whole data set was observed between clusters and
within clusters the following mathematical formalism is

needed. The total sum of squares is the sum of the
squares within each cluster plus the sum of squares
between the clusters.

SS SS SSTotal between within  (10)

Where:

SS x xwithin jc

j

c

c

 














2

(11)

and

SS n x xbetween c c

c

   2
(12)

The index j identifies each protein inside a given clus-
ter and the index c identifies each cluster. The number
of proteins in cluster c is noted as nc. The main ques-
tion we are trying to answer is how much of the experi-
mental variation in the fold changes can be explained by
the variation in codon frequencies. The rest of the varia-
tion will be the result of changes in parameters such as
degradation rate or number of ribosomes per mRNA
molecule that we have grouped in the factor C in Eq.7.

Experimental data
We used six experimental datasets on transcriptome and
proteome sampling of the yeast S. cerevisiae. All datasets
were collected from the literature and each of them
involves a different kind of cellular perturbation. To
identify each of the datasets we used an ID which is
composed using the last name of the first author: i.e,

Figure 3 Using the genome amino acid sequence content from yeast and applying SOM analysis, the result shows 20 different
clusters with different numbers of ORFs.
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Griffin [31], Ideker [32], and Washburn [33]. For the
dataset of Usaite [34,35] the ID is further specifying the
type of deletion performed; e.g.Usaite.snf1 is the ID for
deletion of the SNF1 gene in their study. The details for
each dataset are presented in Additional File 1 (supple-
mentary table S1). These data consist of fold change
values, differently from other studies that have used
abundance (molecules/cell) [36] to study the correlation
between protein and mRNA and the co-variables that
affect such correlation [15,37]. In a similar approach,
Nie et al 2006 [38,39] used fold change ratios to demon-
strate the correlation between mRNA and protein
expression.

Results and Discussion
Correlation between proteome and transcriptome
abundance in yeast has been widely studied and it has
been observed to be weakly positive [2,3]. Fold changes
have shown weak positive correlations as well [31]. In
this analysis we used experimental transcriptome and
proteome data from yeast (See table in Additional
File 1 for more details) to investigate how much of the
variance in the relationship between these two quanti-
ties is explained by the variance in codon usage
[14,15,25,40,41]. More details of the experimental tech-
niques of the datasets shown in Additional File 1 (sup-
plementary table S2) can be seen elsewhere [31-35]. It
has been demonstrated by Najafabadi et al. [14] that
the codon usage content provides direct information
about the translation elongation rate based on the
demand of tRNA, which affects the fold change of the
protein levels. Nevertheless, there are essential differ-
ences in the type of data and the method used for the
analysis compared to our work. Najafabadi et al initi-
ally clustered the expression patterns using the “aver-
age” across several conditions in expression levels and
expression “patterns” to perform the codon usage ana-
lysis and tRNA modulation. In our approach, we initi-
ally used the codon usage as a mean to identify sets of
similar genes and performed the analysis using tran-
scriptome and proteome levels independently for each
of the considered conditions.
The initial analysis aimed to identify classes of genes

with similar codon usage in their primary sequence
using the whole annotated genome. From the SOM ana-
lysis we obtained a set of 20 different clusters in which
the biggest cluster contained 712 ORFs, and the smallest
190 ORF’s. The distribution of the clusters is shown in
Figure 3.
The results of applying SOM can be observed in

Figure 4 which contains the unified distance matrix
(U-matrix) showing the distances between clusters and
also contains the PCA-like projection of the different
clusters. Figure 4a) shows the distribution of the clusters

and the distances between them. In the PCA-like projec-
tion, Figure 4b), it is shown that the separation of the
clusters is uniform.
Each of the clusters contains a different number of

genes (Figure 3) and to identify the functionality of
these genes we applied a hypergeometric distribution
test to assess the overrepresentation GO biological pro-
cess. The BINGO tool [29], a Cytoscape plug in [42],
was used to perform the analysis. In total the hypergeo-
metric test reported 596 different GO biological process
terms, out of which only 115 were repeatedly observed
across the different clusters. The analysis shows enrich-
ment of many terms, and by taking the 5 most signifi-
cant GO terms (with a p-value < 0.01 and after multiple
testing correction, FDR) we observed that there are few
overlaps across clusters (see Table 1). The detailed GO
analysis is contained in Additional file 3. This observa-
tion suggests that the primary structure of proteins can
be naturally selected so that the proteins performing
similar functions have similar codon frequencies
[15,25,43]. The reason for that could be that proteins
with similar codon frequencies respond in a similar way
to changes in the transcription levels; as it was sug-
gested also in Akashi H. (2003) and Tuller et al. (2007).
Each cluster obtained from the SOM analysis contains

genes that show similar codon frequencies. Thus, in
order to investigate how much of the variance in the rela-
tionship between protein and mRNA fold change is the
result of the differences in codon frequency, we estimated
the amplification factor xj for each data point according
to Eq. 9. The calculations were performed for each of the
6 considered datasets. Table 2 presents the sums of
squares of the deviations from the average (Equations 9-
13) between and within clusters. It can be seen that for
all the datasets, the sum of squares between clusters is
higher than the sum of squares within the clusters. For
instance, for Usaite.snf1, the fraction of the variability
within the clusters is 0.27 and the fraction of variability
between the clusters is 0.73. This means that more simi-
lar proteins in terms of codon frequency, show similar
responses in protein concentration to changes in mRNA,
therefore most of the variability in the mRNA-protein
relation can be explained by the codon frequency. The
rest of the variability is attributed to factors such as pro-
tein degradation and seems to be lower compared to the
effect of variability in the codon frequency. The F-test
shows that except for one out of six datasets, the null
hypothesis (e.g. all the clusters have the same average
amplification factor) can be safely rejected.
Alternatively to this analysis, we used exactly the same

procedure but using amino acid content instead of
codon frequency. In Additional File 1 the Table 2 pre-
sents the values of the variance comparing amino acid
content and codon frequency. As it was expected, the
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                          a)                                                                            b) 
Figure 4 a) U matrix with the 20 clusters (from C1-C20) and b) PCA-like projection. SOM clustering was based on the protein amino acid
sequences. In the U-Matrix blue color separate neurons that are near to one another, and red to neurons that are distant from one another.

Table 1 List of GO biological process terms in each cluster after overlap the results from all datasets

Cluster
1

translation biosynthetic process cellular biosynthetic
process

cellular protein metabolic process protein metabolic
process

Cluster
2

Transport establishment of
localization

localization transmembrane transport glutamine family amino
acid catabolic process

Cluster
3

amine transport establishment of
localization

amino acid transport transmembrane transport carboxylic acid
transport

Cluster
4

GPI anchor
biosynthetic process

GPI anchor
metabolic process

phosphoinositide
biosynthetic process

lipoprotein metabolic process lipoprotein biosynthetic
process

Cluster
6

small molecule
metabolic process

small molecule
biosynthetic process

carboxylic acid metabolic
process

oxoacid metabolic process organic acid metabolic
process

Cluster
7

small molecule
metabolic process

small molecule
biosynthetic process

cellular nitrogen
compound biosynthetic
process

fatty acid catabolic process organic acid catabolic
process

Cluster
8

telomere
maintenance via
recombination

Cluster
10

telomere
maintenance via
recombination

Cluster
11

small molecule
metabolic process

small molecule
biosynthetic process

heterocycle metabolic
process

cellular nitrogen compound
biosynthetic process

cellular ketone
metabolic process

Cluster
12

endocytosis

Cluster
13

transposition, RNA-
mediated

transposition cellular process loss of chromatin silencing cofactor biosynthetic
process

Cluster
14

transposition, RNA-
mediated

transposition regulation of biological
process

regulation of cellular process protein amino acid
phosphorylation

Cluster
16

ribosome biogenesis ribonucleoprotein
complex biogenesis

rRNA metabolic process rRNA processing ncRNA processing

Cluster
17

cellular component
biogenesis

nucleic acid
metabolic process

macromolecular complex
subunit organization

ribonucleoprotein complex biogenesis RNA metabolic process

Cluster
18

nucleic acid
metabolic process

cellular response to
stress

cellular component
organization

nucleobase, nucleoside, nucleotide
and nucleic acid metabolic process

response to DNA
damage stimulus

Cluster
19

cell cycle cell cycle process nucleic acid metabolic
process

cellular component organization cell cycle phase

Cluster
20

regulation of
biological process

biological regulation M phase regulation of cellular process cell cycle phase

*the genes in clusters 5, 9 and 15 were annotated to the GO term “biological process unknown”.

Olivares-Hernández et al. BMC Systems Biology 2011, 5:33
http://www.biomedcentral.com/1752-0509/5/33

Page 7 of 9



same conclusions can be extracted both using codon
frequency and amino acid content.

Conclusions
Experimentally, it has been observed that the correlation
between transcriptome and proteome is positive but not
high enough to predict protein levels based on their cog-
nate mRNA transcript levels. In this work, by using experi-
mental transcriptome and proteome data together with a
statistical analysis, it was shown that most of the variability
in the correlation between protein and mRNA concentra-
tion can be explained by the differences in codon usage.
Thus, genes with similar codon frequencies show similar
correlations between mRNA and protein levels. It was also
observed that genes involved in the same cellular functions
tend to have more similar codon frequencies. A possible
explanation for this fact is the evolutionary advantage that
would suppose that the concentrations of proteins
involved in the same processes respond in similar ways to
perturbations in the mRNA levels.

Additional material

Additional file 1: Description and references for the experimental
datasets and comparative table for variances in amino acid content.
Supplementary Table S1. This is the list of the six datasets thet were used
in this analysis containing expression values for protein and transcript.
These datasets have been published on previous works and are
considered as high quality data. Supplementary Table S2. It contains the
variance in the amplification factor in clusters built using amino acid
content and codon usage respectively.

Additional file 2: Histograms and box plots of the experimental
data. This file contains the histograms and boxplots showing the
experimental distributions of the amplification factor, used in the analysis.

Additional file 3: Cluster results and amplification factors data. This
workbook contents the cluster number for each of the ORF annotated
for Saccharomyces cerevisiae. The clusters were constructed using the
codon sequence content which was normalized suing the total number
of codons.
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