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Abstract

transcriptional regulatory network perspective.

the mutants.

mediator.

Background: The 3D structure of the chromosome of the model organism Escherichia coli is one key component
of its gene regulatory machinery. This type of regulation mediated by topological transitions of the chromosomal
DNA can be thought of as an analog control, complementing the digital control, i.e. the network of regulation
mediated by dedicated transcription factors. It is known that alterations in the superhelical density of chromosomal
DNA lead to a rich pattern of differential expressed genes. Using a network approach, we analyze these expression
changes for wild type E. coli and mutants lacking nucleoid associated proteins (NAPs) from a metabolic and

Results: We find a significantly higher correspondence between gene expression and metabolism for the wild
type expression changes compared to mutants in NAPs, indicating that supercoiling induces meaningful metabolic
adjustments. As soon as the underlying regulatory machinery is impeded (as for the NAP mutants), this coherence
between expression changes and the metabolic network is substantially reduced. This effect is even more
pronounced, when we compute a wild type metabolic flux distribution using flux balance analysis and restrict our
analysis to active reactions. Furthermore, we are able to show that the regulatory control exhibited by DNA
supercoiling is not mediated by the transcriptional regulatory network (TRN), as the consistency of the expression
changes with the TRN logic of activation and suppression is strongly reduced in the wild type in comparison to

Conclusions: So far, the rich patterns of gene expression changes induced by alterations of the superhelical
density of chromosomal DNA have been difficult to interpret. Here we characterize the effective networks formed
by supercoiling-induced gene expression changes mapped onto reconstructions of £. coli’s metabolic and
transcriptional regulatory network. Our results show that DNA supercoiling coordinates gene expression with
metabolism. Furthermore, this control is acting directly because we can exclude the potential role of the TRN as a

Background

A single Escherichia coli chromosome comprises 4.6 Mb
and must be compacted at least ~10° fold to fit inside the
bacterial cell. Despite tremendous compaction the
nucleoid is a dynamic structure adapted to varying rates of
replication and different transcriptional requirements
resulting from changes in environmental conditions. This
double requirement of compaction and differential gene
expression implies that bacterial chromatin must possess a
high degree of spatial organization. Recent investigations
indicate that the maintenance and utilization of negative
supercoils in the DNA is central to both issues [1].
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In the protein-free DNA molecule, DNA superhelicity
is partitioned into a twist component, 7w, which is
reflected in a twisting or untwisting of the double helix
for positively and negatively supercoiled DNA respec-
tively, and a writhe component, Wr, which is a measure
of the three-dimensional path of the double helical axis.
In a closed topological domain these quantities are
related to a change in linking number (ALk) from the
relaxed state such that ALk = ATw + Wr. Negative super-
coiling can facilitate both DNA folding and compaction
as well as the untwisting of DNA which is required for
the initiation of transcription and replication [2].

Gene promoter regions are generally characterized by
high deformability, being susceptible to duplex destabili-
zation under conditions of superhelical stress [3-5]. The
cellular promoters can be thus understood as devices
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channeling the free energy of negative supercoiling to
localized, biologically relevant sites in DNA. Several stu-
dies using different promoters and promoter derivatives
revealed that there is a distinct, yet characteristic, cou-
pling between the superhelical density of DNA and the
activity of a particular promoter [6-8]. A change of
supercoiling could thus globally and differentially affect
the efficiency of channeling superhelical energy at dis-
tinct promoters, allowing coordinated change of gene
expression activities to occur.

Besides classical modes of transcriptional regulation
through dedicated transcription factors (the transcrip-
tional regulatory network), which we would like to refer
to as digital control [9], it is well known that DNA
topology affects gene expression in prokaryotes [10] as
well as in eukaryotes [11], which we call analog control
([9]; see Figure 1A).

We want to emphasize that the terminology of “digital”
and “analog” control as contributions to gene regulation,
which has been introduced in Marr et al. [9], is intended
to emphasize the qualitative difference between regula-
tion mediated by transcription factors and regulatory
action exerted by DNA topology. We are aware that (1),
when zooming into the elementary process of transcrip-
tion factor diffusion and binding etc., digital control has
many graded, non-binary properties and (2) stabilization
of specific structural modes of the DNA by NAPs can be
viewed as a discontinuous, discrete features of analog
control. However, the advantage of dissecting the digital
("on or off”) and analog ("more or less”) logic of tran-
scriptional regulation is in integrating the distinct types
of information into a holistic approach, while separately
each approach falls short of describing this multifaceted
phenomenon.

In the bacterial cell the abundant nucleoid associated
proteins (NAPs), including FIS, H-NS, HU, Lrp, Dps and
IHF, fulfill the role of packaging and dynamic constraint
of superhelicity. These NAPs are assumed to be media-
tors of analog control exerted by long-range nucleopro-
tein structures formed by binding of multiple low affinity
sites in the chromosome as opposed to digital control
exerted by low concentrations of dedicated transcription
factors binding specific DNA sites with high affinity [9].

In particular, this combination of a global state (i.e.
the superhelical density) and local states (domains and
chromatin) is responsible for the spatial transcript pat-
terns observed along the chromosome [10,12-14]. DNA
supercoiling is homeostatically controlled by topoisome-
rase I, which leads to DNA relaxation, and DNA gyrase
which introduces negative supercoils into the DNA [15].
Furthermore, the superhelical density is responsive to a
range of physiological conditions, e.g. the growth phase
([16]; see also Figure 1B), phosphorylation potential of
the cell [17] and stress conditions [18]. It is precisely
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this physiological dependence that prompted us to ask
whether DNA supercoiling is a global regulator relating
the chromatin structure and transcription to metabolic
demand [10,19].

In order to answer this question on a system level we
utilize alterations of superhelical density, facilitated by
adding the topoisomerase inhibitor norfloxacin to
genetically engineered isogenic E. coli strains containing
drug-resistant alleles of topoisomerase genes and thus
selectively inhibiting either DNA gyrase or topoisome-
rase IV in these strains (see Methods; [10,20]) to mea-
sure supercoiling induced gene expression changes
together with a combination of NAP mutations (FIS and
H-NS, see Figure 1C and 2), thus precluding the buffer-
ing effects of the homeostatic network [6]. FIS is stabi-
lizing relatively open DNA structures such as loops and
interwindings readily accessible to the transcription
machinery, whereas H-NS stabilizes tightly interwound
plectonemic structures repressing transcription ([21], see
also Figure 1c). We are here discussing the interpreta-
tional capacity of the cell: the environmental informa-
tion is sensed by and filtered via chromatin structure.
We show that the regulation of the metabolic state is
predominantly achieved by this analog type of control.

Furthermore, we show that the regulatory control
exhibited by DNA supercoiling is not mediated by the
transcriptional regulatory network (TRN), as the consis-
tency of the expression changes with the TRN logic of
activation and suppression is strongly reduced in the
wild type in comparison to the mutants. Our data are
evidence for an optimal conversion of supercoiling into
metabolic adjustments by NAPs.

While it is true for eukaryotes that the multi-level
organization of gene regulation obfuscates the connec-
tion between mRNA and protein levels, let alone meta-
bolic fluxes, and it seems that most of the control on
metabolism is contributed by the post-transcriptional
levels [22], the situation is known to be quite different
in prokaryotes where transcription and translation are
tightly coupled [23,24]. So it is valid to analyze the role
of transcriptional regulation in order to understand bac-
terial homeostasis and the metabolic state of a cell.

To our knowledge, this work is first to show directly
on a system-wide level the coordinated regulation of cel-
lular metabolism by DNA supercoiling and NAPs.

Results and Discussion

Analysis strategy

An important feature of our approach is that we analyze
subnetworks of the overall metabolic gene network
defined by the data at hand. These effective networks
contain only the active components (differentially
expressed genes) under the given conditions (alterations
in the superhelical density) and are analyzed from a
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Figure 1 lllustration of the different components involved in E. coli transcriptional regulation, transcription and metabolism. (A) Three
interconnected networks of cellular organization. Only a subset of the overall network elements is shown for the sake of clarity, i.e. only nodes
and edges involved in E. coli central metabolism are depicted. (i) The transcriptional regulatory network (TRN): transcription factors (cyan cubes)
control the expression of metabolic genes (gray spheres) either by activation (green links) or repression (red links). (i) Chromosomal organization:
DNA topology is affected globally by supercoiling (see B) and locally by nucleoid associated proteins (see C). (iii) Depiction of E. coli central
metabolism (as described in [45]). Metabolic genes on the chromosome (i) are connected to reactions (red spheres) according to their gene-
protein/enzyme-reaction relationships. (B) Supercoiling energy changes across growth. The early growth phase is governed by high supercoiling,
while the later phase is rather associated with low supercoiling. In addition, a wide range of environmental conditions can induce changes in
supercoiling energy. In the experiments discussed here, the supercoiling energy has been altered chemically (see Methods), in order to mimic
such physiological changes in a controlled fashion. (C) NAPs translate the global superhelical torsion into locally meaningful structures, e.g. loops
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Figure 2 Experimental setup. Transcript profiles, of four E. coli strains (wild type, fis mutant, hns mutant and fis/hns double mutant) are
compared under low (|Guensin,) and high superhelical density (10gensiy,), leading to four sets of differential expressed genes. The shading of the
schematically depicted data sets on the right-hand side (black, dark gray, gray and white) will be used throughout the article.

network-topological perspective. The connectivity of
these gene-centric effective networks is thus a result of
the underlying reaction-centric topology, together with
the observed gene expression pattern. Deviation of this
connectivity from randomness is what we will in the fol-
lowing call metabolic coherence (MC). A second, more
refined definition of effective metabolic gene networks,
which will also be used in the following, requires both a
significant expression change for one of the associated
genes and a non-zero metabolic flux predicted for the
encoded reaction using flux balance analysis [25] under
specified environmental conditions.

The coherence of metabolism and gene expression
patterns is quantified as follows (details are given in

Methods and Additional file 1: Supplemental Text S1):
we map the patterns of differentially expressed genes,
i.e. genes that are responsive to a variation of the nega-
tive supercoiling (see Figure 2), from the four genetic
backgrounds (wild type; fis, hns, fis/hns double mutants,
respectively) directly onto a metabolic gene network in
order to extract effective networks. Then we compute
the ratio of connected nodes and all nodes in the effec-
tive network, which we call metabolic coherence ratio
(MCR). This quantity is then converted into a z-score,
by using a random distribution of expression changes as
a null model (Figure 3 summarizes this procedure),
which is our metabolic coherence (MC) in the following.
The MC allows us to compare the amount of network
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Figure 3 Effective gene networks and metabolic coherence. (A) Scheme depicting the calculation of the metabolic coherence ratio MCR for
afictitious network and data set. The data (genes with significantly changed expression) are mapped onto the network resulting in an effective
subnetwork. The metabolic control ratio is then the ratio of connected nodes (blue) and all nodes, i.e. the sum of connected and isolated (red)
nodes, in the effective network. Unhighlighted nodes correspond to genes with no significant expression changes. (B) Calculation of the
metabolic coherence. Randomly reselecting the same number of affected nodes in the network allows the sampling of random effective
networks and thus the computation of a set of random metabolic control ratios MCR’. These allow the computation of a z-score value termed
metabolic coherence MC for the MCR. (2) is an example of a real effective network, whereas (1) is one of its random counterparts. MCR” of (1)

coherence between gene expression profiles and meta-
bolic pathways for the different data listed in Figure 2.
In order to validate our results on a broad scale we use
network reconstructions from multiple independent
databases and also apply different methods to handle
gene-reaction mappings as well as currency metabolites
(see also Methods and Additional file 1: Supplemental
Text S1). In the following we will present our results for
the different variants of the metabolic coherence for the
four gene expression profiles from Figure 2.

Metabolic coherence

In Figure 4 the four values of the MC (for the wild type
and the three mutants) are shown for three different
metabolic network representations, namely for the

EcoCyc database [26], for the KEGG database [27] and
for the i{AF1260 metabolic model [28].

Figure 4A displays the pattern retrieved from the gene
network based on the EcoCyc pathways. The wild type
expression data exhibit the strongest coherence with the
metabolic network (high MC). The wild type also shows
the strongest MC for the KEGG network compared to
the three mutants, however less clearly than for the Eco-
Cyc case (see Figure 4B). Figure 4C gives the MC pat-
tern for the i{AF1260 gene network, from which we
manually removed currency metabolites. In this in silico
model of E. coli metabolism, we again observe a strong
MC for the wild type and low values for the mutants,
with the double mutant exhibiting the lowest amount of
coherence.
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Figure 4 MC for four independent E. coli metabolic network reconstructions. (A) The network obtained from the EcoCyc database pathway
information. (B) The network obtained from the KEGG pathways. (C) The network subset of the jAF1260 network where currency metabolites
have been removed manually. (D) The iAF1260 network (currency metabolites have been removed manually) consisting only of reactions active
under a rich medium condition. Error bars represent the standard deviation of a jackknife test, where the MC was recomputed 100 times by
discarding 10% of the transcript data for each of the four genetic backgrounds.
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Flux balance analysis (FBA) is a quantitative approach
for computing steady-state fluxes on metabolic networks
[23]. It allows us to study whether the observed sys-
tematics are enhanced, when only active links in the
metabolic network are taken into account. Using the
iAF1260 model, we computed a steady-state flux distri-
bution that maximizes biomass production [28] under a
rich medium condition and eliminated all inactive links
from the network. The resulting MC is shown in Figure
4D. Strikingly, the restriction to active fluxes enhances
the previous pattern (from Figure 4C), i.e. the gap
between the wild type metabolic coherence and the MC
values of the three mutants.

The key observation from Figure 4 so far is that
changes in gene expression levels brought about by
changes in supercoiling energy in the genome have a
strong metabolic interpretation: the agreement of these
expression changes with the metabolic network is signif-
icantly above randomness (as measured by the metabolic
coherence). When severely perturbing the internal
mechanisms of chromatin organization (by eliminating
FIS and/or H-NS from the system), metabolic coherence
goes down.

Robustness of the result

Network analysis has established itself as an efficient
way of exploring biological systems ([9,29]; see also
Additional file 1: Supplemental Text S1). Nevertheless,
network treatment of metabolic systems is accompanied
by certain difficulties and we check the robustness of
our results against many of them. In order to solidify
this initial result, we need to look in detail at several
issues, which can potentially affect our analysis (see also
Additional file 1: Supplemental Text S1):

(i) Gene to reaction mapping. While all our analyses
have been performed with gene-centric graphs, the reac-
tion-centric graph serves as the starting point for asses-
sing metabolic information (in particular, the activity of
metabolic fluxes). Decisions are therefore necessary,
how to relate the reaction level with the gene level. The
procedure of mapping genes (i.e. the layer of informa-
tion, where expression changes occur) onto reactions
(i.e. the layer of information, where the metabolic net-
work is evaluated) can have an impact on our result.
Excluding ambiguous gene to reaction relations in a
step-wise fashion permits us to investigate if our results
are sensitive to this issue.
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(ii) Treatment of currency metabolites. Currency
metabolites are compounds in metabolic reactions bal-
ancing charge, energy, phosphate etc. They are distin-
guished from main metabolites (which define the
metabolic pathway structures) only by biochemical
knowledge or, qualitatively and indirectly, due to their
very high degree in the metabolic network (resulting
from their involvement in a vast number of reactions).
The treatment of currency metabolites is an important
issue in the discussion of the topological properties of
metabolic networks (see, e.g., [30]). An approximate way
of eliminating currency metabolites from metabolic net-
work representations is to remove a certain percentage
of highest-degree metabolites. Alternatively, one can use
a database, where metabolites are already labeled as
main metabolites and currency metabolites, respectively.
This information is included in the most recent variants
of the KEGG database (e.g., release 51.0; see [27]). In
the E. coli FBA model iAF1260 [28], this information is
not available. In order to obtain a currency metabolite
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free version of iAF1260 we used either a threshold to
remove 4% of the most highly connected metabolites
(threshold heuristic; comparable to the procedure
described in [31]) or a manually curated network
(resembling the procedure described in [30]; see also
Additional file 1: Supplemental Text S1).

(iii) Differences between metabolic databases. Using
intersections of the different metabolic reconstructions
of E. coli allows us to focus on the commonalities
between them.

(iv) Definition of the growth medium for determining
the active metabolic reactions via FBA. All these points
are addressed in the following.

Large-scale evaluation

Figure 5 shows the MC signatures (sorted by size of the
wild type MC) for a large compendium of metabolic
gene networks. These networks can be subdivided into
five categories (MC values for all networks and data sets
shown in Figure 5 can be found in Additional file 1:

iAF1260
with currency

metabolites
Fig. S3

IAF1260 L
Fig. 3¢ |

EcoCyc Fig. 3a

FBA
Fig. 3d

Networks

Figure 5 Results for the MC analysis for all available network reconstructions sorted by the size of the wild type MC. Notation:
network* - linked reactions with an overlap in the underlying gene set have been omitted; network** - only linked reactions are included, where
both are associated with single non-overlapping genes; iAF1260,,4, - currency metabolites have been removed manually; iAF12604, - currency
metabolites have been removed by degree threshold; iAF1260 - the untreated network (KEGG and EcoCyc are per construction free of currency
metabolites); in the following (k) denotes slice number k in the chart. (1) EcoCyc, (2) EcoCyc¥, (3) Intersection of EcoCyc and KEGG networks, (4)
Intersection of EcoCyc and iAF1260,,4,, (5) iAFlZGOTmm, (6) 1AF1260,,4, Obtained from FBA (rich medium), (7) iAF1260,,4,, (8) EcoCyc**, (9)
KEGG*, (10) IAF1260*%, (11) iAF1260,4,, (12) 1AF12607" , (13) Flux-coupling network (fully coupled), (14) KEGG, (15) Intersection of KEGG and
iAF1260,,4,, (16) Intersection of EcoCyc, KEGG and iAF1260,,4,, (17) KEGG**, (18) Flux-coupling network (fully and directionally coupled), (19)

man’
iAFlZGO;:g, (20) IAF1260**, (21) Flux-coupling network (directionally coupled), (22) iAF1260, (23) iAF1260%.
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Supplemental Table S2): (i) The most basic setup are
metabolic gene networks extracted from the EcoCyc,
KEGG and iAF1260 database.

(i) In order to evaluate the influence of the gene-reac-
tion mapping on our results, we computed MC values
for all databases using the following configuration: (a)
Taking all multiplicities into account, (b) excluding
cases where a single or multiple genes are associated
with two consecutive reactions and (c) taking only reac-
tion links (pairs of reactions sharing a metabolite) into
account, which are associated with two single distinct
genes (see also Additional file 1: Supplemental Text S1
and Supplemental Figure S2).

(iif) We also computed signatures for different inter-
sections of all available databases. By doing so, we gra-
dually remove uncertain connections between genes,
nomenclature issues and differences in the level of che-
mical detail captured by the different databases. This
increases the confidence of the used gene network. The
intersection of the gene networks from KEGG, EcoCyc
and the i/AF1260 model constitutes hereby the network
with the highest confidence as it includes only connec-
tions being present in all databases. It should be noted
that the differences in the results under variation of the
database are also due to the balance between enhancing
the systematic contribution (e.g., by eliminating currency
metabolites) and retaining a large enough network to
extract statistically meaningful quantities.

(iv) Different treatments of currency metabolites in case
of the iAF1260 network (see Additional file 1: Supplemen-
tal Text S1 and Supplemental Figure S3 and S4): (a) man-
ual curation, (b) threshold heuristic and (c) no treatment.

(v) Recently, flux-coupling networks have been inten-
sely studied in terms of their organizing principles and
their relation to gene expression data. A flux-coupling
gene network coming from [32], which has been
obtained from the {JR904 E. coli model [33], is analyzed
here. It is subdivided into three subsets: (a) The total
network, and two subsets, i.e. (b) fully and (c) direction-
ally coupled gene pairs.

The overall trend seen in Figure 5 is that metabolic
coherence is highest in the wild type. The mutants’
expression patterns, while displaying a positive MC, are
not as well aligned to the metabolic network as the wild
type. This effect is particularly clear when only switched-
on fluxes are taken into account. In this case the meta-
bolic coherence directly measures the coherence of the
expression pattern with the pattern of metabolic fluxes.
Furthermore, we find a similar pattern for the fully-
coupled flux-coupling gene network, which indicates that
besides the topological matching also other metabolic
relationships are perturbed in the mutants.

Qualitatively speaking, considering intersections and
restricting the analysis to fluxes, which are predicted
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active by FBA, enhances the dominant signal of high
wild type metabolic coherence compared to the
mutants.

Growth medium complexity

In order to assess the robustness of the result obtained
from the flux-activity network shown in Figure 4 D, it
is instructive to analyze how the metabolic coherence
(and in particular the strong differences between wild
type and mutants) depend on the growth medium: for
Figure 6 we start out with a rich medium and iteratively
remove components until we reach a minimal growth
medium. Thus the starting points of the four MC
curves in Figure 6 coincide with the MC values shown
in Figure 4D. When going from a rich to a minimal
medium, the number of active genes increases (see
Additional file 1: Supplemental Figure S1), as more and
more reactions have to be switched on to compensate
for the decreasing nutrient availability. Additionally,
from left to right we are deviating ever more strongly
from the experimental conditions behind the gene
expression data. The main result in Figure 6 is that the
clear separation of the wild type metabolic coherence
from the mutants’ persists over a wide range in medium
complexity. Furthermore, when approaching a minimal
growth medium, discrimination of MCs is strongly
reduced.

Link to digital control

Is the strong metabolic coherence found for wild type
E. coli a direct consequence of chromatin organization
(analog control) or is it mediated indirectly through the
transcriptional regulatory network (TRN)? From [9] we
know that digital control (i.e. the consistency of the ana-
lyzed gene expression patterns with the TRN) is low in
the wild type (compared to the FIS and H-NS mutants)
on the network-wide scale, indicating a buffering effect
of the TRN. In this study [9], digital control has been
measured using the digital CTC (Control Type Confi-
dence), a measure very similar to our metabolic coher-
ence (see Methods), that evaluates the coherence of
patterns of differentially expressed genes with the TRN.

Here we measure the digital CTC for a part of the
TRN that only consists of regulatory actions (links)
between metabolic genes found in the EcoCyc network
and genes coding for transcription factors. As expected,
the digital control measured as the digital CTC ([9]) is
significantly lower in the wild type in comparison to the
mutants (see Figure 7A).

Beyond the standard digital control strength from [9]
we also integrate the signs of the expression changes
with the regulatory information on the corresponding
links in the TRN (see Figure 7B and Methods). This is
an elegant method for strengthening the direct link
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Figure 6 MC under varying media conditions. Starting from a rich medium, medium components are removed one by one under the
condition that biomass production is not disrupted until a minimal medium composition is reached. Mean MC values over 20 simulations are
shown for the wild type (blue), fis (red), hns (yellow), and fis/hns double mutant (green) effective gene network. Error bars represent the standard
deviation.

between supercoiling and the metabolic network: not
only is the pattern of supercoiling-induced gene expres-
sion changes meaningfully distributed on the metabolic
network, but also the transcriptional regulatory network
does not provide an adequate interpretation of the data
(see Figure 7).

Conclusions

Changes to the superhelicity of the bacterial chromo-
some cause patterns of gene expression changes [14],
which have been discussed from a signal processing
point of view [13], a global perspective (including an
enrichment analysis of metabolic pathways) [10], and in
the context of transcriptional regulatory and spatial
gene-proximity networks (spatial proximity on the gen-
ome) [9]. Our main result, the high metabolic coherence
of supercoiling-induced gene expression changes in wild
type E. coli, as opposed to mutants lacking the NAPs
FIS and H-NS, provides further evidence for a regula-
tory role of DNA supercoiling. It is robust across several
metabolic databases and over a wide range of environ-
mental conditions, when taking flux-activity predictions
into account. Furthermore, it is not qualitatively affected
by technical details of defining the metabolic network.
We can only bring these MC values down by mutations

perturbing the machinery of chromosomal organization.
These mutants are still viable, but their pattern of
supercoiling-induced gene expression changes shows a
markedly reduced metabolic coherence. They are, in
fact, close to random expression changes, suggesting
that the altered overall superhelical density and topo-
logical barriers in these mutants [10,12] preclude effi-
cient channeling of the changes of superhelicity into
metabolism.

Furthermore, the low consistency of the wild type
expression patterns with the TRN topology (digital con-
trol) and its encoded regulatory logic (TRN consistency),
suggest that the transcriptional regulation of enzymatic
genes is primarily accomplished by chromosomal orga-
nization, i.e. the concerted interplay of global supercoil-
ing and NAPs. Quite contrary, the stronger consistency
of mutant expression changes and TRN topology and
logic support the view in [9] that the TRN is buffering
the lack of NAPs.

The results presented here, while providing a fairly
clear picture of the interplay between mechanisms of
gene regulation and metabolism, provide several incen-
tives for our analysis as obvious steps for future work:
at the core of our analysis is the metabolic coherence.
It would be helpful to compare this measure with
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Figure 7 TRN consistency. (A) Digital CTC (digital control) for the
four genetic backgrounds. (B) The effective TRN (including only
metabolic genes and their regulators) for the double mutant data
(fis/hns). The scheme on the right-hand side explains the
classification of consistent (checkmark; green link color) and
inconsistent (x; orange link color) links. (C) Consistency of the signs
of supercoiling-induced gene expression changes with the
transcriptional regulatory network.

related attempts of quantitatively comparing gene
expression data with metabolic information [34]. Also,
if suitable data are available, we would like to extend
our analysis to other organisms. A more careful discus-
sion of the gene-reaction mapping from a network per-
spective is certainly necessary in order to go from our
observation of metabolic coherence to a more detailed
interpretation. It also may be helpful to manually con-
struct metabolite, reaction and gene mappings between
iAF1260, KEGG and EcoCyc, in order to better
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understand the strong differences in MC between the
databases.

On a broader level, we believe that the general
approach of defining and comparing control strengths
and topological coherence measures associated with dis-
tinct biological processes and, in this way, dissecting gene
expression patterns, may be a useful perspective for
systems biology investigation, where a multitude of influ-
ences shape a process at hand. In those cases where the
control type under investigation is network-based (like
the metabolic coherence defined here), control strength
evaluates effective networks (defined as the currently
active part of the static background network). Such effec-
tive networks are a novel and highly instructive way of
exploring the relation between network architecture and
dynamical processes (see, e.g. [35], for an analysis of
effective gene regulatory networks and [36], for a theore-
tical study of effective networks).

Methods
A detailed description of materials and methods is given
in Additional file 1: Supplemental Text S1.

Gene-centric metabolic networks

We represented metabolism in form of a connectivity net-
work of metabolic genes. We define metabolic genes G as
DNA units that encode enzymes or parts of enzyme com-
plexes. Let the gene product of gene G1 be involved in
reaction R1 and that of G2 in R2. In the gene-centric
metabolic network we study here, the two genes G1 and
G2 are directionally connected if and only if the same
metabolite exists among the products of R1 and the sub-
strates of R2. Networks representing the full metabolism
of E. coli K12 MG1255 have been constructed from the
following sources: the EcoCyc [26] pathways were
extracted from the pathways.dat file contained in the flat-
file distribution (EcoCyc version 13.6). Neither signaling
nor superpathways have been considered in our analysis.
The KEGG pathways [27] were retrieved from a distribu-
tion of xml files (ftp://ftp.genome.jp:21/pub/kegg/xml/
organisms/eco/; extracted on 20 November, 2009) describ-
ing the different pathways included in the KEGG database.
The in silico reconstruction ;{AF1260 [28] was obtained in
SBML format [37] from the BIGG database [38]. In order
to avoid irrelevant connections coming about due to
highly abundant compounds, e.g. ATP or other cofactors,
sometimes termed currency metabolites [30], we utilized
data sources (EcoCyc, KEGG) where these metabolites
already have been removed on a reaction to reaction basis.
In lack of this information (like in /AF1260) we employed
a threshold on the metabolites’ connectivity degrees to
exclude those factors prior to network construction or
removed them manually (see also Additional file 1: Sup-
plemental Text S1 and Supplemental Figure S4).
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Metabolic coherence

For each effective subnetwork N the ratio of connected
nodes to overall nodes was calculated as the metabolic
coherence ratio MCR. To make this measure robust
against sample size effects we transformed it into a
z-score, the metabolic coherence MC, by mapping ran-
dom gene sets of the same size (i.e. the number of genes/
nodes in the effective subnetwork G) onto the overall sta-
tic network, thus constructing random effective networks
N’ with associated MCR’ values. The MC was computed
using 5000 realizations of the null model. A jackknife test
was sometimes used to verify the robustness of the MC.
The MC was recalculated 100 times while randomly
removing 10% of the expression data.

TRN consistency

The E. coli transcriptional regulatory network was
obtained from RegulonDB [39] (version 6.4). Only links
between transcription factors (regulators) and metabolic
genes (as found in the EcoCyc network) were considered
for the digital control and TRN consistency analysis.
Digital control was measured in form of the digital
CTC, as described in [9], with the exception that the
ratio of connected nodes to overall nodes was used
instead of the ratio of connected to isolated nodes.
Methodologically, this method is similar to the MC
computation. The consistency of effective TRN subnet-
works (TRN consistency) was calculated as the ratio of
consistent links (i.e. the regulatory logic encoded on the
links is consistent with the expression signs on the
nodes; see Figure 7B) to overall effective links. Similar
to the MC, this ratio was transformed into a z-score.
Shuffling the expression signs of the effective nodes was
used as a suitable null model. 5000 realizations of the
null model were used for the z-score transformation.

Constraint-based modeling

Constraint-based models [40] and especially flux bal-
ance analysis (FBA; [25]) and its variants allow the pre-
diction of steady-state flux distributions for genome-
scale metabolic models by solving a linear optimization
problem under various subsidiary conditions. This
approach has been used thoroughly in the past to
tackle a wealth of questions regarding the metabolic
capabilities of different organisms [40,41]. For the
computation of flux distributions under varying media
conditions, we started from a rich medium, removing
medium components one by one under the condition
that biomass production is not disrupted until a mini-
mal medium composition was reached. We should
mention that a large number of trajectories through
the traversed media space exists.
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Experimental setup

The transcript profiles analyzed in this study were
obtained by DNA microarray analyses using genetically
engineered E. coli LZ41 and LZ54 strains containing
norfloxacin-resistant topoisomerase gene alleles to selec-
tively inhibit either DNA gyrase or topoisomerase IV
activity and respectively induce either relaxation or high
negative supercoiling [20].

The generation of the fis and hns single mutants of
E. coli LZ41 and LZ54 strains, their growth and treat-
ment conditions are described in [10]. The fis and hnus
double mutants were generated by P1 transduction of
mutant alleles from donor strains into the E. coli LZ41
and LZ54 strains used in previous study for investiga-
tion of the effects of single mutations [10]. The strains
were grown in 2 x YT medium at 30°C. Total RNA iso-
lated from exponentially growing LZ41AfisAhns and
LZ54AfisAhns strains after brief (15 min) treatment by
norfloxacin was subjected to DNA microarray-mediated
transcription profiling using OciChip E. coli K12 V2
Arrays according to OciChipTM-Application Guide
(http://www.ocimumbio.com) as described in [10].

Introduction of the fis and hns mutations in the
LZ41 and LZ54 strains did not alter the global super-
coiling response to drug addition [10]. By adding nor-
floxacin to the LZ41 and LZ54 strains and their
mutant derivatives we could vary the superhelical den-
Sity Ojensity in opposite directions and distinguish gene
transcripts associated either with relaxation (| Ggepsity)
or high negative supercoiling (10eusi,) in each genetic
background.

In brief, for each comparison two biological replicates
with two technical replicates were performed, resulting in a
total of 8 hybridizations. Scanned array images were ana-
lyzed using the TM4 software package [42]. Spot intensities
were quantified and the quality of each spot was verified by
calculating a quality control (QC) score depending on sig-
nal-to-noise ratio for every channel and calculating p-
values for each channel (as result of a t-test comparing the
spot pixel set and surrounding background pixel set) using
the TIGR Spotfinder software. Data was normalized by
locally weighted linear regression [43]. A one-class t-test
[44] was applied to obtain differentially expressed genes
within each data set (significance level o < 0.05). The
microarray data has been deposited to the ArrayExpress
database (ArrayExpress accession numbers: E-MEXP-462,
E-MEXP-463, E-MEXP-3049, and E-MEXP-3050.)

Additional material

Additional file 1: Supplements. Extended methods section (Text S1),
including supplementary Figures S1-4 and Table S1.
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