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Abstract

Background: Parametric sensitivity analysis (PSA) has become one of the most commonly used tools in
computational systems biology, in which the sensitivity coefficients are used to study the parametric dependence
of biological models. As many of these models describe dynamical behaviour of biological systems, the PSA has
subsequently been used to elucidate important cellular processes that regulate this dynamics. However, in this
paper, we show that the PSA coefficients are not suitable in inferring the mechanisms by which dynamical
behaviour arises and in fact it can even lead to incorrect conclusions.

Results: A careful interpretation of parametric perturbations used in the PSA is presented here to explain the issue
of using this analysis in inferring dynamics. In short, the PSA coefficients quantify the integrated change in the
system behaviour due to persistent parametric perturbations, and thus the dynamical information of when a
parameter perturbation matters is lost. To get around this issue, we present a new sensitivity analysis based on
impulse perturbations on system parameters, which is named impulse parametric sensitivity analysis (iPSA). The
inability of PSA and the efficacy of iPSA in revealing mechanistic information of a dynamical system are illustrated
using two examples involving switch activation.

Conclusions: The interpretation of the PSA coefficients of dynamical systems should take into account the
persistent nature of parametric perturbations involved in the derivation of this analysis. The application of PSA to
identify the controlling mechanism of dynamical behaviour can be misleading. By using impulse perturbations,
introduced at different times, the iPSA provides the necessary information to understand how dynamics is
achieved, i.e. which parameters are essential and when they become important.

Background
Parametric sensitivity analysis (PSA) has become a must
have tool in the computational systems biologists’
arsenal. In most applications of this analysis, one com-
putes sensitivity coefficients or metrics, which generally
reflect the ratios between the change in a biological
model output and the perturbation on system para-
meters that cause this change. Depending on the magni-
tude of the perturbations, sensitivity analyses can be
classified into local (infinitesimal perturbation) and glo-
bal (finite perturbation). Regardless of these classes, the
interpretation of the sensitivity metrics is intuitive; para-
meters with large sensitivity magnitude are deemed to
be important and hence considered to be the control-
ling factors in the system functional regulation.

Consequently, one of the common uses of PSA in sys-
tems biology is to infer the importance of cellular pro-
cesses or pathways and to provide mechanistic
explanations for biological behaviour [1-5].
On a separate note, dynamics is a prominent feature

of many important biological processes (e.g., oscillations
in cell cycle and circadian rhythm [6,7], switching beha-
viour in programmed cell death [8], and adaptation in
chemotaxis [9]). Cellular homeostatic regulation, despite
the name, relies on an active dynamical response, in
which orchestrated events take place in response to
internal and external stimuli. Thus, understanding cellu-
lar dynamics has become a prime concern in systems
biology, in which mathematical modelling coupled with
quantitative analysis have been used to gain insights on
the mechanisms that give rise to and control the
dynamic behaviour [1-5]. These insights can provide the
molecular targets for altering system dynamic behaviour,
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such as in finding treatment for diseases or in (re)engi-
neering of cellular systems.
While there are many choices of mathematical frame-

works for dynamic modelling, ordinary differential equa-
tions (ODEs) are the most commonly used modelling
paradigm in systems biology and have been used to
describe a wide range of biological systems. In addition,
ODEs are amenable to many standard quantitative and
theoretical analyses, including sensitivity analysis and
bifurcation analysis, for which many off-the-shelf soft-
ware packages exist that provide an integrated and user-
friendly computational platform for model simulations
and analyses (e.g., MATLAB [10] and XPPAUT [11]).
The PSA of ODE models can be readily done using soft-
ware packages such as SimBiology toolbox of MATLAB
[12], PottersWheel [13], Gepasi [14], Copasi [15], JDe-
signer/Jarnac [16], JSim [17], BioSens [18], SBML-SAT
[19], and SensSB [20]. These and other software for sen-
sitivity analysis have been summarized in the review
articles by Alves. et al. [21] and Klipp. et al. [22].
Sensitivity analysis of ODE models is well established

in the science and engineering literature [23-32]. In sys-
tems biology, PSA has found wide applications, such as
for model calibration and identifiability, model valida-
tion and reduction, identification of bottlenecking pro-
cesses, elucidation of mechanisms of complex cellular
behaviour, and investigation of cellular robustness
[30,33]. A few notable examples of PSA applications in
dynamic biological models include programmed cell
death [34-39], budding yeast cell cycle control [6], IL-6
signalling pathway [1], circadian rhythm models
[7,40,41], and coupled MAPK and PI3K signal transduc-
tion pathway [42]. In many applications, PSA is used to
generate parameter ranking based on the magnitude of
sensitivity coefficients, either taken at a specific time or
using consolidated sensitivity metrics, such as time-inte-
gral or average or norm of sensitivity coefficients
[34,43,44]. The parameter ranking is subsequently used
to conclude about the mechanism or property (such as
robustness) of the biological system behaviour [1-5].
In this article, we show that the dynamical aspects of

cellular functional regulation cannot be inferred from
the sensitivity coefficients of PSA, neither directly nor as
consolidated sensitivity metrics. More importantly, the
corresponding parameter rankings from PSA can give
erroneous inference about the controlling mechanisms.
Briefly, the reason stems from the fact that in PSA, per-
turbations are introduced on system parameters, which
are time-invariant or static. In other words, these para-
metric perturbations are persistent and their effects on
the system behaviour are integrated over time. There-
fore, while PSA can indicate which parameter perturba-
tions are important, it does not point to when these
perturbations matter. This problem is illustrated using

local PSA of two examples: a synthetic network and a
model of programmed cell death [37]. Although the
illustration here was done using local sensitivity analysis,
the same issue generally applies to global PSA.
To overcome this issue, a new parametric sensitivity

analysis is developed in this work. This analysis differs
from the classical PSA in the manner of which perturba-
tions are introduced on model parameters, specifically
using impulses, and thus is named impulse parametric
sensitivity analysis (iPSA). By analyzing the consequence
of impulse parameter perturbations introduced at differ-
ent times, the iPSA provides time-varying, mechanistic
explanation on how system dynamics is carried out. The
new insights from the iPSA are demonstrated using the
same two examples mentioned above.

Results and discussion
Simple network model
To illustrate the shortcoming of local PSA in analyzing
system dynamics, consider a simple six state model
involving three reactions with Michealis-Menten (MM)
kinetics, as shown in Figure 1(a) (model parameters,
rate kinetics and initial concentrations are given in
Additional File 1: Supplementary Table S1). In this
network, the activation of x6 followed a switch-like
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Figure 1 A simple network model. (a) A simple network with 6
states and 4 reactions. Straight arrows connect substrate to product
and the dotted arrows indicate enzymatic activity. Details of model
equations and parameter values are given in Table S1 (see
Additional file 1: Supplementary Table S1). (b) Activation of x6 under
a constant stimulus of x1 = 1: complete network (+), indirect
pathway knock-out (*) and direct pathway knockout (x).
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dynamics in response to the stimulus x1, as illustrated in
Figure 1(b) (nominal). The model describes two path-
ways that contribute to x6 activation: a direct x2 pathway
and an indirect x2, x3, and x5 pathway.
In this example, in silico knock-out experiments were

performed by removing each pathway individually in
order to assess the dominance of one pathway over the
other in x6 activation. Both full network and knock-out
(KO) simulations were performed under a stimulus of x1
(t0 = 0) = 1. As illustrated in Figure 1(b), while the
initial x6 activation in the indirect pathway KO remained
the same as that of the original model, the switch-like
activation was much less pronounced. On the other
hand, the original switching behaviour was preserved in
the direct pathway KO, but the switching time was
delayed due to a slower initial activation. Taken
together, these KO simulations suggested that the x6
activation is mainly accomplished through the indirect
pathway, while the direct pathway contributes mainly to
the initial x6 activation.

Parametric sensitivity analysis for dynamical systems: A
caveat
Local parametric sensitivity analysis was also used to
study the pathway dominance in this simple network.
Mathematically, the parametric sensitivity coefficient is
given as

Si,j =
∂xi (t)
∂pj (τ )

(1)

where xi is the i-th state in an ODE model and pj is
the j-th kinetic parameter of an ODE model (for a
detailed description of sensitivity coefficient derivation,
see Methods). These sensitivity coefficients describe the
change in system output (state trajectory) at time t with
respect to (an infinitesimal) perturbation on the system
parameter values at time τ. Here, the PSA was per-
formed for the same stimulus x1(0) = 1 with τ = 0 and
the sensitivity coefficients were computed for the time
range of 0-15 time units. The term local sensitivity ana-
lysis refers to the fact that the results will depend on
the nominal parameter values around which the deriva-
tives in Eq. (1) are calculated.
The sensitivities of x6 with respect to all model para-

meters are ranked in Figure 2 using consolidated sensi-
tivity metrics, i.e. infinite norm [44] (Figure 2(a)), FIM
[43] (Figure 2(b)), and time-integral [34] (Figure 2(c)),
and using sensitivity magnitudes at switching time (t =
7.12 time units; Figure 2(d)). The conclusion from these
rankings was the same: (1) the largest sensitivity was
associated with the kinetics of x1 conversion to x2 and
(2) the direct pathway (r2) parameters have larger sensi-
tivities than those from the indirect pathway (r4),

suggesting larger influence of the direct pathway on the
x6 activation. Hence, the conclusion from the PSA is in
direct contradiction with the findings from in silico KO
experiments.
This discrepancy can be explained by taking a closer

look at the way parametric sensitivity coefficients in
eqn. (1) are calculated:

Si,j (t, τ ) =
∫ t

τ

Ṡi,j
(
t̂
)
dt̂ =

∫ t

t0
Ṡi,j

(
t̂
)
H

(
t̂ − τ

)
dt̂ (2)

where τ = t0 is the usual perturbation time, Ṡi,j
(
t̂
)
is

the time derivative of sensitivity coefficient Si,j
(
t̂
)
(see

Methods for detail) and H(t) is the Heaviside step func-
tion. In this case, since model parameters are static or
time-invariant, the parametric perturbations in the PSA
consist of step changes in the parameter values, as
depicted in Figure 3(a). Hence, the sensitivity coeffi-
cients at time t represent an integrated or accumulated
change in the states from τ to t due to a persistent para-
meter change started at time τ (see Figure 3(b)). Indeed,
substituting the full equation of Ṡ(t) (see Methods) in

eqn. (2) gives

Si,j (t, τ ) =
∫ t

t0

[
Ji,[1..n]S[1..n],j

(
t̂
)

+
∂fi
∂pj

(
t̂
)]

H
(
t̂ − τ

)
dt̂

(3)
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Figure 2 Local parametric sensitivity analysis of x6 activation
under x1 stimulus. The bar graphs show the consolidated
sensitivity metrics of x6 with respect to model parameters based on
(a) infinite norm, (b) Fisher Information Matrix (FIM) and (c) time
integrated sensitivity coefficients; and (d) the sensitivity magnitudes
at switching time (t = 7.12 time units). The parameter numbers refer
to the reactions as shown in Figure 1, where the subscripts f
denotes the forward rate constant and k and v denotes the rate
constants of Michealis-Menten kinetics.

Perumal and Gunawan BMC Systems Biology 2011, 5:41
http://www.biomedcentral.com/1752-0509/5/41

Page 3 of 10



Here, one sees two terms in the integrand that contri-
bute to the sensitivity coefficients at time t: (1) the first
is related to the (integrated) sensitivities that are carried
over from the initial perturbation time τ and (2) the sec-
ond accounts for the instantaneous rate changes due to
the parametric perturbations that still persist at time t̂.
Thus, in the PSA, a large sensitivity magnitude of Si,j(t,τ)
indicates the importance of the j-th parameter in time
window of τ and t, during which the perturbation is
applied to the system. Hence, the use of these coeffi-
cients to infer the dynamical importance of parameters
is inappropriate and can even be misleading.
For the reason above, the PSA of the simple network

model gave an incorrect conclusion regarding direct ver-
sus indirect pathway activating x6. As seen in the in
silico KO experiments, the direct pathway regulates the
initial activation of x6, while the actual switching is car-
ried out by the indirect pathway. In the PSA of this
model (τ = 0), the early importance of the direct path-
way and also the reaction r1 persisted beyond the initial

times in the sensitivity coefficients due to the aforemen-
tioned integrated effect. In this case, the importance of
the indirect pathway was not apparent from the para-
meter sensitivity rankings in the background of large
(integrated) sensitivities with respect to r1 and the direct
pathway. Correspondingly, the use of any time-consoli-
dated sensitivity metrics will only worsen this problem.

Impulse parametric sensitivity analysis (iPSA)
As the problem with local PSA mentioned above is
rooted from the persistent parameter perturbations,
which is also done in global PSA [45], a new sensitivity
analysis is formulated here that introduces impulse
perturbations to model parameters as shown in Figure
3(c-d). The corresponding impulse sensitivity coeffi-
cients iSi,j(t,τ) reflect the change in the i-th state xi at
time t due to an impulse perturbation on the j-th para-
meter pj at time τ (see Methods for the derivation and
definition). Since impulse perturbations on parameters
cause an immediate state changes at the perturbation
time (see Methods), the inference of dynamical para-
metric importance can be obtained from impulse sensi-
tivities by varying the time of perturbation. However,
as with the local PSA, impulse perturbations are also
local in nature and thus the impulse sensitivities will
depend on the nominal parameter values. The global
equivalent of iPSA can be formulated using pulse per-
turbations and is currently under development. Finally,
from time-varying impulse perturbations, the iPSA can
give answer to the following questions about state
dynamics: which are the important parameters and
when do they become important?
The iPSA was also applied to the simple network

model under the same stimulus and for the same time
range as above. Since the impulse perturbations are
delivered at different times, the impulse sensitivity iSi,j
(t,τ) has two-time dependence, with respect to the time
of perturbation (τ) and the time of observation (t). Fig-
ure 4 shows the iPSA sensitivity coefficients of x6 at the
end of simulation time (t = 15 time units), with respect
to the four most important parameters at different per-
turbation times (for complete iPSA sensitivities, see
Additional File 1: Supplementary Figure S1). In agree-
ment with the KO simulations and in contrast to the
findings from PSA, the impulse sensitivities gave sup-
port to the dominance of the indirect pathway. Specifi-
cally, the results showed that x6 activation: (1) is
initiated by r1 (high initial sensitivity to parameter kf1);
(2) is accomplished mainly by the direct pathway prior
to the switching time (sensitivity to r2 is higher than to
r4 during these times); and (3) is subsequently carried
by the indirect pathway (highest sensitivity to r4 during
switching times). A higher resolution analysis using a
heat map of the complete iPSA coefficients with t and τ
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Figure 3 Parametric perturbations in sensitivity analysis. An
illustration of parametric perturbation and its effect on system
dynamics in (a-b) PSA, (c-d) iPSA and (e-f) pulse-approximation of
iPSA. Solid lines represent the nominal and the dashed lines show
the perturbed trajectory, respectively. Figures are not drawn to
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between 0 and 15 time units gave the same conclusion
(see Additional file 1: Supplementary Figure S2).

Fas-induced cell death model of human Jurkat T-cells
In the second case study, we consider a more complex
biological network taken from the modelling of pro-
grammed cell death in Jurkat cancer T-cells (see Figure
5). The model equations and parameters were identified
from experimental data [37] (see Additional file 1: Sup-
plementary Table S2 for detailed reaction rates and
parameters). In this network, the cell death is decided

by the cleaving of procaspase-3 into caspase-3 [46], in
response to FasL stimulus. The model simulation
showed that caspase-3 is switched ON at around t =
6000 seconds (see Figure 5, inset) and like the simple
network above, there exist two activating pathways: the
direct caspase-8 (type-I) and the indirect mitochondria-
dependent pathway (type-II). As in the previous case
study, the classical PSA and iPSA were applied to this
network to elucidate the pathway dominance.
The classical and iPSA analyses were calculated under

a constant FasL stimulation (FasL = 2 nM) over the
time range of 10,000 seconds. The rankings of the
important parameters that control caspase-3 according
to the PSA are shown in Figure 6, using consolidated
metrics: infinite norm [44](Figure 6(a)), FIM [43] (Figure
6(b)), and time integral [34](Figure 6(c)), and using the
sensitivity magnitudes at switching time (Figure 6(d))
(see Additional file 1: Supplementary Figure S3 for
detailed sensitivity rankings). From these rankings, one
could not obtain any definitive conclusion regarding the
dominance of one pathway over the other. On the con-
trary, the iPSA sensitivity of caspase-3 in Figure 7 clearly
supported a type-II dependent caspase-3 switching with
an early type-I dependent activation, in agreement with
two previous analyses of this model using the Green’s
function matrix [47] and model reduction [48]. In Figure
7, the high caspase-3 sensitivities with respect to
impulse perturbations to upstream reactions were
expected during the initial times, as these served as the
early cell death signal response. The cleaving of procas-
pase-3 was carried out by caspase-8 directly (r5 of type-
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I) before t = 4000 seconds, after which the mitochon-
drial pathway (r14 of type-II) became the main route of
activating caspase-3 (see Additional file 1: Supplemen-
tary Figures S4 and S5 for more detail).
The discrepancy between the PSA and iPSA results

can again be explained in the context of persistent ver-
sus impulse perturbations. As seen in the PSA para-
meter rankings in Figure 6 and following the insights
offered by the iPSA in Figure 7, the effect of perturbing
early response processes, including type-I pathway, was
integrated over time in the PSA. For example, the high-
est ranked parameters in the PSA were associated with
the first three reactions, r1 to r3. Such integration
masked the dynamical importance of different para-
meters in this analysis. The conclusion from the iPSA is
in agreement with the simulations of KOs of type-I and
type-II pathways in Figure 8. While type-II knock-out
could describe the caspase-3 activation at early times, it
failed to capture the switching behaviour. On the other
hand, the type-I knock-out was able to reproduce the
switching of caspase-3, albeit with a short delay.
The two examples above illustrate the problem of using

the classical PSA in identifying the controlling mechan-
isms of a dynamical system. Of course, this does not
mean that the PSA of dynamical models is incorrect, but
rather the interpretation of the sensitivity coefficients
should be carefully managed. In particular, a large sensi-
tivity magnitude with respect to a parameter suggests the
importance of this parameter in the time period between
the perturbation time τ and the state observation time t.
In contrast, the iPSA is developed with dynamics in
mind, where the impact of a single perturbation on the
system is realized only at the perturbation time and
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subsequently they are delivered at varying perturbation
times. By doing so, the iPSA coefficients can elucidate
the way system dynamics x(t) is achieved, by indicating
which and when parameters or processes are essential.
Because of the persistent nature of perturbations used in
the PSA, it is still not possible to reproduce the conclu-
sions of the iPSA by varying the time of perturbation (see
Additional file 1: Supplementary Figures S6 and S7).

Conclusions
While classical parametric sensitivity analysis provides a
powerful tool to understand the parametric dependence
of biological behaviour, its suitability in inferring
mechanisms of dynamic behaviour has not been prop-
erly addressed. The two case studies here illustrated the
caveat of using local PSA for such purpose. The issue
mainly arose from the information needed to do this
inference, where one needs to know not only which
parameters are critical, but also when they matter. How-
ever, the persistent parametric perturbations in standard
PSA are incapable of providing this information as the
sensitivity coefficients represent an integrated effect. A
new sensitivity analysis, called impulse parametric sensi-
tivity analysis (iPSA), was developed with dynamical sys-
tems in mind. In particular, the iPSA makes use of local
impulse perturbations introduced at different times to
produce the necessary information for understanding
dynamics. The application of iPSA to the case studies
was able to correctly pinpoint the mechanisms responsi-
ble for dynamical system behaviour, while local PSA
failed in these cases. Since the discrepancy between PSA
and iPSA arises from a fundamental difference in the
manner of which parametric perturbations are realized
(i.e. persistent vs. impulse), the same caveat and solution
can be generalized to the global PSA, in which the per-
turbations are no longer infinitesimal.

Methods
Mathematical Models
Ordinary differential equation models of dynamic sys-
tems can generally be written as:

dx
(
t, p̂

)
dt

= f
(
x, p̂

)
x
(
t0, p̂

)
= x0

(4)

In biological models, the state x Î ℝn is typically the
concentration vector of biomolecular species, such as
mRNAs and proteins, while the function f is the consti-
tutive, often nonlinear, rate equation. The right hand
side of the ODE captures the generation and consump-
tion of biomolecules due to a variety of processes in the
cell (e.g. transcription, translation, phosphorylation and

dephosphorylation, etc), the rates of which depend on a
set of kinetic parameters that are consolidated in the
vector p̂ ∈ R

m . Since the initial conditions x0 can be
treated in the same way as model parameters, the aggre-
gate vector p Î ℝm+n is used here to denote the com-
bined parameters and initial conditions, i.e.

p =
[
p̂T xT0

]T .
Local parametric sensitivity analysis (PSA)
The effect of parameter perturbations can be written in
a Taylor series expansion:

xi (t,p + �p) = xi (t,p) +
m∑
j=1

∂xi (t,p)

∂pj
�pj

+
1
2

m∑
l =1

m∑
j =1

∂2xi (t,p)

∂pl∂pj
�pl�pj + ....

(5)

where the partial derivatives ∂xi/∂pj’s are the first-
order sensitivity coefficients, describing the linear
change in the state xi at any time t with respect to an
infinitesimal perturbation to the parameter pj. In gen-
eral, the parametric perturbation can be introduced at
any time τ(t0 ≤ τ ≤ t) [27], i.e.

Si,j (t, τ ) =
∂xi (t)
∂pj (τ )

Si,j (t, τ ) =
change in i - th state at time t

pert. on j - th parameter at time τ

(6)

but in the PSA, the perturbation time τ is commonly
taken to be the initial time t0. Hence, the argument τ is
typically dropped out of eqn. (6) and the sensitivity coef-
ficients only carry a single time dependence on the
observation time t [1-3,5,30,44,49,50]. The higher order
sensitivity coefficients in the Taylor series expansion are
less commonly computed, and hence the focus of the
current work is only on the first-order sensitivities.
Because the magnitude of perturbations are infinitesi-
mally small, the sensitivity coefficients will depend on
the nominal or baseline parameter values, and thus the
classical PSA is considered a local analysis.
The sensitivity coefficients of an ODE model can be

computed by directly differentiating the model eqn. (4)
with respect to parameters p, giving the differential
equation for the sensitivity coefficients as:

d
dt
S (t) =

∂f
∂x

S (t) +
∂f
∂p

;

S (τ ) =
[
0n×m In×n

] (7)

where ∂f/∂x is also known as the Jacobian matrix and
0n×m and In×n are n × m zero and n × n identity

Perumal and Gunawan BMC Systems Biology 2011, 5:41
http://www.biomedcentral.com/1752-0509/5/41

Page 7 of 10



matrices, respectively. The parametric sensitivity coeffi-
cients in eqn. (7) need to be solved simultaneously with
the ODE model in eqn. (4), which is called the direct
method [28]. As the state and parameter values may span
a large range of magnitudes, normalized sensitivity values
are often used to compare among states and parameters
and to generate parameter ranking, which is given by:

S̄i,j (t) =
∂xi (t)
∂pj

pj
xi (t)

=
∂ log xi (t)
∂ log pj

(8)

In most systems biology applications of PSA, para-
meter rankings are generated from the sensitivity coeffi-
cients, either directly or using some consolidated
sensitivity metrics. In this article, four sensitivity metrics
are used to rank parameters based on the PSA results:

[Sinf]ij = max
k

(∣∣Sij (tk)∣∣) ,
[SFIM]ij = (FIM)jj,

(
FIM =

t∑
tk=t0

STi[1...n] (tk)Si[1...n] (tk)

)

[Sint]ij =

t∫
t0

Sij
(
t̂
)
dt̂,

[
Stk

]
ij = Sij (t = tk) ,

(9)

where the indices i and j again denote the i-th state
and j-th parameter, and Sinf, SFIM, Sint and Stk are the
sensitivity metrics based on infinite norm [44], Fisher
information matrix [43], time integral [34] and sensitiv-
ity magnitude at a particular time, respectively.

Impulse parametric sensitivity analysis (iPSA)
The derivation of the iPSA coefficient follows the illus-
tration in Figure 3(e). The sensitivity coefficients of
iPSA are constructed by quantifying the ratio between
the change in the state xi at time t and the causative
pulse perturbation of size Δpj /Δτ for a duration of Δt,
which is applied to the parameter pj at time τ, in the
limit Δpj and Δτ tending to zero. The first step of the
derivation is to quantify the change in all states x at the
end of the pulse perturbation, i.e. at time τ + Δτ, using
the Taylor series expansion:

�x (τ + �τ) = S[1..n],j (τ + �τ , τ )
�pj
�τ

+ O
(
�p2j

)
(10)

In the next step, the change Δx(τ + Δτ) is translated to
the change in the state xi at time t using the Green’s
function matrix (GFM) Sx (t,τ + Δτ) [47]. The (i,j)-th
element of the GFM represents the sensitivity of the
state xi at time t to alteration in the state xj at some
previous time τ, i.e.

Sxi,j (t, τ ) =
∂xi (t)
∂xj (τ )

. (11)

Thus, the change Δxi (t) due to the pulse perturbation
is given by

�xi (t) = Sxi,[1..n] (t, τ + �τ)�x (τ + �τ) . (12)

Subsequently, substitution of eqn. (10) in eqn. (12)
gives

�xi (t) = Sxi,[1..n] (t, τ + �τ)

S[1..n],j (τ + �τ , τ )
�pj
�τ

+ O
(
�p2j

) (13)

Then, taking Taylor series expansion of the parametric
sensitivities around the time τ and dividing both sides by
Δpj, one arrives with:

�xi (t) = Sxi,[1..n] (t, τ + �τ)
[
S[1..n],j (τ , τ )

+Ṡ[1..n],j (τ , τ )�τ + O
(
�τ 2)] �pj

�τ
+ O

(
�p2j

)
�xi (t)
�pj

= Sxi,[1..n] (t, τ + �τ)
[
Ṡ[1..n],j (τ , τ )

+O (�τ)] + O
(
�pj

)
�xi (t)
�pj

= Sxi,[1..n] (t, τ + �τ)

[
∂f

∂pj
(τ )

+O (�τ)] + O
(
�pj

)

(14)

Finally, taking the limit as Δpj,Δτ ® 0 such that the
pulse perturbation becomes an impulse, the iPSA coeffi-
cient is obtained as:

iSi,j (t, τ ) = Sxi,[1..n] (t, τ )
∂f
∂pj

(τ ) (15)

Note that at t = τ, the iPSA coefficient reduces to

iSi,j (τ , τ ) =
∂fi
∂pj

(τ ) (16)

since Sx(τ,τ) = I. In other words, the impulse para-
meter perturbation causes an immediate change in the
state x at time τ. By rewriting eqn. (15) as:

iSi,j (t, τ ) = Sxi,[1..n] (t, τ ) iSi,j (τ , τ ) (17)

one can further see that the impact of this impulse
perturbation takes effect only at the perturbation time τ
and that the consequence on the state trajectory is
equivalent to perturbing the states themselves, similar to
the GFM analysis. Like in the PSA, the iPSA coefficients
should be normalized for comparison and parameter
ranking purposes, according to:
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iS̄i,j (t, τ ) = iSi,j (t, τ )
pj

xi (t)
(18)

Additional material

Additional file 1: Supplementary Material. Detailed results of iPSA and
PSA, including model equations and parameters, of the simple network
model and Fas-induced cell death model
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