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Abstract

Background: Multilevelness is a defining characteristic of complex systems. For example, in the intestinal tissue the
epithelial lining is organized into crypts that are maintained by a niche of stem cells. The behavior of the system
‘as a whole’ is considered to emerge from the functioning and interactions of its parts. What we are seeking here
is a conceptual framework to demonstrate how the “fate” of intestinal crypts is an emergent property that
inherently arises from the complex yet robust underlying biology of stem cells.

Results: We establish a conceptual framework in which to formalize cross-level principles in the context of tissue
organization. To this end we provide a definition for stemness, which is the propensity of a cell lineage to
contribute to a tissue fate. We do not consider stemness a property of a cell but link it to the process in which a
cell lineage contributes towards tissue (mal)function. We furthermore show that the only logically feasible
relationship between the stemness of cell lineages and the emergent fate of their tissue, which satisfies the given
criteria, is one of dominance from a particular lineage.

Conclusions: The dominance theorem, conceived and proven in this paper, provides support for the concepts of
niche succession and monoclonal conversion in intestinal crypts as bottom-up relations, while crypt fission is
postulated to be a top-down principle.

Background
The maintenance of a normal colonic mucosa and its
transition to adenocarcinoma is an important practical
problem. Such a system has multiple levels that are
interdependent through a reciprocal influence of stem
cells and their niche microenvironment, and between
the epithelial tissue and the colon as a whole. While
interdependent, these levels are also at the same time
non-interacting within their respective domains of
autonomy. Using the colon as an example, we present
here a mathematical analysis of a cross-level principle,
linking the stemness of lineages in colonic crypts to the
fate of the epithelial tissue. We present a study of cross-
level principles in stem cell driven tissue organization
and proof that the fate of the tissue is necessarily deter-
mined by a single lineage. Our analysis, rooted in Math-
ematical General Systems Theory [1,2], provides a
theoretical basis for the concepts of nice succession and
monoclonal conversion.

The intestinal crypt serves as an example for a com-
plex biological system in which the behavior of the
whole (the tissue level) is considered to “emerge” from
the functioning and interactions of the parts (the cell
level). But without specifying how the emergence takes
place, the concept has almost a mystical character; it is
an observation rather than a contribution to under-
standing the phenomenon. For understanding it is
necessary to identify how the tissue level relates to the
cell level. Understanding such cross-level relations in
complex systems is key to “demystifying” the concept of
emergence. The present paper provides one example of
an organizing principle that is formulated and proven as
a mathematical theorem.
The adult tissue of an organism includes stem cells that

generate cell lineages, which maintain not only the pool
of stem cells but through cell division cycles also main-
tain and regenerate the functional tissue through differen-
tiation and maturation. The analysis of these inherently
dynamic processes is of fundamental importance for
modern medicine. For example, within the intestinal
crypts, the interplay between the tissue’s structural and
functional organization is particularly instructive. The
intestinal tract is also one of the most common sites of
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carcinogenesis due to the mechanical and chemotoxic
stress it is subjected to. The colon is organized into
about 107 crypts, each of which contains about 1000 to
4000 thousand cells [3]. At the bottom of the crypt a
small number of stem cells divide slowly in an environ-
ment referred to as the niche. The existence of a stem
cell niche in colonic crypts has been demonstrated
through methylation tags [4,5]. The emerging daughter
cells proliferate rapidly before differentiating and matur-
ing into functional tissue cells. The cells of the crypt
walls migrate towards the top where they undergo apop-
tosis (cell death) and/or are shed into the gut lumen.
Homeostasis in the colonic crypt therefore, over a period
of a few days, involves the renewal of the epithelial cell
layer that lines the crypt [6]. The normal functioning of a
crypt (and hence of the entire colon) is driven by a small
number of stem cells in a self-referential manner, i.e.: the
cells not only influence their environment but also
respond to cues from their environment. If a complex
system, such as the crypt, is developed and maintained
by a very small number of cells, any externally forced
alterations or malfunctioning could compromise the fate
of the entire organ and even that of the whole organism.
For example, the number of stem cells, or more precisely
an overproduction of stem cells, can be linked to hyper-
plastic tissue structures; a situation that may represent a
high risk for further carcinogenic transformation [3,7].
In the intestinal crypt, there is an interaction between

the crypt as a whole and the stem cells, between stem
cells of the niche and their surrounding tissue. These
relations emerge from an intricate combination of sev-
eral dynamic processes through which cells divide, dif-
ferentiate and mature. A whole-part relationship thus
relates the lower level of stem cell divisions (and the
lineages emerging thereof) with the higher level of the
tissue (and emerging properties such as homeostasis or
dysplasia). Although the tissue may appear stable with
respect to total cell numbers and types, the underlying
parts or cell lineages may in fact be quite dynamic or
unstable in order to maintain macroscopic homeostasis.
What we will be focusing on here is the relation
between the stem cells lineages (their stemness) and the
future development (fate) of the tissue. In particular, we
shall study the balance of cell divisions that maintain,
reduce, or expand the pool of those cells that can gener-
ate lineages (referred to as ‘stem cells’), transient cells
and cells committed to differentiation and maturation to
maintain the normal functioning of the tissue.
At every level, from DNA replication to tissue regen-

eration, living systems have developed incredibly sophis-
ticated protection mechanisms to ensure a healthy
functioning of the body, which is astoundingly robust
against external perturbations and injury. Central to
maintenance, renewal and repair is the concept of stem

cells. These are most of the time assumed to asymmetri-
cally divide into a new stem cell and a non-stem cell
daughter. This situation is stable, but not robust because
there is no mechanism to compensate for accidental
death of the original stem cell. For deviations from
steady state, stem cells can also divide symmetrically,
either to produce two stem cell daughters (to compen-
sate for accidental death) or two differentiated daughters
(to compensate for accidental expansion). The ability of
stem cells to divide both asymmetrically and symmetri-
cally allows for robust tissue homeostasis because the
crypt will always approximately have the “right” number
of stem cells. In light of the robustness of a healthy tis-
sue with multiple stem cells per crypt, could it be plau-
sible that a single stem cell and its lineage becomes
dominant for the (mal)functioning of a tissue? The
astounding result of our analysis is - yes - a single line-
age dominates the fate of the tissue, not as a random or
rare event but as the only logically feasible outcome of a
robust system.

Processes of dominance in colorectal cancer
Gastrointestinal stem cells and their environment have
the capacity to give rise to epithelial cell lineages
through a regulation of different types and rates of cell
divisions. This phenomenon is accompanied by mechan-
isms that allow for the regulation of cell differentiation
and apoptosis, and that consequently ensure tissue
homeostasis. However, stem cells are also key elements
in the earliest stages of gastric and colonic cancer, as
they form a target for mutations that may eventually
lead to the development of the malignant phenotype.
Due to a lack of reliable markers, adult gastrointestinal
stem cells are difficult to define and characterize at the
molecular level. This limits the knowledge about them
and is a reason why events of early gastrointestinal car-
cinoma formation and expansion continue to puzzle us.
The “unitarian hypothesis” of Cheng and Leblond [8]

was one of the first arguments for the dominance of single
cells in the context of intestinal cancer. They suggested
that all of the differentiated cell lineages within the intest-
inal epithelium are derived from a single stem cell lineage.
Although this idea has been contested on the basis that
there is no experimental confirmation [9], the idea that all
the gastrointestinal epithelial cells emanate from a single
progenitor stem cell is widely accepted. With the excep-
tion of the villous epithelium in the small intestine, in
which the tissue a mixture derived from stem cell lineages
of more than one crypt, all epithelial cell lineages within a
single crypt in the small intestine and colon are clonally
derived. Turning our attention from healthy functioning
tissue to its malfunction, a well-established and generally
accepted model of tumor progression in the colon is the
adenoma-carcinoma sequence. In this framework, the
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morphological changes progress from aberrant crypt foci
(ACF), through adenoma, and finally to carcinoma. The
earliest recognizable lesions are the ACFs, which are prob-
ably monoclonal pre-neoplastic lesions involved in colon
tumorigenesis in both humans and rodents (see [7] and
references therein). Morphologically, these lesions appear
as crypts with a thickened epithelium elevated above the
mucosa and while the non-dysplastic type shows little
genetic change, ACFs with associated dysplasia contain
important genetic lesions. The monoclonal origin of can-
cer has been suggested on the basis of observations
according to which neoplasms generally arise from a single
cell of origin [10]. Similarly, while of course more than one
cell can pass the threshold for malfunction at the same
time, most of a tumor can usually be identified as the pro-
geny of a single cell, or very few cells [11]. For the hemato-
poietic system, Glauche et al. [12] developed a stochastic
model of lineage specification as a progressive restriction
of lineage potential due to a competition between different
interacting lineage propensities. The competition is gov-
erned by environmental stimuli promoting a drift from a
multipotent coexpression to the dominance of one lineage.
A review of the literature leads us to consider three pro-
cesses that are examples of “dominance” by individual
cells and their lineages.
Niche succession is a process of “dominance” by which

the progeny of a single stem cell replace other stem
cells in the niche [13]. Recent studies using methylation
changes as stem cell fate markers revealed that niche
succession appears to occur in human colonic crypts
[5]. Dominance or succession occurs with symmetrical
divisions where both daughter cells adopt the same fate.
With symmetric stem cell division, a lineage may
become extinct if both daughter cells leave the niche.
This extinction can be compensated by another sym-
metric division in which both daughter cells remain as
stem cells in the niche, resulting in no net change in
stem cell numbers. Eventually all stem cell lineages
within a crypt except for one become extinct, leading to
niche succession or monoclonal conversion [14]. This
dominance process recurs such that niche succession
occurs multiple times during a lifetime [13]. Niche suc-
cession is a way by which a single stem cell line can
expand to dominate a single crypt, while crypt fission is
the process by which progeny can expand laterally by
crypt duplication. In humans, mucosal growth involves
the reduplication of crypts by crypt fission. Likewise,
after mucosal damage in ulcerative colitis, crypt fission
is an important regenerative mechanism. The concept of
crypt fission is supported by clonality experiments in
both mice and humans (see [15] and references therein).
Through a model of clonal evolution in the intestinal
crypt, which was, based on a simultaneous activity of
several coexisting tissue stem cells, and that generate

several clones at any time (thus demonstrated polyclon-
ality), Loeffler and Roeder [16] showed how fluctuations
in the long run prevent coexistence and, lead to mono-
clonality. Subsequently, the descendents from one clone
will eventually generate all active stem cells in the crypt
tissue.
The (sub)system of colonic crypts consists of two

levels - stem cells and the tissue generated from their
lineages. The dominance theorem, introduced and pro-
ven in this paper, establishes monoclonal conversion
and niche succession as bottom-up cross-level relations.
Crypt fission will be postulated to realize a top-down
process.

A stemness process model
In Potten and Loeffler’s [3] “screw-model” for adult tis-
sue stem cells, proliferation and differentiation/matura-
tion are independent processes and we furthermore
allow for de-differentiation of transit cells. In order to
illustrate our analysis, but without loss of generality to
the results, we simplify the picture by distinguishing
only three kinds of cells (Figure 1): Stem cells, from
which lineages originate, and that are capable of gener-
ating a succession of stem cells, transit cells and mature
cells; Transit cells, which have not yet reached their
full functional competence and which can potentially
de-differentiate and proliferate; and Mature cells that
are committed to differentiation and/or have matured
into functional tissue cells. In our example, we shall dis-
tinguish between three tissue fates: (Table 1).
Human aging is linked to an overall decline in tissue

regenerative potential, thus pointing to adult stem cell
functionality [17-19]. While it remains an open question
how stem cells lose their functionality over time, and
despite suggestions that the lifespan of any species is
not determined by a limited supply of its stem cell
population [20], it does not seem implausible to link
niche depletion with aging. For the present paper, we

Figure 1 Stem cell model. Without loss of generality to the result
of our analysis, we assume a simple stem cell model with three
kinds of cells and where stem and transient cells can divide
symmetrically and asymetrically. Through cell division lineages are
generated. The stemness of the lineages is assessed with respect to
their capacity (propensity) to contribute towards a specific future
development (fate) of the tissue. A lineage that generates a long
and wide tree would have a much higher stemness than a thin and
short branch.
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shall link clonal expansion to aberrant tissue (dysplasia,
[21]) as a predecessor to tumor formation [22,23]. We
do note however that this particular choice and simpli-
fied picture of tissue fates does not affect the generality
of the formal analysis developed further below. In our
formal analysis we made an effort to ensure that the
results do not depend on this particular choice.
By ‘stem cell’, we mean a cell that is the starting point

for a lineage and we shall put more emphasis on the
process of lineage formation (respectively extinction)
than on the stem cells. In fact, we feel increasingly
uncomfortable with the notion of ‘a’ stem cell and
instead prefer to speak of the stemness of a lineage,
defined by the lineages’ potential or capacity to contri-
bute to a tissue fate. In the following section, we define
stemness therefore not as a property of a cell but as an
emergent phenomenon of the lineage that generates,
maintains and regenerates a tissue. This point has also
been argued by Lander [24] recently. That is, in the con-
text of tissue organization, the concepts of self-renewal
and potency have long been seen as key characteristic
features of stem cells but all attempts to link these con-
cepts to molecular characteristics of the cell have, so far,
been unsuccessful. Our analysis demonstrates the use-
fulness of a definition of stemness as a property linked
to a process with emergent properties [16,25].
Our mathematical framework relies on order relations,

specifically adopting ideas from consensus theory [26],
and is thus strikingly simple compared to the sophisti-
cated mathematical models that have been developed to
simulate intestinal crypts. This type of analysis is not
restricted by the example chosen, or sensitive to the
precise assumptions made about possible cell or tissue
fates. In other words, the results should apply to any
number of stem cells (greater or equal than two) and
should be valid even if many aspects of crypt biology
are uncertain, as long as stem cells have three or more
alternative fates. Furthermore, we require that the
results of the analysis should not be sensitive to alterna-
tive sets of potential fates (“regularity”), nor should it
depend on changes to the set of actually considered
fates (“consistency”).
We formulate a theorem which shows that if domi-

nance of a single cell lineage is not permitted, then
there exist no other logically feasible explanation for

how individual cell fates are aggregated into the collec-
tive fate of the tissue. This result can be formulated in
another way, stating that dominance of a single stem
cell lineage is the only outcome which satisfies the theo-
rem, given requirements and conditions set out before.
Many intuitively appealing rules, like the majority prin-
ciple, fail to provide a rational explanation. The analysis
supports experimental evidence for the dominance of
single stem cells and their progeny in tissue mainte-
nance and carcinogenesis. We also sketch a proof for
the dominance theorem and provide intuitive graphical
illustrations to support the mathematical analysis. Full
details of the mathematical framework and proof are
provided in the Methods section. Finally, we discuss the
interpretation of the result and its consequences.

Results
A definition of stemness
There is little doubt that stem cell lineages are uniquely
capable of developing, maintaining and regenerating tis-
sue, and yet the concept of stem cells itself still causes
confusion and concern [3,16]. In an attempt to resolve
some difficulties associated with this concept, Mikkers
and Frisen [27] described the development of a cell
along a certain lineage as a linear process with a gradual
specialization through determination, commitment and
final differentiation. Besides, most cells in the mature
body are at the very end of the differentiation line, while
some cells - stem cells - halt the differentiation process,
divide and can give rise to more cells of their own type.
In this view, stem cells differ from transit amplifying
progenitor cells, which may be multipotent and are cap-
able of self-renewal, but are not halted at an intermedi-
ate position, hence inevitably progressing towards
terminal differentiation.
Following Lander [24], we consider stemness an

emergent property of cell lineages within their specific
environment. Properties or attributes of stem cells can
only be assessed in terms of the cells’ future potential
or of the retrospect, that is, by looking at the lineage
they generated. More specifically, we shall define stem-
ness as the lineage’s contribution towards a tissue fate.
We shall thus assume that at any point in time one
can assess the lineages for their stemness. While it
may not be possible to do this quantitatively, the least
we can do is assess this in a qualitative manner using
order relations, thus assessing the lineages’ stemness
with respect to:

(h): The capacity to produce functional, mature
tissue cells

to regenerate tissue (e.g. after injury)
to maintain tissue homeostasis.

(e): The capacity to expand the pool of stem cells

Table 1 Tissue Fates

Tissue
Homeostasis:

Healthy and normal functioning of the tissue.

Clonal
Expansion:

In comparison to homeostasis, an increase in the
number of proliferating cells, leading to aberrant/
dysplastic tissue.

Niche
Depletion:

A reduction of stem cells, leading to decline in the
capacity for tissue renewal.
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by self-replication (symmetric cell division)
by (de)differentiation.

(d): The potential to reduce the pool of stem cells
by self-reduction (symmetric cell division) and
maturation
by apoptosis.

Stem cells usually divide asymmetrically to produce
one stem and one non-stem daughter. If this was the
only choice, the system or tissue would not be robust
because there would be no way to compensate for acci-
dental death or injury. So each crypt contains at least
two stem cells. But for a more robust system, stem cells,
through the development of lineages, have choices -
asymmetric renewal, symmetric expansion, and sym-
metric extinction. The notion of “choice” (inherent to
fate) will lead us to a dominance theorem, introduced
and proven further below. It demonstrates that a robust
(self-adjusting) system always ends up with dominance.
Since we wish to investigate what is ‘in principle’ pos-

sible, we shall explore all logically feasible possibilities,
and thus will not be required to consider numbers or
actual order relationships between different cell lineages.
Although this may sound contradictory, it is the striking
simplicity of the maths involved here that will enable us
to analyze very complex systems. A consequence of the
kind of analysis pursued here is that it does not provide
an explanation about what causal mechanisms are rele-
vant but what logically plausible explanations, if any, are
available.
Figure 2 provides a graphical summary of our

approach applied to the intestinal crypt. As indicated in
the list above, the letters h, e, and d denote three

attributes of stemness, which hereafter will be linked to
the tissue fates (homeostasis, expansion, and depletion)
introduced above. Because it is in practice impossible to
trace lineages of stem cells and to provide a full molecu-
lar characterization, we shall here develop a number-free
approach in which we rank the lineages’ propensities
w.r.t. tissue fates. We understand propensity as a dispo-
sition, natural inclination, capacity or tendency, and it
should not be interpreted as relative frequency but
rather as a purported cause of observed occurrences.
Propensities characterize conditions that generate an
effect. More specifically, at any point in time the pool of
cells, their type and their lineage history encapsulates
possibilities of contributions to the tissue function - pos-
sibilities that have not yet been realized, but that are
nevertheless real. The propensities we attach to the pos-
sibilities can be interpreted as a measure of this status
of a not yet fully realized reality - a reality in the mak-
ing. The future is, in this way, present at every moment.
The concept of stemness we are promoting here is thus
one of a temporal allocation of regenerative potential - a
property not of individual cells but of a system of
lineages. We therefore support the arguments of Loeffler
and Roeder [16] who suggested a definition of adult tis-
sue stem cells not as a set of attributes of cells, but as
the process by which lineages emerge in dynamically
regulated process from these cells. This conceptual shift,
away from the molecular characterization of a cell,
towards a functional and process-oriented perspective
has implications for the experiments required to study
stem cells. For example, the functional definition
requires the tracking of individual cells and their
lineages over time [25].

Figure 2 General outline of the approach. What we are aiming for with our analysis is an explicit description of how the fate of individual cell
lineages (their stemness) is related to the fate of the tissue. By a “cross-level principle” we refer to a rule by which the stemness of lineages
constituting a tissue can be related to the fate of that tissue. The stemness is assessed in terms of the capacity of the cell lineages to contribute
towards a tissue fate. The mathematical implementation uses order relations. A specific instance of a cross-level principle will be encoded
formally by a function, called “lineage-tissue mapping”. xPiy denotes that x is more feasible than y, that is, the propensity of x is greater than that
of y. The subscript i refers to a particular lineage, while P without the subscript refers to the tissue.
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Lineage-tissue cross-level-relations
To help the reader with the formal aspects of the manu-
script, Table 2 in the Methods section summarizes the
notation and definitions used throughout. We formulate
and analyze cross-level principles, by which the individual
rankings of propensities for n ≥ 2 lineages Li, i = 2,..., n,
are aggregated into a single ranking of fates for the tissue.
The ranking of propensities defines formally an order rela-
tion, where Ri and Pi are the propensity ranking of cell
lineage i. For example, h Ri d Ri e, which could also be
written as Ri = (h, d, e), denotes the assessment that for
the lineage of cell i, the propensity for h is greater than, or
equal to, the propensity for d, and the propensity for d is
greater than, or equal to the propensity for e. It is thus
assumed that it would be - in principle - possible to assess
the propensities by a “greater than” (>), respectively
“greater than or equal” (≥) relation, where hPid denotes
that h is more feasible than d, that is, the propensity of h
is greater than that of d w.r.t. lineage i. hRd denotes a
“more feasible or indifferent” relation, for which the pro-
pensity of h is greater or equal to that of d. In the formal
analysis the fates h (homeostasis), e (expansion), d (deple-
tion) are possible values for general variables x, y, z. The
ranking of propensities, with respect to alternative tissue
fates, is then interpreted in terms of the feasibility of those
fates. An instantiation of a particular cross-level principle
will be referred to as a lineage-tissue mapping. This func-
tion maps the individual cell lineage’s rankings (lineage

profiles) into a ranking of fates for the tissue (tissue
profile).
More generally, the problem considered here is the fol-

lowing. Given a set of alternatives A and n rankings over
A, we wish to identify an appropriate rule/principle that
when presented with the n-tuple of rankings of alterna-
tives, returns from A a unique consensus object that in
some sense best represents the information/consequences
of the individual rankings. Although the approach may
seem to be abstract and technical, it is practical and con-
crete because it enables us to distinguish between what is
logically feasible and what is not [26]. We consider X to be
the set of potential fates; fates that are potentially relevant
to our study. Let K denote the set of all non-empty finite
subsets of X. In order to ensure that our analysis is general
(law-like), we will distinguish between X, the set of poten-
tial fates, and a set A Î K of actual fates; fates that are
actually considered in a particular context. Given a set of
actual(ly considered) fates A, the n-tuple (R1, ..., Rn) of
rankings is called a profile, where each Ri is a propensity
profile for the individual cell lineages L = {L1, ..., Ln}
over A. A cross-level principle will be encoded by a line-
age-tissue mapping, merging the individual propensity
rankings into a single ranked profile of propensities for the
tissue. Given X, the set of alternative fates, which may
potentially be relevant to our analysis, and the set A of
actually considered fates for the cell lineages (at a particu-
lar point in time), the lineage-tissue mapping F maps

Table 2 Notation and definitions of key concepts used in the text

X The set of “potential” cell (lineage)/tissue fates.

K The set of all non-empty finite subsets of X.

L = {L1, ..., Ln} The set of cell lineages.

Ri Lineage profile: propensities of cell lineage i on X.

(R1, ..., Rn) n-tuple of propensities, also referred to as a “profile”.

R Tissue profile: ranking of propensities over tissue fates - the consequence of a cross-level principle, which is determined by a lineage-
tissue mapping.

A Î K A possible set of “actual” fates - considered in a particular context in which a lineage-tissue mapping is used to aggregate lineage
profiles into one tissue profile.

X\A The set of potential-but-not-actually-considered fates.

F Lineage-tissue mapping: a map from K × D into K such that for all A Î K and all (R1, ..., Rn) ÎD: F(A,(R1, ..., Rn)) ⊆ A.

Ξ Universal set of sets of alternatives (alternative fates) such that X Î Ξ is one set of potential alternative fates.

Ψ Universal set of lineages such that L Î Ψ is some possible set of cell lineages.

Ω A function that defines for a given set X the set K of non-empty finite subsets of X; For all X Î Ξ: Ω(X) = K.

F For all X Î Ξ, all L Î Ψ: F(X, V) = D is the set of all logically possible profiles when the set of alternatives is X and the set of cell
lineages is L.

Γ Cross-level principle: a map Γ defined on Ξ × Ψ such that for all X and L, Γ defines a lineage-tissue mapping the domain of which is
Ω(X) × F(X, L), where Ω(X) = K and F(X, L) = D such that for any A Î K and any (R1, ..., Rn) Î D, F(A, (R1, ..., Rn)) gives a ranking of
propensities for tissue fates (a tissue profile).

iff short for “if and only if”.

h, e, d short for “homeostasis”, “expansion” and “depletion”. For the tissue level these correspond to “tissue homeostasis”, “aberrant tissue”
(e.g. dysplasia), and “aging tissue” as a consequence of niche depletion. At the cell level they stand for the lineages’ capacity to
contribution towards homeostasis, clonal expansion and a reduction of stem cells.
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elements from K × D into K such that for all A Î K and all
(R1, ..., Rn) ÎD: F(A,(R1, ..., Rn)) ⊆ A, where with D we
denote the set of logically possible profiles.
An intuitive example of a cross-level principle is the

majority rule: the fate of the tissue corresponds to
the one with the greatest number of first places in the
lineages propensity rankings. (We shall not consider
situations in which ties occur since this has no bearing
on the principle result of our analysis). Another example
is dominance: the fate of the tissue always corresponds
to the profile of a particular cell lineage. While the con-
cept of dominance will play a greater role later, without
further formal analysis one can already show that the
majority rule fails to provide a contradiction-free analy-
sis. This is illustrated in Figure 3. Rather than proceed-
ing with various examples, and testing their validity, we
seek here an analysis of what is possible “in principle”.
To this end, we will specify (i) requirements that line-
age-tissue mappings should satisfy; and (ii) requirements
which ensure that the results of our analysis are univer-
sal, general or “law-like”.
With respect to the lineage-tissue mapping we identify a

minimal set of requirements so as to ensure that the
widest possible class of cross-level principles is covered.
Specifically, we require for the lineage-tissue mappings no
more than to respect unanimity: For all x and y, if xRiy for
all lineages Li, then xRy for the tissue. In other words, if
for every cell lineage the propensity for x is higher than for
y, then for the tissue, the propensity of the tissue fate
related to x should be greater than that of y.
Note that for different sets of potential fates X, the

same rule for a cross-level principle would define a

different lineage-tissue mapping. This is due to the fact
that a mathematical function (or mapping) is strictly
defined in combination with its domain. A cross-level
principle therefore defines a lineage-tissue mapping for
each set X of alternatives (and hence its family K of
non-empty finite subsets) and each set L of cell lineages
(and hence the set D of profiles). In what follows we
will therefore distinguish between alternative sets Xs
and As and discuss the consequences on lineage-tissue
mappings as well as the validity of our analysis of cross-
level principles in general. Changes to X will be dealt
with in a requirement for regularity, while changes in
A will be considered with a condition on consistency. If
X is thus some set of potential candidate fates, whereas
A Î K is a possible set of actually considered fates, our
analysis will also have to consider the elements of X\A,
which are the potential-but-not-actually-considered
fates. This is to ensure that if something is missed, this
does not make any difference to the result of our
analysis.
Regularity means, that for a given cross-level principle,

a set of actually considered fates, a set of cell lineages at
time t, and a profile (of ranked propensities) defined
over them, if there exists another reduced set of poten-
tial-but-not-actually-considered fates, then in the analy-
sis, the lineages’ propensities over the remaining
potential fates (including the actually considered ones)
and the ranking from the set of actually considered fates
should not change. In other words, we require our ana-
lysis to be independent of any other possible “universes
of fates” that one may assume. Take the example above,
where we consider three abstract fates - clonal

Figure 3 Graphical proof for the failure of the majority principle. The symbolic icons used to illustrate fates are summarized in Figure 2.
A natural way of arriving at the collective fate would be to look for majorities of some sort. For the example in this figure, for a majority of
lineages, h(omeostasis) is more feasible than d(epletion) and d more feasible than e(xpansion) - encircled in the top-left table. A rational
conclusion, relying on transitivity would be to infer that therefore h is also more feasible than e. This conclusion does however contradict a
majority of cell lineages for which e is more feasible than h - marked in the bottom-right table. The idea to aggregate cell fates by some sort of
majority principle thus leads to inconsistencies.
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expansion, homeostasis, and niche depletion. One might
argue that at this level of abstraction “everything” is pos-
sible and that the approach time lacks specificity. It is
for that reason that we here explicitly define require-
ments, like regularity, to ensure that any kind of uni-
verse of potential fates is covered by the analysis. In
other words, while the definition of X may depend on
the context and could seem to be a subjective choice,
regularity ensures that the result of our analysis would
not be influenced by the context or choice.
Following on from regularity, Bordes and Tideman

[28] showed that regularity implies another condition
referred to as independence of irrelevant alternatives
(IIA). IIA means that the analysis of rankings among the
actually considered fates should be robust in the sense
that ranking of tissue fates and the lineages’ propensity
rankings over the actually considered fates should be the
same if propensities over potential-but-not-considered
candidate fates change. IIA ensures that the analysis of
a subsystem of actually considered fates is not influ-
enced by something we do not know of. In other
words, if one would study a particular system and ana-
lyze the stemness of cell lineages, one can only con-
sider as an argument to the lineage-tissue mapping of
what we can have knowledge of. The Methods section
gives full details related to IIA.
The situation described here is similar to that of path-

way modeling in systems biology. Modeling a particular
pathway, is, in most cases, the study of a subsystem,
whose function contributes to a larger whole (e.g. signal
transduction pathways linked to cell proliferation). The
implicit assumption for these projects is usually that the
subsystem (e.g. the wnt-pathway) can be analyzed in iso-
lation. Although this is not often done, before conduct-
ing an analysis of a subsystem that is embedded into a
larger whole, one ought to specify criteria that ensure
the analysis of the subsystem will allow inferences of
greater generality.
To require a cross-level principle to be regular, or a

lineage-tissue mapping to satisfy IIA, means that for any
fixed context, that is, any given set of actually consid-
ered fates, the ranking of tissue fates should be indepen-
dent of the very existence of alternatives outside the
context, that is, independent of whether potential-
but-actually-not-considered fates exist. If such potential-
but-not-actual fates do exist, the analysis should be
independent of who they are and of what the lineages’
propensity rankings over them are.
Regularity is about the possibility of alternative sets of

potentially relevant cell fates, the differences of which
however do not affect the set of actually considered
fates. Similar, IIA is concerned with what happens to
the ranking of tissue propensities when the set of actu-
ally considered fates being given, the profile of lineage

propensities changes somehow. Furthermore, we add a
requirement for consistency to our analysis to ensure
that tissue fates can actually be determined for a given
set of alternative lineage fates. In other words, for any
two fates we require that it is possible to assess the
order of propensities (greater than or indifferent), that
there is some relation between the two. The condition
for consistency is concerned with what happens to the
ranking of tissue propensities when the profile of lineage
propensities being given, the set of actually considered
fates changes in a certain way. Consistency implies
another condition referred to as C’, and which is fully
justified in the Methods section. With C’ we ensure that
a function exists which relates lineage propensities to a
tissue fate. There is some similarity between regularity
and the consistency condition (even more so with C’).
In both cases, the profile of lineage propensities is
assumed given, and a set of fates is reduced (and for C’
the tissue fates stay the same). However, for regularity it
is the set of potential fates that is reduced in such a way
that the original set of actually considered fates is still
included in the set of potential fates after the reduction.
For C’ the set of actual candidates, is reduced in such a
way that the set of tissue fates is still included in the set
of actually considered fates.
At this point, let us consider another intuitively

appealing example for an aggregation rule, called rank-
order principle. For each cell lineage all fates are ranked
and weights (1,2,3, ...) be given in the opposite order of
the ranking - the highest weighting for the fate with the
largest propensity. For example, if there are three fates,
the highest weighting is 3. With respect to the concep-
tual difference between X and A, we can proceed with
our analysis in two ways [28]: The global interpretation
of the rank-order principle would assume that it is pos-
sible to know the propensities for the whole of X. After
weights have been assigned, the relevant tissue fates are
identified and ranked by picking those that are in the
subset A of actual fates. The tissue fate with the highest
propensity corresponds to the fate with the highest
weighting. The second interpretation is referred to as a
local rank-order aggregation rule and proceeds by deter-
mining the fates’ weighting from the restrictions of the
lineages’ propensities to a subset A of actual fates,
the choice from A being the fate(s) with the highest of
the weightings. Because for each given profile the global
interpretation of the rank-order method generates a
complete weak ordering over the whole of X, which will
be used to determine the tissue fate over the set of
actual fates, the corresponding lineage-tissue mapping
satisfies the consistency condition but fails to satisfy IIA
and regularity. The local interpretation of the rank-
order method does satisfy regularity and IIA but fails to
satisfy the consistency condition because to determine
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the ranking over a set of actual fates A, only the
lineages’ propensities restricted to A are taken into
account (no information about their propensities over
the potential-but-not-actually-considered fates is used).
Both, the intuitive majority principle and the rank-order
principle fail to provide a contradiction-free analysis: are
there any other rules that could provide an explanation
for cross-level relationships? The answer is given by the
dominance theorem, introduced in the next section.
In summary, to ensure the most general analysis, we

require the cross-level principle and the lineage-tissue
mapping to satisfy requirements for regularity, IIA, con-
sistency (including C’), and unanimity. We can now
state our main result about the relationship between the
stemness of cell lineages making up a tissue and the
future development (fate) of that tissue.

A theorem about cellular cross-level relationships
A cross-level relationship describes how the behavior of
stem cell lineages relates to the fate of the tissue. Fol-
lowing on from the considerations in the previous sec-
tion, we can now ask the following question: Are there
any reasonable cross-level principles that satisfy our
requirements? The answer is yes, but surprisingly only
one, and one in which a single cell lineage is dominant.
This can be formulated as a theorem:

THEOREM (dominance): For any tissue with two or
more cell lineages, where the capacities of each cell
lineage are related to three or more tissue fates, the
only cross-level principle (lineage-tissue mapping)
that satisfies the conditions of unanimity, regularity,
independence of irrelevant fates, and consistency is

the dominance relationship. There are no other prin-
ciples satisfying these conditions.

The surprising result is thus that despite many intui-
tively appealing rules that come to mind, none of them
would allow for a contradiction-free and consistent
analysis.
Sketch of a Graphical Proof for the Dominance Theo-

rem: A lineage is said to be dominant if the tissue pro-
file always matches this individual lineage’s profile. We
define Pi, Ri and Ii to be the “more feasible than”, “more
feasible or indifferent” and “indifferent” relations for
lineage Li. When we write P, R or I, without a subscript,
this indicates a relation for the tissue. Our diagrammatic
proof of the dominance theorem follows the proof of
Arrow’s possibility theorem in [29].
Without loss of generality, we consider two cell

lineages and use the example in Figure 4 where the pro-
pensity profiles are translated from a table into the
Euclidean plane. The dots in the plane summarize the
cell level propensity profiles, from which we wish to
infer an order of potential tissue fates. The diagram is
interpreted by comparing the positions of the points h,
e, d, relative to each other and with respect to a refer-
ence point r*, which divides the plane into four regions.
From Figure 4 we have for both lineages hP1d and hP2d
and hence unanimity, from which we infer that for the
tissue we should have hPd. By unanimity we can also
see that all points in region I are more feasible than r*
and that r* is more feasible than all points in region III.
Next we establish that all points in region II (or region

IV) must be ranked in the same way against r*. That is,
for all points r in region II, for the tissue we have either

Figure 4 Graphical proof of dominance. Without loss of generality, we consider two cell lineages at time t, with the propensity rankings
shown in the table. For the graphical presentation we translate the orderings into the Euclidean plane. Only relative positions will matter and
no actual numbers are required. The proof presented here is based on Blackorby et al. [29].
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rPr*, rIr*, or r*Pr. Consider the two fates d and h and
suppose for the tissue hPr*. By using an increasing
monotone transformation, one could map r* into itself
and h onto d, while preserving the individual rankings.
Since hPr*, we must therefore also have dPr* as well.

In other words, the whole of region II (region IV) is
ranked in the same way with respect to r* (although not
w.r.t. each other). Because the lineage-tissue mapping
will imply an ordering, there can be three ways by
which region II (region IV) is ranked with respect to r*:
indifferences, more feasible, or less feasible. Figure 5
shows that indifference can be ruled out because it leads
to a contradiction; for we have hIr* and dIr*, which
would imply (by transitivity) hId for the tissue, contra-
dicting the unanimity inference hPd from Figure 4.
In the next step it is shown that the ranking given to

region II must be the opposite from the ranking given
to region IV. Suppose region II is more feasible than r*,
one can transform h onto r* and r* onto e. Since h was
assumed to be more feasible than r*, this relationship
must be preserved by the transformation and thus r* is
more feasible than e, and hence region IV is less feasible
than r*. Note that the assumption of region II to be
more feasible, is arbitrary; if region II is less feasible
than r*, this would imply that region IV is more feasible.
Remembering our initial conclusions about regions I

and III, we notice that we can merge adjacent that are
both ranked in the same way with respect to r*. Finally,
reminding ourselves that the tissue order relation
implied by the lineage-tissue map, is one of dominance

if and only if there is an individual lineage Li such that
for all r* in the Euclidean Space ℝn, if for the lineages
ri* >ri, then for the tissue r*Pr. What we have shown in
Figure 4 and 5 is that with respect to r*, the tissue order
relation implied by the lineage-tissue mapping must lead
to one of two rankings - one in which lineage 1 domi-
nates (with assumption that region II is more feasible
than r*) or one in which lineage 2 dominates (if we had
assumed that region II is less feasible than r*). Domi-
nance for the tissue is inevitable, the only plausible
explanation (see Figure 5).
It is worth again emphasizing that the theorem is say-

ing that weakly reasonable lineage-tissue mappings other
than dominance simply do not exist - no need to try find
one - they will never be found. For further details of a
diagrammatic proof, including a demonstration that the
result holds for any number of lineages, we refer to [29].
The main objective of the present paper was to inves-

tigate dominance in cross-level (whole-part) relation-
ships of stem cell lineages and their tissue. To this end,
we established a theoretical basis for the concepts of
niche succession and monoclonal conversion. A key ele-
ment of our approach is that we turned requirements
on the cross-level principles (regularity, IIA and consis-
tency) into requirements for the analysis, not the bio-
physical process, thereby ensuring the universality of
our result. This gives the analysis an epistemological
character - allowing a result about what we can know
about the cell-tissue link, in addition to a description of
what the nature of this cross-level relationship is.

Figure 5 Graphical proof of the dominance theorem. Cont’d from Figure 4. In the upper part it is shown that indifference is not possible for
the tissue order relation. The lower part shows that we can merge adjunct regions with the same ranking, which means that we end up with
only two possibilities; in either case dominance is inevitable.
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Discussion and Conclusions
The formal analysis presented here is based on a defini-
tion of stemness that is derived from an analysis of a
lineage’s capacity to contribute towards the future devel-
opment of a tissue and hence its fate. Based on this defi-
nition we asked how one could explain the relation
between stem cell lineages and tissue fates? Considering
mild conditions that cross-level principles should satisfy
and by posing requirements to ensure that the results
are most general and that the analysis is robust, we find
that dominance by an individual lineage is the only logi-
cally feasible explanation to formulate a cross-level prin-
ciple. The theoretical finding does therefore confirms, or
is confirmed by experimental evidence for niche succes-
sion and monoclonal conversion.
Our conceptual framework is simple and yet compre-

hensive when exploring all logical possibilities. The
mathematical framework is quantitative (based on order
relations) but the analysis is also qualitative (number-
free). The level of modeling in our analysis has one con-
sequence in that it is not just about “what is”, i.e., an
ontological question, but the analysis is also about “what
we can know”, i.e., an epistemological result. In other
words, our analysis is not a description of causal
mechanisms underlying carcinogenesis; instead the ana-
lysis demonstrates that dominance is the only logical
explanation that can be given. In our context, this
means that the goal is not so much prediction than
understanding. Prediction - in the sense of knowing
how the future evolves is, of course, a desirable objective -
but in biology predictions are not synonymous with
understanding. Generating predictions is one way to test
whether this understanding is consistent with the behavior
of the system of interest.
The derivation of the relation of tissue fates as an

aggregation (consensus) of individual lineage propensi-
ties is without consideration for the mechanisms of how
the propensities for individual stem cell lineages arise.
One could describe the result as a bottom-up organiza-
tion principle, formalizing an example of emergence.
Just as the fate of the tissue is based on individual stem
cell lineages, the latter will depend on the state of the
tissue as a whole. It is this self-referential or circular
causality of the tissue environment that influences the
behavior of stem cells, which in turn constructs this
environment that makes a detailed biophysical analysis
so difficult and motivates the level and type of mathe-
matical analysis chosen here. In complex systems, such
as the intestinal tissue or a single crypt, in which multi-
levelness is a defining characteristic, cross-level relations
are in general bi-directional, i.e., bottom-up as well as
top-down. In the colon, stem cells reside within a niche,
formed by epithelial and mesenchymal cells. The tissue

level regulates stem cell behavior through paracrine
secretion of growth factors and cytokines. While our
analysis established niche succession and monoclonal
conversion as bottom-up principles, the concept of
crypt fission suggests itself as a natural candidate for a
top-down coordination process. Clonality experiments
have shown clustering of mutated, phenotypically similar
crypts together in patches. Parks et al. [30] showed that
in the small intestine and colon, administration of muta-
gens leads to the emergence of crypts populated by cells
with a different, mutated phenotype. This is preceded by
a transient rise in the frequency of crypts with a par-
tially mutated phenotype, and the disappearance of
these partially mutated crypts occurs contemporaneously
with the attainment of a plateau value of the wholly
mutated crypts. Crypt fission, which occurs rarely in
normal colons, can explain the clustering of apparently
related crypts through a process in which crypts
undergo a bifurcation, eventually leading to the forma-
tion of two daughter crypts. This process is believed to
play a central role in the massive increase in crypt num-
bers in the postnatal period and the regenerative phase
following radiation ([31] and the references therein).
The majority of adenomas greater than one crypt in size
appear to be polyclonal [15].
The formal framework and proof requires a minimum

of two stem cells and three or more alternative fates.
For intestinal crypts, our analysis thus rules out a
model of tissue homeostasis in which lost cells are
replenished by a single dominant cell that divides only
assymetrical. Recent, combined experimental and theo-
retical findings [32] suggest a stochastic picture in
which stem cells can divide symmetrically, with the cell
fate being determined after division, possibly by compe-
tition for available niche space at the crypt base. In this
setting, homeostasis is obtained by competition of cells
with respect to properties of the tissue level [33,34].
Both sets of works also showed that crypts gradually
become monoclonal.

Methods
The methods section introduces the mathematical fra-
mework, notation, definitions, and a formal proof. This
section, including the full proof of the theorem, should
be skipped upon first reading: The Results section
includes a self-contained informal and graphical version
of the proof to which the present section provides the
formal background and further mathematical details.

Order relations
A basic element of reasoning is captured by the concept
of transitivity: If z is more feasible than y and y is more
feasible than x, then z is more feasible than x. This can
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be defined in terms of an order relation, denoted P: If xPy
and yPz, then xPz. We write xPy to mean “x is more fea-
sible than y“, that is, the propensity of x is greater than
the propensity of y (w.r.t. a particular fate). If neither xPy
nor yPx is true, then we say that we are “indifferent” with
respect to x and y and write xIy, where I denotes the
indifference relation and xIy means xPy and yPx. Finally,
it is also convenient to introduce another relation, R, the
“more feasible or indifferent” relation. This relation is
also referred to as a weak ordering ("weak” because it
does not exclude indifference). This is defined as xRy if
xPy or xIy. In other words, xRy unless yPx, or x is pre-
ferred to or indifferent to y if y is not preferred to x. The
axioms on P being a preference relation now immediately
turn into properties of R: (1) for all x, y we have xRy or
yRx (i.e. R is anti-symmetric), and (2) for all x, y, z, if xRy
and yRz then xRz (i.e. R is transitive). It follows then that
(a) for all x, xRx, (b) If xPy then xRy, (c) for all x, y either
xRy or yPx, (d) If xPy and yRz then xPz. A binary relation
R is said to be complete if for all x and y in X it holds that
xRy or yRx, or both.
A framework for reasoning about cross-level-relations
The present text includes three versions of the proof: an
informal sketch, a graphical and a formal version. The
proof of the dominance theorem is inspired by Arrow’s
impossibility theorem in collective choice theory
[35-37]. Chapters 3 and 3* of Sen’s more general
account [37] provide a concise proof Arrow’s original
“General (Im)Possibility Theorem” of 1963 - the version
that is relevant here. What we take from collective
choice theory is the idea of cross-level relationships,
developing a formal, quantitative and yet number-free
conceptual framework in which one can analyze law-like
principles about what is ‘in principle’ possible. Like
Arrow’s impossibility theorem, the dominance theorem
is astounding because of the relative simplicity of the
analysis with which one can achieve such general, fun-
damental result. The use of order relations enables us to
analyze a system, as complex as the intestinal crypt, in
its entirety and comprehensively.
The following formal definitions are identical to

Bordes and Tideman [28] as is the proof of the domi-
nance theorem presented here is formally identical to
the proof of Arrow’s impossibility theorem. Because the
semantics employed here for tissue organization differ
from collective choice theory, we have included all
details, rather than giving a reference, to make the text
self-contained.
Let Ξ be some ‘universal’ set of sets of alternative fates

such that X Î Ξ is one set of potential fates. Similar, let
Ψ be some ‘universal’ set of lineages such that L Î Ψ is
some possible set of cell lineages. We denote by Ω a
function that defines for a given set X the set K of non-
empty finite subsets of X. In other words, for all X Î Ξ:

Ω(X) = K. Furthermore, for all X Î Ξ, all L Î Ψ: F(X,
L) = D is the set of all logically possible profiles when
the set of alternatives is X and the set of cell lineages is
L. We are now in a position to formalize an cross-level
principle as the function Γ defined on Ξ × Ψ such that
for all X and L, it realizes a lineage-tissue mapping, the
domain of which is Ω(X) × F(X, L), where Ω(X) = K
and F(X, L) = D such that for any A Î K and any
(R1, ..., Rn) Î D, F(A, (R1, ..., Rn)) gives a tissue profile.
We shall now look at what influence the difference

between X and A can have. In particular, we shall
require that our analysis does not depend on what set of
potentially relevant fates, X, is chosen. Towards this we
require the mathematical definition of a restriction: If R
is any binary relation on a set S, and if T is a subset of
S, R|T is the restriction of R to T.
DEFINITION (regularity). A cross-level principle Γ is

regular iff for all (X, L) and (Y, W) in the domain of its
lineage-tissue mapping, with F = Γ (X, L) and G = Γ(Y,
W), if W=L and Y ⊆ X, then for all B Î Ω(Y) (and
hence B belong to Ω(X) since Ω(Y) ⊆ Ω(X))) and all
(R1, ..., Rn) Î F(X, L),

F B R R G B R Rn Y n Y, , , , , ,1 1 ( )( ) = ( )( )
Regularity thus means, that for a given cross-level prin-

ciple, a set of actually considered fates, a set of cell lineages
at time t and a profile (of ranked propensities) defined
over them, if there exists another reduced set of potential-
but-not-actually-considered fates, then in the analysis, the
lineages’ propensities over the remaining potential fates
(including the actually considered ones) and the ranking
from the set of actually considered fates should not
change. In other words, we require our analysis to be inde-
pendent of any other possible “universes of fates” that one
may assume. Namely, while the definition of X may
depend on the context and could seem to be a subjective
choice, regularity ensures that the result of our analysis
would not be influenced by the context or choice.
Following on from regularity, Bordes and Tideman

[28] proved that regularity implies another condition
referred to as independence of irrelevant alternatives
(IIA):
DEFINTION (IIA). X and L being given and hence

K = Ω(X) and D = F(X, L), a lineage-tissue mapping
F satisfies Independence of Irrelevant Alternatives (IIA)
iff for all B Î K and all (R1, ..., Rn), R R Dn1

’ ’, ,( ) ∈ , if
for all L L R Ri i B i B∈ =: ’ , then

F B R R F B R Rn n, , , , , , .’ ’
1 1 ( )( ) = ( )( )

IIA means that the analysis of rankings among the
actually considered fates should be robust in the sense
that ranking of tissue fates and the lineages’ propensity
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rankings over the actually considered fates should be the
same if propensities over potential-but-not-
considered candidate fates change. IIA ensures that the
analysis of a subsystem of actually considered fates is
not influenced by something we do not know of. If one
would study a particular system and analyze the stem-
ness of cell lineages, one can only consider as an argu-
ment to the lineage-tissue mapping of what we can have
knowledge of.
To require a cross-level principle to be regular or a

lineage-tissue mapping to satisfy IIA means that for ‘any
fixed context’, that is, any given set of actually consid-
ered fates, the ranking of tissue fates should be indepen-
dent of the very existence of alternatives outside the
context, that is, independent of whether potential-but-
actually-not-considered fates exist, and hence, if such
potential-not-actual fates do exist, the analysis should be
independent of who they are and of what the lineages’
propensity rankings over them are.
While regularity is about the possibility of alternative

sets of potentially relevant cell fates, the differences of
which however do not affect the set of actually consid-
ered fates, we now look at another requirement that
ensures our analysis is not sensitive to alternative sets of
actually considered fates. Similar, IIA is concerned with
what happens to the ranking of tissue propensities when
the set of actually considered fates being given, the pro-
file of lineage propensities changes somehow.
We need to add one more requirement to our analysis

to ensure that tissue fates can actually be determined
for a given set of alternative lineage fates. In other
words, for any two fates we require that it is possible to
assess the order of propensities (greater than or indiffer-
ent), that there is some relation between the two.
DEFINITION (consistency). A lineage-tissue mapping

F with domain Ω(X) × F(X, L), taking (K, D) as an argu-
ment, satisfies the consistency condition iff for all (R1, ...,
Rn) Î D and all A, B Î K, if A ⊆ B and A ∩ F(B, (R1, ...,
Rn)) ≠ Ø, then

F A R R A F B R Rn n( ,( , , )) ( ,( , , )).1 1 = ∩

The condition for consistency is concerned with what
happens to the ranking of tissue propensities when the
profile of lineage propensities being given, the set of
actually considered fates changes in a certain way.
Bordes and Tideman [28] refer to IIA as an interpro-

file property and to consistency as an intraprofile prop-
erty. Following them further, we state a consequence of
the consistency condition above and shall denote this
condition C’:

C F B R R A A F A R R F B Rn n’ : ( ,( ,..., )) , ( ,( ,..., )) ( ,( ,...If then1 1 1⊆ ⊆ = ,, )).Rn

With C’ we ensure that a function exists with which
we can aggregate lineage propensities into a tissue fate.
There is some similarity between regularity and the

consistency condition (even more so with C’). In both
cases, the profile of lineage propensities is assumed
given, and a set of fates is reduced (and for C’ the tissue
fates stay the same). However, for regularity it is the set
of potential fates that is reduced in such a way that the
original set of actually considered fates is still included
in the set of potential fates after the reduction. For C’
the set of actual candidates is reduced in such a way
that the set of tissue fates is still included in the set of
actually considered fates.

Proof of the dominance theorem
For informal version and a graphical sketch of the proof
we refer to the Results section of the present text.
Because our mathematical definitions closely follow
ideas from voting and collective choice theory, further
material can be found the literature surrounding
Kenneth Arrow’s Impossibility Theorem. The rich litera-
ture related to social choice and voting theory provides
various alternative demonstrations of the proof (e.g.
[38]). Our presentation of the proof for the dominance
theorem is analog to Sen’s ([37], Chapter 3*) revision of
Arrow’s (1963) proof of his “General (Im)Possibility
Theorem” in [36]. We strongly recommend the inter-
ested reader to consult the discussion in [28] before
reading [36]. Their discussion also clarifies a number of
confusing issues surrounding Arrow’s original proof of
the theorem. We do however insist upon Arrow’s origi-
nal requirement for transitive, reflexive and complete
(connected) relations. While in collective choice theory
one considers subjective choices, we here deal with
objective, biophysical processes and what we can know
about them. Whether or not we could actually quantify
an order relation ‘in practice’ (the beauty of the proof
being that this is not necessary) there is always some-
thing that can be compared ‘in principle’ and hence the
requirement for (or assumption that there always is) a
complete, transitive order relation for the tissue fates.
It is asserted that the collective fate of a tissue

depends on propensities of individual stem cell lineages
towards the alternative fates under consideration. We
might say that the future development of the tissue (its
fate) emerges from the lineages that stem cells generate.
We are here concerned with the question of how the
propensities of individual lineages are aggregated into a
ranking of fates for the tissue.
A collective fate rule that specifies orderings for the

tissue (society of cells) is called a lineage-tissue mapping
(LTM). A LTM is a particular type of cross-level princi-
ple such that each ranking of tissue fates (referred to as
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the tissue profile) is a reflexive, transitive and complete
order relation.
There are a couple of “reasonable” (mild) conditions

that one would require from the analysis of cross-level
principles. Condition of unrestricted domain: It is
required that whatever principle of going from indivi-
dual lineage profiles to a collective tissue profile is dis-
cussed, the LTM must be free of contradiction and
inconsistencies for any logically possible set of individual
orderings (lineage profiles). One would also require that
any LTM must satisfy the weak Pareto principle, i.e., if
every lineage ranks x over y, then for the tissue x should
rank higher to y. Independence of irrelevant alternatives:
The tissue fate over a set of alternatives must depend
on the ordering of the individual lineages only over
those particular alternatives, and not on anything else.
Suppose the ranking is between x and y, and individual
rankings of x and y remain the same, but the rankings
of x over some other alternative z changes, or the rank-
ings of x over another alternative w alters. What is
required is that the tissue fate ranking between x and y
should remain the same, independent of those “irrele-
vant alternatives”. In the context of Arrow’s Theorem
we refer to [28] for a comprehensive discussion of this
requirement. As noted before, the semantics of the ana-
lysis here differs substantially from social/collective
choice and voting theory, while the mathematical rea-
soning is identical.
Finally, one hypothesis would be to add the require-

ment that a LTM should not be “dominant”, that is,
there should be no individual lineage such that when-
ever in lineage x ranks higher than y, then the tissue
must rank x over y, irrespective of the rankings of other
lineages. The remarkable result of the theorem, going
back to Kenneth Arrow [35], is that there is no LTM
that can simultaneously satisfy all these mild conditions.
The result surprises because of its universal character -
it is not a matter of finding a suitable LTM, there sim-
ply will never be one! Intuitive cross-level principles,
such as the majority principle or the rank-order method
can be shown to fail these criteria, lead to inconsisten-
cies, or contradictions for particular examples (see
Results section). For a principle to have the character of
a law, it must work for all logically possible cases.
DEFINITION 1. A cross-level principle is a lineage-

tissue mapping (LTM) F, the range of which is restricted
to the set of orderings over X.
CONDITION 1 (unrestricted domain): The domain of

the rule F must include all logically possible combina-
tions of individual orderings.
CONDITION 2 (Pareto principle): For any pair, x, y in

X, for all lineages i, if xPiy, then for the tissue xPy.
Let xRy represent a binary relation, specified over a set

S such that the relation specifies a subset R of S×S. An

element x in S is a “greatest” element of S with respect
to a binary relation R if and only if (iff) for all y, if x in
S, then xRy. The set of greatest elements in S is called
choice set, denoted C(S, R).
CONDITION 3 (independence of irrelevant alterna-

tives): Let R and R’ be the tissue binary relations deter-
mined by F corresponding respectively to two sets of
individual lineage profiles, (R1,...,Rn) and R Rn1

’ ’, ,( ) . If
for all pairs of alternatives x and y in a subset S of X,
xRiy iff xR’iy, for all i, then C(S, R) and C(S, R’) are the
same.
CONDITION 4 (non-dominance): There is no indivi-

dual i such that for every element in the domain of F,
for all x, y in X, if xPiy then xPy.
THEOREM: There is no LTM satisfying conditions

C1, C2, C3 and C4.
The proof is prepared by two further definitions and a

lemma.
DEFINITION 2. A set of lineages V is almost decisive

for x against y if xPy whenever xPiy for every i in V, and
yPix for every i not in V.
DEFINITION 3. A set of lineages V is decisive for x

against y if xPy when xPiy for every i in V.
A lineage J is picked out to denote A(x, y) to mean that

J is almost decisive for x against y, and denote D(x, y) to
mean that J is decisive for x against y. Note that D(x, u)
implies A(x, u).
Lemma. If there is some individual J who is almost

decisive for any ordered pair of alternatives, then a LTM
satisfying conditions C1, C2, and C3 implies that J must
be dominant.
Proof. Suppose that lineage J is almost decisive for

some x against some y, i.e., there exists x, y in X such
that A(x, y). Let z be another alternative, and let i refer
to all lineages other than J. Assume xPJy and yPJz, and
that yPix and yPiz. Now, if A(x, y) and xPJy and yPix,
then xPy. Further, if yPJz and yPiz, then yPz from C2.
But, if xPy and yPz, then xPz by the transitivity of the
strict order relation P.
The result xPz is arrived at without any assumption

about the propensity rankings of lineages other than J
regarding x and z, although it is assumed that yPiz and
yPix. If these ranking w.r.t. x and y, and y and z have
any effect on the tissue fate between x and z, we violate
C3. Hence, xPz must be independent of these particular
assumptions. Hence it must be the consequence of xPJz
alone irrespective of the other orderings. But this means
that J is decisive for x against z,

if thenA x z D x z( , ), ( , ). (1)

Now, suppose zPJx and xPJy, while zPix and yPix. By
C2, we must have zPx. And since A(x, y) and xPJy and
yPix, we conclude that xPy. By transitivity, zPy. And this
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with only zPJy, without anything being specified about
the rankings of the other lineages between y and z.
Hence, J is decisive for z against y. The argument is ana-
log to that used to arrive at (1),

if thenA x z D z y( , ), ( , ). (2)

Interchanging y and z in (2), we can similarly show that

if thenA x z D y z( , ), ( , ). (3)

By replacing x for z, z in place of y, and y in place of
x, we obtain from (1),

if thenA y z D y x( , ), ( , ). (4)

Now,

if A(x,y), then D(x,z), from (1)
then A(x,z), from Definitions 2 and 3.
then D(y,z), from (3)
then A(y,z),
then D(y,x), from (4).

Therefore,

if thenA x y D y x( , ), ( , ). (5)

By interchanging x and y in (1), (2), and (5), we get

if then and andA y x D y z D z x D x y( , ), ( , ) ( , ) ( , ). (6)

Next,

if A(x,y), then D(y,x), from (5)
then A(y,x).

Hence from (6), we have

if then and andA x y D y z D z x D x y( , ), ( , ) ( , ) ( , ). (7)

Combining (1), (2), (5) and (7), one sees that A(x, y)
implies that lineage J is decisive for every ordered pair
of alternative fates from (x, y, z), given conditions C1,
C2, C3. Thus J dominates over any set of three alterna-
tive fates containing x and y.
Considering now a larger set of alternatives, take any

two alternatives u and v out of the entire set of alterna-
tives. If u and v are so chosen that they are the same as
x and y, then of course D(u, v) holds. If one of u and v
is the same as one of x and y, say, u and x are the same
but not v and y, then take the triple consisting of x (or
u), y and v. Since A(x, y) holds, it again follows that
D(u, v), and also D(v, u).

Finally, let both u and v be different from x and y.
Now, first take (x, y, u), and we get D(x, u), which
implies A(x, u). Next, take the triple (x, u, v). Since A(x,
u), it follows from above that D(u, v), and also D(v, u).
Thus A(x, y) for some x and y, implies D(u, v) for all
possible ordered pairs (u, v). Therefore lineage J domi-
nates, and the Lemma is proved.
In the final step the theorem is proved by using the

Lemma.
Proof. It is shown that given conditions C1, C2, and C3,

there must be a lineage which is almost decisive over
some ordered pair of alternatives. We make the contrary
supposition and show that it leads to an inconsistency.
For any pair of alternatives, there is at least one deci-

sive set, the set of all lineages, as a consequence of C2.
Thus, for every pair of alternatives there is also at least
one almost decisive set, since a decisive set is also
almost decisive. Compare all the sets of lineages that are
almost decisive for some pair-wise choice, which is not
necessarily the same pair, and from them choose the
smalles one (or one of the smallest ones). Let this set be
called V, and let it be almost decisive for x against y.
If V contains only one lineage, then we need not pro-

ceed further. If, however, it contains two or more
lineages, we divide V into two parts, V1 containing a
single individual, and V2 containing the rest of V. All
individuals not contained in V form the set V3.
Due to C1, we can assume any logically possible com-

bination of lineage rankings. We pick the following:

(1) For all i in V1, xPiy and yPiz.
(2) For all j in V2, zPjx and xPjy.
(3) For all k in V3, yPkz and zPkx.

Since V is almost decisive for x against y, and since
every linage in V ranks x higher than y, and every line-
age not in V does the opposite, we must have xPy.
Between y and z, only V2 members rank z higher than y,
and the rest y over z, so that if zPy, then V2 must be an
almost decisive set. But V was chosen as the smallest
almost decisive set, and V2 is smaller than that (being a
proper subset of it). Hence zPy does not hold. Thus, for
R to be complete as needed for condition C1, yRz must
hold. But, if xPy and yRz, then xPz. But only the indivi-
dual in V1 ranks x over z, the rest rank z over x, so that
a certain lineage has turned out to be almost decisive.
Hence there is a contradiction in the original supposi-
tion. Note, the proof works even if V3 is empty because
as will be the case if V contains all the lineages, which
has not been ruled out. The theorem now follows from
the Lemma since a lineage almost decisive over some
pair must be dominant. Q.E.D.
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