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Abstract

Background: Endothelial progenitor cells (EPCs) have been implicated in different processes crucial to vasculature
repair, which may offer the basis for new therapeutic strategies in cardiovascular disease. Despite advances
facilitated by functional genomics, there is a lack of systems-level understanding of treatment response
mechanisms of EPCs. In this research we aimed to characterize the EPCs response to adenosine (Ado), a
cardioprotective factor, based on the systems-level integration of gene expression data and prior functional
knowledge. Specifically, we set out to identify novel biosignatures of Ado-treatment response in EPCs.

Results: The predictive integration of gene expression data and standardized functional similarity information
enabled us to identify new treatment response biosignatures. Gene expression data originated from Ado-treated
and -untreated EPCs samples, and functional similarity was estimated with Gene Ontology (GO)-based similarity
information. These information sources enabled us to implement and evaluate an integrated prediction approach
based on the concept of k-nearest neighbours learning (kNN). The method can be executed by expert- and data-
driven input queries to guide the search for biologically meaningful biosignatures. The resulting integrated kNN
system identified new candidate EPC biosignatures that can offer high classification performance (areas under the
operating characteristic curve > 0.8). We also showed that the proposed models can outperform those discovered
by standard gene expression analysis. Furthermore, we report an initial independent in vitro experimental follow-
up, which provides additional evidence of the potential validity of the top biosignature.

Conclusion: Response to Ado treatment in EPCs can be accurately characterized with a new method based on the
combination of gene co-expression data and GO-based similarity information. It also exploits the incorporation of
human expert-driven queries as a strategy to guide the automated search for candidate biosignatures. The
proposed biosignature improves the systems-level characterization of EPCs. The new integrative predictive
modeling approach can also be applied to other phenotype characterization or biomarker discovery problems.

Background
The impairment of the endothelium is a key factor driv-
ing the initiation and progression of different manifesta-
tions of heart disease [1]. Thus, the preservation or
regeneration capability of the endothelial layer has cru-
cial prognostic and therapeutic value [1,2]. An impor-
tant vasculature repair mechanism consists of the
activation of endothelial cell precursors, known as

endothelial progenitor cells (EPCs). EPCs can differenti-
ate into endothelial cells (ECs), which in turn may lead
to regeneration of damaged tissue after a myocardial
infarction [1,3]. EPCs have also been directly associated
with different clinical stages of cardiovascular disease:
from aging and atherosclerotic disease development, to
acute myocardial infarction and heart failure [1]. EPCs
have been suggested as promoters of vascular network
regeneration in ischemic tissue in a paracrine fashion
[3-5]. Additionally, adenosine (Ado) treatment has been
investigated as a potential approach to promote vascular
regeneration in ischemic tissue [6,7]. This motivates the
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formulation of new methods to characterize, molecularly
and phenotypicaly, EPCs responses to Ado treatment.
Moreover, it is still unclear how Ado can reconfigure
the response transcriptional program of EPCs at a sys-
tems level.
Notwithstanding cumulative progress in the functional

characterization of EPCs using genome-wide expression
profiling [1,5], there is a lack of systems-level under-
standing of key interactions and processes controlling
the response of EPCs to candidate therapeutic interven-
tions. Recent systems biology advances have shown pro-
mise in the elucidation of potential biomarkers of
phenotype and clinical outcomes, particularly in cancer
research [8-11]. This has been done, for instance, by
harnessing the predictive integration of gene expression
data and other biological information available in pub-
licly-funded, community-driven repositories [8,9,11,12].
Among such strategies, we and others have investigated
the integration of gene expression data and standardized
descriptions of the biological function of gene products,
as well as different types of protein interaction data, to
support the search for candidate prognostic biomarkers
and therapeutic targets [13-15]. Specifically, researchers
(including us) have demonstrated how measures of
functional similarity based on Gene Ontology (GO)
annotations can be applied as complementary predictive
features to characterize gene expression profiles and
protein-protein interactions [14,16,17].
Therefore, we reasoned that an integrative computa-

tional approach based on the combination of different
biological data and information sources could offer new
and deeper views of Ado-treatment response of EPCs in
a holistic fashion. We also investigated the combination
of hypothesis- and data-driven approaches to discover-
ing biologically relevant molecular signatures of treat-
ment response. We implemented these systems-driven,
integrative strategies to improve understanding and
characterization of EPCs in the context of Ado
treatment.

EPCs biosignature discovery strategy
The main inputs to our research pipeline were: microar-
ray data from human EPCs, a comprehensive experi-
mentally-validated network of human protein-protein
interactions (PPI), human GO annotations, and different
sets of research “queries” that represented initial guiding
inputs to reduce the search space of potentially novel
associations and biomarkers of EPCs activity (Figure 1A,
and Methods). Note that the PPI is not required for
implementing our proposed integrative method. The
PPI network was used for implementing an alternative
integrative approach to compare against our technique.
We investigated two types of queries: Expert- and

data-driven. The former refers to genes of known

relevance to EPCs identity or activity. The latter were
derived from statistical analysis of the microarray data,
and represented those genes that were highly differen-
tially expressed between Ado-treated and -untreated
EPCs.
GO-based functional similarity estimations and subse-

quent integrated analyses were implemented with the
SimTrek system [18] (Methods). SimTrek computes the
functional similarity between query genes and the other
genes in the human genome. Functional similarity net-
works were then defined, in which nodes and edges
represented gene products and their functional similarity
levels respectively. We also built transcriptional associa-
tion networks linking the query genes and all the genes
measured in the microarray dataset. In this case the
association between two genes was quantified as the
gene expression correlation of the genes (Methods).
This was followed by examinations of quantitative

relationships between the biological associations
reported by the PPI, transcriptional and GO-based simi-
larity networks. This enabled us to explore the predic-
tive potential of these resources, as well as to detect
novel biological associations relevant to the molecular
characterization of EPCs. An important outcome of
these tasks was the definition of a set of genes that can
be used to characterize the differential response of EPCs
to Ado treatment. To assess the predictive potential of
this signature, we implemented different EPCs classifica-
tion systems based on machine learning. Finally, as an
initial step towards the independent validation of our
findings, we performed independent protein expression
profiling of one of the members of the EPCs signature.
This indicated that the molecular activity of the top bio-
signature may also be reflected at the post-transcrip-
tional level.
The combination of GO-based similarity and tran-

scriptional association information between pairs of
genes was at the centre of the EPCs signature discov-
ery strategy investigated (Figure 1B). In this integrative
data mining approach, gene expression correlations
and GO-based similarity were computed between all
the query genes and all those genes with gene expres-
sion data and GO annotations available. Thus, each
query gene was linked to multiple genes through co-
expression and GO-based similarity relationships.
Based on the premise that these data sources can pro-
vide complementary functional information, the aggre-
gation of co-expression and GO-based similarity values
(the mean value) was used as a numerical score to
represent the integrated functional relationship
between a query and another gene. This search scheme
provides a mechanism to retrieve and rank the most
functionally similar genes to each query gene. Here-
after, this technique will be referred to as the
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integrated k-Nearest Neighbour (kNN) algorithm, with
k representing the number of putative candidates that
are retrieved as functionally related to a query gene.
We hypothesized that query genes together with their
most relevant kNNs may encode EPC signatures,

which can provide a more accurate method to charac-
terize the treatment response of these cells. After-
wards, to assess their potential predictive capacity, we
applied the resulting biosignatures as inputs to auto-
mated EPCs classification systems.

Figure 1 Research framework and techniques implemented to characterize EPCs. A. Schematic representation of the research workflow. B.
Algorithmic description of the integrated kNN approach to identifying EPC biosignatures of treatment response.
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Results
We first investigated whether the integrated kNN
method was capable to identify potentially relevant
query-driven networks linked to EPCs treatment
response. The expert-driven queries consisted of a set
of 1 chemokine receptor and 6 cytokines with potential
significant roles in EPCs development fate: CXCR4,
CXCL2, CXCL5, CXCL12, CCL7, CCL2 and CCL23.
These choices were based on preliminary experiments
recently performed in our laboratory suggesting that
Ado may regulate the expression of several members
of the chemokines/chemokine receptors superfamily.
In addition, the CXCR4/CXCL12 axis is known to be
highly implicated in EPCs mobilization and recruit-
ment to injury site [19-21]. In the cancer context,
CXCL2 and CXCL5 have displayed pro-angiogenic
properties [22]. Thus, this query set is relevant to
determine whether Ado can have beneficial effects on
EPCs recruitment or activation of their pro-angiognic
properties through the modification of chemokine
expression patterns.

The data-driven queries consisted of 134 genes highly
differential expressed between Ado-treated and
-untreated EPC samples (6 vs. 6 samples, Significance
Analysis of Microarrays, SAM, FDR < 0.001, fold-change
= 1.7). Expert- and data-driven query sets did not share
genes in common. Figure 2 illustrates examples of sub-
networks defined by the different nearest neighbors to a
query gene (CCL2) as seen on the PPI, co-expression,
GO-based similarity and integrated kNN network spaces
independently.
Surprisingly, the overlap between the sub-networks

(neighbourhoods) using the PPI network and the inte-
grated kNN method was almost null for all queries. This
lack of overlap was estimated by comparing, for each
query, the number of shared neighbourhoods detected
by each method (null hypothesis: mean number of
shared neighbours = 0, one-sample t-test, P = 0.98).
This was consistently observed for different neighbour-
hood sizes (1≤ k ≤ 20).
This suggests that, in principle, our integrated kNN

methodology can offer complementary predictive

Figure 2 Treatment response networks based on different data resources. Examples of sub-networks defined by the 4-nearest neighbours
to a query gene (CCL2). The nearest neighbours were identified on the PPI (A), GO-based similarity (B), co-expression (C) and the integrated kNN
network spaces (D).
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capability for detecting candidate biosignatures of treat-
ment response in EPCs. Moreover, we aimed to reveal
novel functional relationships to characterize molecular
response. Specifically, our objective was to answer the
question: can we exploit this knowledge to improve the
molecular classification of EPCs in response to Ado
treatment?

Treatment response biosignatures of EPCs
To discover biosignatures of treatment response, we
built a variety of prediction models based on the genes
identified by our integrated kNN method. The classifica-
tion problem was to distinguish between Ado-treated
from untreated samples. We compared its prediction
performance against models derived from standard
expression data analysis and information encoded in the
PPI network. To facilitate comparisons across candidate
biosignatures (the inputs to the prediction models) and
to minimize the risk of model over-fitting, prediction
models were built with Support Vector Machines (SVM)
and classification performance was estimated with the
Leave-One-Out Cross-Validation data sampling strategy
(LOOCV). Areas under the receiver operating character-
istic curve (AUC values) were used to summarize the
classification performance of each model (Methods).
Candidate biosignatures detected by our integrated kNN
method were investigated for k = 1 to 20.
Also we encoded all candidate biosignatures using two

model input representation schemes: 1. each model
input represents an individual expression value corre-
sponding to each selected gene, and 2. each model input
encodes the integrated gene expression activity detected
in the neighbourhood of a query gene, i.e., the expres-
sion values of all genes in a signature are averaged. The
latter only applied to models based on the integrated
kNN and PPI-based methods, with each input represent-
ing the mean expression value of the query and its
neighbouring genes. Hereafter, we will refer to these
input representation schemes as individual gene and

integrated gene neighbourhood representations respec-
tively. We also built multiple prediction models for dif-
ferent combinations of the most differentially expressed
genes detected by SAM, and different number of
(expert- and data-driven) query genes.
We will name different classification models with

acronyms (and their combinations) that encode the
characteristics of the models: EDQ (expert-driven
queries), NN (our integrated nearest-neighbour techni-
que), PPI (models based on neighbourhoods extracted
from the PPI network) and DE (differential expression
genes).
The most powerful prediction models were based on

the integrated kNN technique, with integrated gene
neighbourhood input representation (Table 1). A more
detailed description of the gene composition of these
biosignatures is given in Additional file 1. The top pre-
diction model (AUC = 0.92) was derived from an inte-
grated kNN model (k = 15) based on expert-driven
queries: Models “EDQ+15NN” (Figure 3). In this model,
the query genes were: CXCR4, CXCL2, CXCL5,
CXCL12, CCL7 and CCL2. This top performance was
followed by models based on highly differentially
expressed genes (EFNA1, SH3BP5, PEA15 and B2 M,
AUC = 0.75), and a model based on the integrated kNN
approach using these genes as queries (AUC = 0.83, k =
4, and integrated gene neighbourhood representation).
The best model based on individual gene input repre-
sentation and expert-driven queries reported an AUC =
0.75 (Table 1). Models based on different query genes
and their interacting partners in the PPI network
reported poorer performance (maximum AUC = 0.67).
Models based on the kNN method and the input repre-
sentation scheme defined by individual genes exhibited
poorer performance. In EDQ+15NN, GO-based similar-
ity was estimated with BP terms. The performance of
this model was reduced when using the MF hierarchy
(AUC < 0.5). This may partly be explained by the rela-
tively small number of query genes with high quality

Table 1 EPCs biosignatures of Ado-treatment response

Name Biosignature gene composition BS AUC k

EDQ Expert-driven queries: CXCR4, CXCL2, CXCL5, CXCL12, CCL7, CCL2, CCL23 7 0.75 -

EDQ
+15NN

Expert-driven queries (CXCR4, CXCL2, CXCL5, CXCL12, CCL7, CCL2) together with their most functionally similar genes from
integrated kNN strategy*

6 0.92 15

DE Top-4 data-driven queries:
EFNA1, SH3BP5, PEA15, B2M

4 0.75 -

DE+4NN Top-4 data-driven queries together with their most functionally similar gene from integrated kNN strategy* 4 0.83 4

EDQ+PPI Expert-driven queries (CXCR4, CXCL2, CXCL5, CXCL12, CCL7, CCL2) together with their interacting partners in the PPI
network

6 0.67 -

Top classification performances (summarized with AUC values) obtained from different query-driven schemes and the integrated kNN. AUC values estimated
through LOOCV and correspond to SVM classification models (see Methods). Prediction models based on biosignatures identified by standard statistical
techniques or query-driven inputs only are also included (models indicated with “ - “). “*": In EDQ+15NN, GO-based similarity in integrated kNN model was
estimated with BP terms, in DE+4NN with MF terms. BS: Biosignature size defined as the number of inputs to prediction models based on two schemes:
individual gene (EDQ and DE models) and integrated gene neighborhood input representations.
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GO MF annotations. For example, among the expert
queries this information was available only for CXCR4,
CXCL12, and CCL2. Figure 4 displays the ROC curves
for representative prediction models: EDQ+15NN, EDQ
and EDQ+PPI. Figure 5 summarizes the effect of k on
the classification performance of our integrated method
based on EDQ (6 expert-driven queries).
To further assess the potential predictive relevance of
our approach, we implemented classification models
based on network neighbourhoods retrieved by the
STRING system [23]. We provided STRING with our
expert-driven queries and retrieved interactions (neigh-
bourhoods) for each of them. The average gene expres-
sion values of the neighbourhoods were applied as
inputs to classification models as done with our inte-
grated approach. We implemented analyses with up to
10 neighbouring genes/query and confidence scores >
0.9. Classification results were in general very poor
(AUC < 0.5) for different combinations of queries and
neighbourhoods. This may be partly explained by the
low number of genes retrieved by STRING with gene
expression data available in our dataset. This was the
case of genes that could not be measured or did not
meet fold-change requirements in our experiments. For
example, the STRING-retrieved neighbourhood of query
gene CXCL2 only included one gene, CXCL5, with

expression measurements available. This supports the
idea that our method is capable to detect relevant infor-
mation that is not necessarily strongly bound to differ-
ential transcriptional behaviour alone.
We found genes that are shared by different neigh-

bourhoods: CAMK2B (shared by CCL2 and CXCL5’s
neighbourhoods); CD53 (shared by CXCR4, CCL7,
CXCL12); and HBS1L, NR3C2 and PSD (shared by
CCL23 and CCL7). One may hypothesise that these
overlapping genes could encode relevant biological
information for treatment response prediction purposes.
To test this assumption, we built different treatment
response classifiers using their gene expression values as
model inputs (i.e., independent input sets: CAMK2B;
CD53; HBS1L, NR3C2 and PSD; and their combination).
These models reported very low classification perfor-
mance (AUC < 0.5). This emphasises the importance of
applying an integrated and synergistic approach to pre-
diction model design, as originally specified in our
method.
To sum up, this systematic comparison of prediction

models indicates that Ado-treatment response in EPCs
can be accurately predicted by using models based on:
query genes, our integrated kNN biosignature identifica-
tion method and the integrated gene neighbourhood
input representation scheme. Figure 3 shows the gene

Figure 3 Top network-based biosignature of treatment response in EPCs. Gene composition and interactions of the biosignature “EDQ
+15NN”, which provided the basis for the best prediction model with 6 neighbourhood expression inputs.

Azuaje et al. BMC Systems Biology 2011, 5:46
http://www.biomedcentral.com/1752-0509/5/46

Page 6 of 13



Figure 4 ROC curves for representative prediction models. Models compared: EDQ+15NN, EDQ and EDQ+PPI.

Figure 5 The effect of k on the classification performance of our integrated method. Models based on EDQ (6 expert-driven queries).
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composition of the biosignature “EDQ+15NN”, which
provided the most powerful prediction model of treat-
ment response. Although the signature is defined by 105
(7 × 15) genes, we stress that the inputs to the predic-
tion model consisted of only 7 neighbourhood expres-
sion values. As a whole, this gene set encodes products
that are strongly associated with intracellular signaling
cascade (Fisher’s exact test with Benjamini correction,
P = 9E-6) and regulation of protein kinase cascade (P =
1.2E-3) as defined in the GO.

Independent experimental follow-up of EPCs biosignature
As an initial step towards the independent validation of
the predictive potential of the integrated kNN method,
we measured protein expression levels encoded by one
of the genes identified. This was done in 9 independent
samples for the protein CCL18, which is known to be
implicated in the regulation of immunological responses
and inflammation, as well as over-expressed in several
diseases [24]. More recently, CCL18 has been proposed
as a potential diagnostic and prognostic parameter in
patients with stable coronary artery disease [25]. In the
microarray dataset, CCL18 displayed a reduction of
expression in Ado-treated samples in relation to
untreated samples, though not statistically detectable at
P = 0.05 (6 treated vs. 6 control, intensity fold-change =
0.87) (Figure 6A). ELISA experiments on matched EPC
samples (Figure 6B, and Methods) reported a detectable
reduction of CCL18 protein concentration in Ado-trea-
ted samples (9 treated vs. 9 control, mean fold-change =
0.83, one-sample t-test: P = 2E-6, with fold-change = 0
as null hypothesis). A less statistically detectable differ-
ence was observed when comparing (control vs. Ado-
treatment) raw concentration values (Wilcoxon
matched-pairs test, P = 0.066).
These results indicate that: a. our integrated kNN

method could detect a candidate biosignature that may
be measurable at both gene and protein expression
levels, and b. at least one of the members of this signa-
ture exhibits consistent differential responses at the
transcriptional and post-transcriptional levels. This
encourages the future implementation of independent
evaluations of the predictive potential of the proposed
biosignatures. Moreover, this suggests that different
experimental measurement techniques, including qPCR
and ELISA, may be applicable.

Discussion and Conclusions
New biological insights and potential clinical relevance
We showed that an integrated kNN method can identify
candidate biosignatures of Ado-treatment response in
EPCs. This biosignatures not only can improve the auto-
mated characterization of EPCs, but also can provide
insights unobtainable by standard gene expression

analysis or “guilt-by-association” methods in PPI net-
works. This is explained in part by the fact that the inte-
grated kNN method combines predictive evidence, both
functional and phenotype-specific, as encoded in GO
annotations and whole-genome expression profiling
experiments. At this point we consider both features as
equally relevant, and we do not have evidence to suggest
that a different scheme would provide better predictions.
However, as part of future research, it would be impor-
tant to investigate different feature weighing schemes.
Our method also enables the incorporation of prior
knowledge through the processing of expert-driven
input queries. Additionally, we showed how (less biased)
data-driven queries may also drive the discovery of pre-
dictive and biologically meaningful biosignatures.
A closer look at the genes identified by the integrated

kNN method highlights additional insights about the
biological relevance of the discovered top biosignature
(Figure 3) to characterize treatment response of EPCs.
Among the 15-nearest neighbours retrieved for each of
the 7 expert-driven queries, more than 1/3 of them are
annotated to GO terms implicated in cardiovascular
development or disease, according to the Cardiovascular
Gene Ontology initiative [26]. Other genes, such as
FKBP8, a nearest neighbour to CCL7, is known to be
involved in protein folding and trafficking [27], as well
as mouse eye development [28]. The association
between BIRC7 and neuroblastoma has been recently
documented [29]. Interestingly, this signature included
two known markers of susceptibility to congestive heart
failure and beta-blocker response in congestive heart
failure patients (ADRA2C and ADRB1, as annotated in
the OMIM Disease database) [30]. RAF1, which was
found in the “DE+4NN” biosignature, has been recently
identified as a critical intracellular control point for
inducing robust self-renewal of hematopoietic stem cells
[31]. At the time of submitting this paper, the effect of
Ado on CCL18 had not been reported in the literature.
CCL18 is known to be elevated in inflammatory and
pathological conditions [24]. Our results showed that
Ado can decrease CCL18 expression, which is consistent
with the anti-inflammatory and cardio-protective prop-
erties of Ado [6]. We did not find published evidence
directly linking the members of this biosignature to
Ado-treatment response in EPCs.

Possible limitations
Interpretations of our findings and future investigations
should take into account the following possible limiting
factors. First, our study is constrained by the relatively
small number of EPC samples analyzed. Despite this
limitation, the integrative and knowledge-driven nature
of our approach can aid in reducing the possibility of
reporting spurious associations. Should we have focused
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on a purely data-driven approach (i.e., standard analysis
of gene expression data), this problem would have
represented a more critical influencing factor. Another
key aspect to be considered is the relative small number
of expert-driven queries analyzed, which entails that

other potentially interesting biosignatures may have
been missed in our investigation. However, to address
the bias and incompleteness of such a hypothesis-driven
approach, we also implemented analyses involving large-
scale data-driven queries. Our findings showed that the

Figure 6 Comparison of CCL18 gene and protein expression values in treated vs. control samples. A: Gene expression values from Ado-
treated and control samples (6 vs. 6 experiments, fold-change = 0.87, Mann-Whitney U test, P = 0.42). B: Protein concentration values from
matched Ado-treated and control experiments (9 vs. 9 experiments), fold-change = 0.83, Wilcoxon matched-pairs test, P = 0.066).
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expert-driven queries provide the basis for the most pre-
dictive biosignature, though non-redundant biosigna-
tures with lower prediction performance can be
obtained with the data-driven queries. Thus, our
approach is capable to generate biologically meaningful
predictions while minimizing the space of possible false
positive associations. As new hypotheses emerge and
more data are generated, future research can incorpo-
rate additional expert- and data-driven queries. Also we
concede that a true independent validation of our
approach will ideally consist of the measurement of all
the biosignature members to test the classification mod-
els and input encoding schemes proposed here. The
reported independent experimental follow-up for one of
the top biosignature members at the protein expression
level opens up a feasible alternative for future valida-
tions. Moreover, we are sharing our dataset through the
Gene Expression Omnibus (GEO, accession number:
GSE26744) [32], which may allow other researchers to
conduct independent evaluations.
Future analyses could include comparisons of our

technique versus PPI-based models in which the net-
works are assembled by other PPI integration strategies,
such as the iRefWeb system [33]. To expand the com-
parison of our integrated method versus alternative
solutions, the following systems are recommended as
suitable options: STRING [23], FunCoup [34] and Gene-
Mania [35]. The problem of biosignature multiplicity is
a crucial challenge to achieve reproducible and clini-
cally-relevant prognostic biomarkers. Such a multiplicity
may be explained by different factors, among them,
diversity of statistical techniques and data size con-
straints. Future evaluations of our integrated prediction
approach and of our top biosignature could be exam-
ined with the aid of strategies that specifically consider
reproducibility factors, such as those proposed by
Boutros et al. [36] and Statnikov and Aliferis [37].

Conclusions
We reported the predictive integration of: a. hypothesis
and data-driven approaches, and b. gene expression and
GO-based similarity information. We showed that such
integration can enable the identification of networks of
genes that may control the response to Ado-treatment
in EPCs. In our integrated kNN approach, the definition
of expert- and data-driven hypotheses represented a
guiding principle for implementing a systematic search
of candidate biosignatures. Thus, within a systems biol-
ogy framework, the predictive integration of multiple
functional and molecular information resources enabled
the discovery of new biosignatures of treatment
response in EPCs. This contributes to a more accurate
characterization of EPCs and the understanding of their
potential impact in clinical applications. Our integrated

kNN approach may be suitable to other treatment
response investigations, as well as other biomarker dis-
covery applications.

Methods
Cell culture
EPCs were obtained from peripheral blood mononuclear
cells (PBMC) of healthy patients by adhesion techniques
as previously described [38]. All patients signed an
informed consent. Briefly, PBMC were isolated from blood
by ficoll density gradient centrifugation and then seeded
onto human fribronectin (Sigma Aldrich, Bornem,
Belgium) pre-coated plates in endothelial cell basal med-
ium (EBM) supplemented with brain bovine extract,
human endothelial growth factor, hydrocortisone, genta-
micin, amphotericin B and 20% FCS (Lonza, Verviers,
Belgium). After 3 days of culture, non-adherent cells were
discarded and adherent cells were cultured for another
24 hours prior to treatment. Isolated EPCs were double
positive for staining with lectin from Ulex europaeus
(Sigma) and uptake of 1,1’-dioctadecyl -3,3,3’,3’-tetra-
methyl-indocarbocyanine perchlorate (DiI-Ac-LDL). Flow
cytometry characterization showed that isolated EPCs
were CD133+/CD34+/CD45+/CD14+/vWF+/VEGFR2
+/CD144-/CD105+. EPCs were treated with 10 μM Ado
(Sigma) for either 6 h or 24 h for respectively micro array
experiment or ELISA cytokine secretion assessment.
10 μM EHNA (erythro-9-(2-Hydroxy-3-nonyl) adenosine
hydrochloride) was used as Ado deaminase inhibitor.

Generation of microarray and protein expression data
For microarray experiments, the total RNA was
extracted using TriReagent and the RNeasy mini kit
according to manufacturer’s instructions (Qiagen, Venlo,
Netherlands). The RNA quality and quantity were evalu-
ated with the Bioanalyzer and Nanodrop apparatus (Agi-
lent). 1 μg total RNA was amplified using Amino Allyl
MessageAmp kit (Ambion). 5 μg amino allyl-coupled
RNA was labeled with Cy3 or Cy5 dyes (Amersham,
Buckinghamshire, United Kingdom). Dye coupling yield
>5% was a prerequisite for further analysis. 750 ng of
labeled RNA was hybridized on 25,000 gene microarrays
for 17 hours at 60°C. 4 arrays per sample were hybri-
dized and scanned with the Genepix 4000B Scanner
(Molecular Devices). Six independent experiments were
performed. For protein expression assessment, cells
were harvested and conditioned medium supplemented
with protease inhibitors cocktail (Roche, Vilvoorde,
Belgium) were stored at -80°C until use. Nine indepen-
dent experiments were performed.

Gene expression data analysis
Microarray data quantification and pre-processing was
performed with the MAIA software [39] and intensity
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values were log-transformed. Gene expression values
were standardized across experiments with mean = 0
and standard deviation = 1. The SAM tool was applied
to identify differentially expressed genes, which then
represented our set of data-driven queries. We focused
on the most highly differentially expressed genes (fold-
change = 1.7, FDR = 0.01). This dataset is available at
the GEO [32], accession number: GSE26744.

CCL18 ELISA assay
Concentration of CCL18 in conditioned medium was
measured using the Human CCL18/PARC DuoSet
ELISA (R&D Systems, Abingdon, United Kingdom)
according manufacture’s instructions.

Generation of PPI network
The PPI network was assembled by aggregating experi-
mentally validated human PPIs from the DIP [40],
IntAct [41] and MINT [42] databases. These databases
were chosen for their demonstrated interactome cover-
age, complementarity and low-error [40].

GO-based similarity assessment
The estimation of gene-gene similarity using GO terms
requires two main steps: 1. Calculation of the between-
term similarity assigned to each gene, and 2. Aggrega-
tion of the between-term similarities to estimate the
between-gene similarity. In this study GO terms were
derived from human annotations downloaded from the
GO database, and GO-based similarity was computed
using MF and BP independently. We concentrated on
non-IEA (non-Inferred from Electronic Annotation)
term-gene associations. The estimation of between-term
similarity was based on an information theory metric,
Lin’s semantic similarity measure [44], which has been
previously investigated by authors of this study and
others [14,16,17]. Between-term similarity was estimated
based on the premise that the more information two
terms share in common, the more similar they are, and
that this can be quantified by looking at both the GO
hierarchy structure and statistical information of gene-
term associations [15,44]. Aggregation of between-terms
similarities was done with the highest between-term
similarity approach, which selectively aggregates maxi-
mum between-gene similarity values [18]. Given a pair
of gene products, gi and gj, annotated to a set of GO
terms Ai and Aj respectively, the GO-driven similarity,
SIM(gi, gj), is calculated by aggregating maximum inter-
set similarity values as follows:

Sim(gi, gj) =
1

m × n
× (

∑

k∈Ai

max(sim(ck, cp)
p∈Aj

) +
∑

p∈Aj
max(sim(ck, cp)

k∈Ai

))

These calculations were implemented with the Sim-
Trek system [18] under the Cytoscape platform [45].

Integrated kNN approach
The integrated kNN algorithm is summarized in Figure
1B. For each input query, its GO-based similarity and
gene expression (Pearson) correlation values with the
other genes measured in the microarray were com-
puted. These values were normalized 0[1] prior to
their combination. The correlation values (originally
between -1 to 1) were transformed by applying the
absolute value function (resulting values from 0 to 1).
Their mean value was used to rank candidate genes in
relation to each query. The k-most-similar genes were
retrieved and defined the query’s neighbourhood. We
performed analyses for k = 1 to 20. This algorithm was
implemented in an adapted version of the open-source
SimTrek system [18].

Treatment response prediction systems
We built different classification systems in which the
inputs represented gene expression values or mean
neighbourhood expression values. These schemes
(introduced in Results) represented the individual gene
and integrated gene neighbourhood input representa-
tion schemes respectively. We evaluated independent
models to classify Ado-treated vs. -untreated samples
based on inputs detected by SAM and the integrated
kNN approach. Different combinations of individual
gene and integrated gene neighbourhoods were investi-
gated, including integrated kNN models with k = 1 to
20. The classification performance of the models was
estimated using AUC values and LOOCV. SVM-based
models were implemented based on their demon-
strated classification capability and robustness [46]. To
further reduce the possibility of data over-fitting, we
concentrated on linear SVM models (John Platt ’s
sequential minimal optimization algorithm, c = 100,
exponent = 1).

Statistical and bioinformatic tools
Microarray data pre-processing and differential expres-
sion analysis were conducted with MAIA [39] and SAM
[47] respectively. The integrated kNN approach was
implemented with the Java-based, Cytoscape-compatible
SimTrek system [18]. Network visualization tasks were
carried out with Cytoscape [45]. Other standard statisti-
cal analyses were done with the Statistica package [48].
Classification models were implemented with Weka
[49]. GO term enrichment analysis and gene-disease
association searches were done with the David system
[50] and PubMed.
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