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Abstract

Background: Comparing metabolic profiles under different biological perturbations has become a powerful
approach to investigating the functioning of cells. The profiles can be taken as single snapshots of a system, but
more information is gained if they are measured longitudinally over time. The results are short time series
consisting of relatively sparse data that cannot be analyzed effectively with standard time series techniques, such
as autocorrelation and frequency domain methods. In this work, we study longitudinal time series profiles of
glucose consumption in the yeast Saccharomyces cerevisiae under different temperatures and preconditioning
regimens, which we obtained with methods of in vivo nuclear magnetic resonance (NMR) spectroscopy. For the
statistical analysis we first fit several nonlinear mixed effect regression models to the longitudinal profiles and then
used an ANOVA likelihood ratio method in order to test for significant differences between the profiles.

Results: The proposed methods are capable of distinguishing metabolic time trends resulting from different
treatments and associate significance levels to these differences. Among several nonlinear mixed-effects regression
models tested, a three-parameter logistic function represents the data with highest accuracy. ANOVA and
likelihood ratio tests suggest that there are significant differences between the glucose consumption rate profiles
for cells that had been–or had not been–preconditioned by heat during growth. Furthermore, pair-wise t-tests
reveal significant differences in the longitudinal profiles for glucose consumption rates between optimal conditions
and heat stress, optimal and recovery conditions, and heat stress and recovery conditions (p-values <0.0001).

Conclusion: We have developed a nonlinear mixed effects model that is appropriate for the analysis of sparse
metabolic and physiological time profiles. The model permits sound statistical inference procedures, based on
ANOVA likelihood ratio tests, for testing the significance of differences between short time course data under
different biological perturbations.

Background
Innovations in molecular biology, miniaturization, and
robotics have led to genetic, proteomic and metabolo-
mic data in quantities never seen before. Microarrays
exhibit the expression state of thousands of genes in a
single experiment, 2-D gels and other proteomic meth-
ods identify subtle changes in the protein profile of an
organism under altered conditions, while techniques of
mass spectrometry are capable of quantifying hundreds
of metabolites in one spectrogram. Most of these new
tools have been utilized by biologists to obtain snapshots
of the state of a cell population, and these snapshots

have been compared to controls in order to gain
insights into the responses of cells to various stimuli or
perturbations. Thus, a typical experiment might com-
pare the gene expression in a cancer cell to the corre-
sponding expression profile in normal, healthy cells.
Comparisons between molecular profiles of perturbed

cells and controls have vastly extended our understand-
ing of the healthy and pathological functioning of cells.
Their drawback is the singular nature of measurements
at only one time point, which limits insights into the
scope of a response and leaves doubt whether the best
time point had been selected for data collection.
Responding to this disadvantage of snapshot compari-
sons, recent technical advances in molecular biology
have rendered it possible, as well as practically and eco-
nomically feasible, to execute high-throughput
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measurements in time series. For instance, many data
are now available characterizing the genomic responses
of microorganisms to a variety of stimuli over a period
of time [1]. Similarly, non-invasive nuclear magnetic
resonance (NMR) measurements can characterize the
time development of metabolites in intact cells over a
span of hours, with data taken every minute or in some
cases even every 10 to 20 seconds [2]. These time series
data contain enormous amounts of information, because
they are systemic as well as dynamic and capture the
cellular response in a more comprehensive fashion than
measurements at single time points can achieve.
Furthermore, time series data constrain each other in
some sense, for instance by facilitating the identification
and interpretation of outliers and measurement errors.
Biological time series data contain more information

than snapshot data but they cannot necessarily be evalu-
ated with the typical methods of time series analysis,
such as autocorrelation and frequency domain techni-
ques, because these were often developed for much
longer and denser time series, as they are found, for
instance, in weather recordings. In comparison to such
data, presently available biological data are very sparse.
Indeed, many time series consist of maybe a dozen
quantities, measured at a handful of time points, and
replicates are usually scarce. This paucity of data,
accompanied by minimal redundancy, immediately cre-
ates statistical challenges that have not been addressed
in a systematic fashion. For instance, in the analysis of
microarray time series [3], genes are often merely clus-
tered visually into time trends, such as monotone
increase/decrease, S-shaped increase/decrease, or initial
increase/decrease followed by a gradual return to the
initial state. For metabolic time series, even fewer meth-
ods are available, and it is not often possible to state
with a sufficient level of confidence and objectivity
whether two time series are significantly different.
We encountered this issue in the analysis of in vivo

NMR time series measurements in the baker’s yeast Sac-
charomyces cerevisiae [4] and the lactic acid bacterium
Lactococcus lactis [5]. Investigating these systems under
many different conditions, we found it difficult to decide
how much of the differences between two time courses
were due to normal variation between cell cultures and
experimental settings and how much was pointing
toward true differences in the cells’ response dynamics.
We therefore decided to develop sound statistical meth-
ods for assessing the significance of differences between
biological time series.
Specifically, we analyzed the following situation. We

grew yeast cells under optimal conditions to a particular
population density and measured the uptake of their
favorite substrate, glucose, over time. We compared
these time-dependent uptake profiles with those of the

same cells exposed to persistent heat, which in yeast
evokes a systemic heat stress response. We then
returned the cells to optimal temperature and measured
the uptake dynamics under recovery conditions. The
simple question we asked was whether the uptake char-
acteristics are significantly different among the three
situations of ambient optimal temperature, heat, and
recovery. In addition, we were interested in answering
the question of whether preconditioning the cells with
heat during growth would affect their responses to heat
later in life.
While the biological implications are of relevance in

themselves, the more important focus here is on more
or less generic analytical tools for scarce time series in
biology. Thus, we propose in the following the adapta-
tion of statistical techniques to the significance analysis
of differences between relatively sparse biological time
series data.

Methods
Biological Methods
Strain and growth conditions
Saccharomyces cerevisiae strain JK93da was kindly sup-
plied by Dr. Ashley Cowart, Medical University of South
Carolina. Cells were grown up to an OD600 (cell density)
of approximately 2 in G0 minimal medium [6] supple-
mented with 0.2% yeast extract, in a 5-liter fermentor
(100 RPM, pH 6.5 under continuous flushing with air,
pO2 > 80%). We compared two sets of preconditions.
Under control conditions, the cells were grown at an
optimal temperature of 30°C throughout, whereas cul-
tures preconditioned by heat stress were prepared as fol-
lows: cells were initially grown under control conditions
(30°C) up to an OD600 of approximately 1.3; at this
point the temperature was increased to 39°C (heat
stress) and the cells were allowed to grow for further 40
min to a final OD600 of about 2. The actual experiments
followed afterwards.
Online measurements of glucose uptake by carbon-13 NMR
(13C-NMR)
Cells were harvested, centrifuged (10 min, 8,600 × g, 4°
C), washed (5 mM potassium phosphate buffer (KPi),
pH 6.5), and re-suspended in 50 mM KPi buffer con-
taining 6% (v/v) 2H2O and antifoam agent. The cell sus-
pension (typically 60 mg dry weight/mL) was transferred
to an 80-mL fermentor, maintained at 30°C, and con-
nected to a 10-mm NMR tube by a circulating system
[7]. The culture was pumped through the NMR tube at
a rate of 30 mL/min and the pH was maintained at 6.5
by automatic addition of NaOH or HCl. At time zero,
[1-13C] glucose (65 mM final concentration) was added
and the glucose concentration monitored by 13C-NMR
until substrate depletion, with a time resolution of 30
seconds. The glucose was typically consumed within 10
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minutes, and the cells began to starve for about 20 min-
utes. Afterwards, the temperature was raised to 39°C,
and a second pulse of glucose was added. Once glucose
was exhausted again, the temperature was set back to
30°C and a third pulse of glucose supplied. The 13C-
NMR time series were acquired on a Bruker DRX500
spectrometer using a quadruple-nucleus probe head as
previously described [6].
Experimental Data
Six glucose uptake experiments were performed. They
were essentially the same, but differed slightly in the
amount of biomass at harvesting and, more importantly,
in the temperature of the medium, which was initially
optimal (30°C), then elevated to heat stress (39°C), and
again reverted back to optimal (30°C) during recovery
after heat stress. In the following, the experiments will
be denoted as NG1 (normal growth; 83.85 mg/ml), NG2
(normal growth; 57.05 mg/ml), NG3 (normal growth;
60.3 mg/ml), NG4 (normal growth; 61.55 mg/ml), PC1
(preconditioned; 73.45 mg/ml), and PC2 (precondi-
tioned; 42.8 mg/ml), where the values in parentheses
correspond to the biomass concentration used in each
experiment.
The cultures for experiments NG2, NG3, and NG4

were grown to the target optical density (OD) of 2.0 and
hence the respective biomasses are similar. Cells for
NG1 were grown under the same conditions but har-
vested later (OD = 2.8), thereby starting the actual
experiments with a larger population size. As a conse-
quence, the substrate was used up faster in this case. In
order to check whether there are differences in future
metabolic profiles of the cells which are grown under
stressful conditions some of the cells (experiments PC1
and PC2) were heat stressed during the final 40 minutes
of growth prior to the in vivo NMR experiments (see
also [4]). In all experiments, the glucose concentrations
were recorded at equal time intervals of 30 seconds,
starting roughly at times 3, 33 and 63 minutes for opti-
mal, heat stress and recovery conditions, respectively.
Figure 1 shows the original glucose consumption curves,
stating when glucose was added (arrows), and Figure 2
the corresponding rates of change in glucose concentra-
tion for each experiment for different time points. As
explained below, the time profiles were centered for the
statistical analysis.

Statistical Methods
General objective
The main objective of this study is to develop statistical
tools that allow a biologist to decide whether differences
in similar time courses (here, the change of glucose con-
centrations with respect to time) are statistically signifi-
cant (here, with respect to different temperatures of the
medium and preconditioning) or simply due to

experimental and biological noise or intrinsic variability.
This objective is generically of great interest in systems
biology, because it directly affects the construction of
mechanistic models underlying the investigated time
courses [4]. In particular, the statistical outcome of the
analysis forms the basis for the inclusion or exclusion of
variables in such models, and statistical significance will
directly lead to new hypotheses as to what biological
factors or mechanisms might be causing the differences.
In the illustrative example here, the secondary specific

task is to determine whether environmental (heat) pre-
conditioning during population growth affects the
dynamics of glucose uptake later in the life of the yeast
cultures. As expected, glucose consumption increases
with the amount of biomass. However, an unanswered
question is whether the uptake profile is significantly
different under altered environmental conditions. Thus,
we intend to analyze the following questions: First, if
one adjusts for the differences in initial biomass, are the
glucose uptake profiles essentially the same or do they
significantly differ under optimal, heat stress and recov-
ery conditions? And secondly, do the uptake profiles dif-
fer between cells that were either grown under optimal
conditions (30°C) or preconditioned by heat stress (39°
C) during growth? These questions are not trivial to
answer, because standard methods of statistics are not
usually designed to test hypotheses regarding entire
time profiles for data available at only few time points.
Formulation of specific hypotheses
The first specific hypothesis of interest is that the
dynamic profile of glucose consumption depends on the
current ambient temperature. The second hypothesis is
that glucose uptake profiles for cells grown under opti-
mal conditions differ from the cells grown under heat
stress conditions (preconditioning). In order to test
these hypotheses, we need to select a stochastic model
that fits the dynamics of the rate of change of glucose
concentration with respect to time. Effects caused by
moderate differences in initial biomass are accounted
for by formulating this factor as a covariate in the sto-
chastic models.
To facilitate the selection of a suitable stochastic

model for the glucose uptake dynamics, we first plot the
rate of change of glucose concentration (mM/min) with
respect to centered time, i.e., the difference between the
actual time recorded and the mean time of the experi-
ment (in minutes), under the three different tempera-
tures 30°C, 39°C, 30°C for all experiments (Figure 2).
These plots indeed seem to suggest that initial biomass
(see dataset D1) as well as both the ambient tempera-
ture and the preconditioning with heat during growth
might have an effect on the glucose uptake dynamics.
Specifically, it appears that heat stress is associated with
a higher rate of change in glucose concentration.
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Although there are considerable variations in the
uptake curves among experiment types, essentially all
the plots follow a reverse S-shape if the first one or two
data points are ignored. These first points correspond to
a delay of uptake initiation that is caused by the experi-
mental set-up and the fact that the cell population has
to adjust to the new conditions. In the following, the
early data points will be included in the analysis, but the
initial rise in the rate of glucose uptake will not be con-
sidered as structurally important.
Model selection
It is evident from the plots of the data that a nonlinear
model is required to capture the dynamics of the time
courses. Accommodating this requirement, as well as
statistical feasibility, we chose nonlinear mixed-effects
(NLME) models for our analysis, which are best known

for analyses of repeated measures and, in particular,
longitudinal data. In NLME analysis, some or all of the
fixed and random effects occur nonlinearly in the model
function. NLME models can be regarded as extensions
of linear mixed-effects models in which the conditional
expectation of the response, given the fixed and random
effects, is allowed to be a nonlinear function of the coef-
ficients. At the same time, NLME models can also be
viewed as extensions of nonlinear regression models for
independent data, in which random effects are incorpo-
rated in the coefficients to allow them to vary by experi-
ment type (hereafter referred to as type), thus inducing
correlation within the types. The latter aspect is particu-
larly pertinent for our modeling task.
The NLME model for repeated measures proposed by

[8] can be thought of as a hierarchical model, where the

Figure 1 Glucose uptake profiles for the six experiments under optimal temperature, heat stress, and recovery temperature.

Figure 2 Rate of change of glucose concentration (mM/min) with respect to centered time (in minutes); under the three different
temperatures 30°C (optimal), 39°C (heat stress) and 30°C (recovery) for the six different experiments.
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jth observation in the ith type and corresponding to kth

level of a covariate is modeled as

yijk = f (ϕij, νijk) + εijk, i = 1, 2, ...,M,

j = 1, 2, ...,ni, k = 1, 2, ..., l. (1:1)

Here M is the number of experimental types, ni is the
number of observations on the ith type, l describes the
levels of the primary covariate, f is a general, real-valued,
differentiable function with a type-specific parameter
vector �ij and a covariate vector νijk, and εijk is a nor-
mally distributed within-type error term. The function f
is nonlinear in at least one component of the type-speci-
fic parameter vector �ij, which is modeled as

ϕij = Aijβ + Bijbi, bi ∼ N(0,ψ). (1:2)

In this formulation, b is a p-dimensional vector of
fixed effects and bi is a q-dimensional random effects
vector associated with the ith type with variance-covar-
iance matrix ψ. The matrices Aij and Bij are of appropri-
ate dimensions and depend on the type and possibly on
the values of some covariates at the jth observation.
The model (1.2) was first proposed in [9]. It assumes

that observations corresponding to different experimen-
tal types are independent and that the within-type errors
εijk are independently distributed as N(0,s2) and inde-
pendent of the bi. However, if necessary, this assump-
tion of independence and homoscedasticity for the
within-type errors can be relaxed.
In accordance with the general shape of the time

course data, we postulate three possible nonlinear mod-
els for f, namely a simple exponential decay curve, a
three-parameter logistic model, and a four-parameter
logistic model.
Notation
As in Eq. (1.1), let i denote the index for the experiment
type, and j the index for the observation number within
each experiment type. Thus i = 1,2,3,4,5,6 represents the
six experiment types and j = 1,2,...,ni, where, ni is the
number of observations in the ith experiment type.
Furthermore, let yij denote the rate of change of glucose
concentration for experiment type i of the jth measure-
ment and tij the centered time recorded for the ith

experiment type and the jth measurement. In the mathe-
matical representation below, as well as in the model
building and selection process, we initially ignore the
effects due to temperature and preconditioning during
cell growth. However, the effect of these covariates,
namely temperature, preconditioning and the tempera-
ture-preconditioning interaction, is incorporated in the
best model and presented later (see Eq. 3.5).
Model 1: Exponential Decay Curve The exponential
model has plenty of theoretical and empirical support.

In particular, if the dynamics of glucose (y) followed a
simple transport process (from the medium into the
cells) or a first-order kinetic process, it would be
described as a linear differential equation of the type
ẏ = −k.y, whose solution and rate of change are expo-
nential functions. Although, the exponential decay
model is common for the first-order kinetic equations,
it can fail outside the range of the data. Hence we chose
instead a more flexible model with more theoretical and
empirical support, namely a three-parameter exponential
decay curve that does not necessarily have zero as its
asymptote. Thus, in this first case we express the rate of
change of glucose concentration yij of experiment type i
at time tij for i = 1,2,3,4,5,6 j = 1,2,..., ni

yij = λ1 + λ2e
−tij/λ3 + εij. (2:1)

The function contains three parameters, of which, l1
is the right asymptote, l2 is the total amount of glucose
ultimately taken up, and l3 is the time needed to take
up half of the maximum amount [10]. εij is a normally
distributed (N(0,s2)) error term, which is assumed to be
identically and independently distributed (i.i.d.). l1 and
l2 are linear parameters while l3 is a nonlinear para-
meter. Additional file 1 Table S1 in the Appendix,
shows that the three-parameter model fits the data sig-
nificantly better than the simple two-parameter model.
Model 2: Three-parameter Logistic Model The three-
parameter logistic model expresses the rate of change in
glucose concentration yij of experiment type i at time tij as

yij = λ1/(1 + e−(tij−λ2)/λ3) + εij. (3:1)

Like the previous one, this model is governed by three
parameters. l1 is the maximum rate of change for glu-
cose concentration l2 is the time at which the maxi-
mum rate of change for glucose concentration attains
half of its maximum value, and l3 is the reciprocal of
the decay rate. (As generic support for the appropriate-
ness of this model, see [9] and [10]). As before, εij is an
i.i.d. N(0,s2) error term. l1 is a linear parameter, while
l2 and l3 are nonlinear parameters.
The format in Eq. (3.1) is not often seen in biochemis-

try, where nonlinear models are preferred if they can be
interpreted mechanistically and if their parameters have a
natural physical interpretation. For instance, a typical
description of the glucose uptake process might be in the
form of a kinetic Michaelis-Menten process of the type

dy
dt

= − Vmaxy
KM + y

. (3:2a)

This differential equation can be solved analytically,
but the explicit solution of y as a function of time is
rather convoluted. However, the simpler three-
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parameter logistic model (3.1) offers a very good
approximation. For instance, if the parameters of the
Michaelis-Menten function (3.2*) are arbitrarily chosen
as Vmax = 2.4 KM = 3.3 and y(0) = 8, the logistic model
(3.1) with l1 = 11.6, l2 = 1.4 and l3 = -1.85 results in a
graph that is essentially indistinguishable from the solu-
tion of the differential equation in (3.2*) (Figure 3).
Thus, within minimal experimental noise, the simple
three-parameter logistic function models a Michaelis-
Menten-type uptake function with sufficient accuracy.
Model 3: Four-parameter Logistic Model The four-
parameter logistic model is given by the mathematical
formula

yij = λ1 + (λ2 − λ1)/(1 + e(λ3−tij)/λ4) + εij. (4:1)

Here, l1 is the horizontal right asymptote, l2 is the
horizontal left asymptote (baseline) and l3 is the time
that corresponds to the rate of glucose consumption
halfway between the asymptotes ([9] and [10]). l4 is the
reciprocal of the decay rate and εij is again an i.i.d. N(0,
s2) error term. In Eq. (4.1), l1 and l2 are linear para-
meters, while l3 and l4 are nonlinear parameters. To
resolve the issue of lack of identifiability, we require that
l4 must be strictly positive. Clearly, (3.1) is a special
case of (4.1) with l1 = 0.
The parameters of the models (2.1), (3.1), and (4.1) are

obtained with nonlinear least squares (nls) regression.
To fit a separate nonlinear model to each dataset and
thus allowing the individual effects (experiment types
including temperatures) to be incorporated in the para-
meter estimates, we express the models (2.1), (3.1) and
(4.1) as

yij = λi1 + λi2e
−tij/λi3 + εij. (2:2)

yij = λi1/(1 + e−(tij−λi2)/λi3) + εij. (3:2)

yij = λi1 + (λi2 − λi1)/(1 + e(λi3−tij)/λi4) + εij. (4:2)

where, as before, the εij’s are i.i.d. N(0,s2) errors. The
functions were subsequently used in our NLME model
with a mixture of fixed and random effects. In the statis-
tical software package R [11], models (2.2), (3.2), and
(4.2) are considered nlsList models, since their para-
meters are estimated with nonlinear least squares
methods.
To account for fixed and random effects in a non-

linear mixed-effects model, it is useful to reformulate
the models (2.2), (3.2) and (4.2) respectively as

yij = λ̄1 + (λi1 − λ̄1)+
[λ̄2 + (λi2 − λ̄2)]e−tij/[λ̄3+(λi3−λ̄3)] + εij

, (2:3)

yij = (λ̄1 + (λi1 − λ̄1))/
(1 + e−(tij−[λ̄2+(λi2−λ̄2)]/[λ̄3+(λi3−λ̄3)])) + εij

, (3:3)

yij = (λ̄1 + (λi1 − λ̄1)) + ([λ̄2+
(λi2 − λ̄2)] − [λ̄1 + (λi1 − λ̄1)])/
(1 + e([λ̄3+(λi3−λ̄3)]−tij)/[λ̄4+(λi4−λ̄4)]) + εij

, (4:3)

where the λ̄ quantities denote the means of the para-
meters for each type. In nlsList model(s), the deviations
of the coefficients from their means are treated as para-
meters that need to be estimated. Mixed-effects models,

0 7.5 15
0

5

10

Figure 3 The three-parameter logistic model (3.1; solid line) provides an excellent approximation for the solution of the Michaelis-
Menten model (symbols) in (3.2*). See text for parameter values.
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on the other hand, represent these deviations from the
mean value as random effects, treating each of the types
as a sample from a population. The nonlinear mixed-
effects versions of (2.2), (3.2) and (4.2) are therefore

yij = (β1 + bi1) + (β2 + bi2)e−tij/(β3+bi3) + εij

λi =

⎛
⎜⎝

λi1

λi2

λi3

⎞
⎟⎠ =

⎛
⎜⎝

β1

β2

β3

⎞
⎟⎠ +

⎛
⎜⎝
bi1
bi2
bi3

⎞
⎟⎠ = β + bi (2:4)

yij = (β1 + bi1)/(1 + e[−(tij−(β2+bi2))/(β3+bi3)]) + εij

λi =

⎛
⎜⎝

λi1

λi2

λi3

⎞
⎟⎠ =

⎛
⎜⎝

β1

β2

β3

⎞
⎟⎠ +

⎛
⎜⎝
bi1
bi2
bi3

⎞
⎟⎠ = β + bi (3:4)

yij = (β1 + bi1) + ((β2 + bi2) − (β1 + bi1))/

(1 + e((β3+bi3)−tij)/(β4+bi4))) + εij

λi =

⎛
⎜⎜⎜⎝

λi1

λi2

λi3

λi4

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

β1

β2

β3

β4

⎞
⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎝

bi1
bi2
bi3
bi4

⎞
⎟⎟⎟⎠ = β + bi (4:4)

The fixed effects b1,b2,b3 (and b4) represent the mean
values of the parameters for each type, li is the popula-
tion of experiment types and the random effects, bi1,bi2,
bi3 (and bi4), represent the deviations of the li from
their population average. li’s contain both fixed and
random effects. The random effects are assumed to be
distributed normally with mean 0 and variance-covar-
iance matrix ψ. Random effects corresponding to differ-
ent types are assumed to be independent. The within-
type errors εij are assumed to be independently distribu-
ted as N(0,s2) for different i, j and to be independent of
the random effects. Models (2.4), (3.4), and (4.4) are
considered nonlinear mixed-effects (NLME) models
since both fixed and random effects are incorporated in
the models. The nonlinear mixed-effects models (2.4),
(3.4), and (4.4) offer a compromise between the rigid
nonlinear least squares (nls) models (2.1), (3.1) and (4.1)
and the over-parameterized nlsList models (2.2), (3.2)
and (4.2). They accommodate variations for each experi-
mental type through the random effects, but tie the dif-
ferent types together through the fixed effects and the
variance-covariance matrix ψ. A crucial step in the
model-building of mixed-effects models is deciding
which of the coefficients (parameters) in the model need
random effects to account for their between-type varia-
tion and which can be treated as purely fixed effects.

We now fit a nonlinear regression model for the rate
of change of glucose concentration with respect to time
for each temperature. For this purpose, we require for
each temperature the same starting time for glucose
uptake. Since we are interested in modeling and drawing
statistical inferences for the rate of change in glucose
concentration and the collection times are equally
spaced for each temperature, we consider the starting
times for each temperature to be the ones for which the
first glucose concentration data are available. Further-
more, it simplifies the computation, without loss of gen-
erality, if we use centered times, by considering the
differences between recorded times and the mean time
of the experiment type as in Figure 2.
Initially ignoring the effects of temperature, we fit the

nonlinear least squares model of the data to determine
which of the three model functions ((2.1), (3.1) or (4.1))
best fits the time trends in the data. Then we fit non-
linear least squares curves for each experiment type in
order to determine if the models require random effects
(nlsList models (2.2), (3.2), (4.2)). The main purpose of
this preliminary analysis provided by nlsList is to suggest
a structure for the random effects to be used in a non-
linear mixed-effects regression model. Another impor-
tant advantage of using an nlsList object is that it
automatically provides initial estimates for the fixed
effects, the random effects, and the random-effects cov-
ariance matrix.
Following the model-building process for nonlinear

mixed-effects models proposed by [9], we first checked
all assumptions regarding the random effects, tested for
heteroscedasticity of the within-type error variance and
the correlation of the random effects. We then per-
formed a likelihood ratio test, and checked the Akaike
Information Criterion (AIC) as well as the Bayesian
Information Criterion (BIC) to select the nonlinear
regression model that best fits the data. In this case, it
turned out to be the three-parameter logistic model.
The model parameters were obtained with the method
of maximum likelihood estimation, and the parameter
estimates are reported by fitting the best nonlinear
regression model with fixed effects terms; temperature,
preconditioning and the temperature-preconditioning
interaction included in the model as covariates. Thus,
the mathematical formula for the three-parameter logis-
tic nonlinear model with temperature, preconditioning
and temperature-preconditioning interaction term as
covariates for all the parameters is given by

yij = (β1 + γ11xi11 + γ12xi12 + θ1xi2+

ξ11xi11xi2 + ξ12xi12xi2)/(1+

e
−(tij−(β2+γ21xi11+γ22xi12+θ2xi2+ξ21xi11xi2+ξ22xi12xi2))/
(β3+γ31xi11+γ32xi12+θ3xi2+ξ31xi11xi2+ξ32xi12xi2) ) + εij

(3:5)
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xi11 =
{
1 Temp1 = heat
0 Temp1 = re cov ery

,

xi12 =
{
1 Temp2 = re cov ery
0 Temp2 = heat

and

xi2 =
{
1 precond = present
0 precond = absent

where, as before,b1, b2 and b3 represent the mean
values of the parameters for each type li in the popula-
tion of experiment types and the random effects, and bi1,
bi2 and bi3 represent the deviations of the li from their
population average. Furthermore, let k denote the index
for the covariate temperature used while observing glu-
cose consumption. Thus, Tempk represents the specific
temperature index k = 1,2 that corresponds to heat stress
or recovery conditions, respectively. Note that the tem-
perature ‘optimal’ is used as reference category. The
index precond represents the two preconditioning levels
corresponding to either optimal or heat stress conditions
during the late growth of the cell populations, before the
actual experiments started. g11, g21 and g31 (g12, g22 and
g32) represent the coefficients for the difference between
the optimal temperature category and heat stress (or
recovery). θ1, θ2 and θ3 represent the coefficients for the
difference between optimal condition and precondition-
ing during initial growth. ξ11, ξ21 and ξ31 (ξ12, ξ22 and ξ32)
represent the coefficients for the interaction between the
heat stress-preconditioning and the temperatures while
observing glucose consumption.

Methods for Testing the Temperature Effect
Analysis of variance (ANOVA) was used to test if tem-
perature has an effect on the glucose dynamics. For
detecting the overall difference in the dynamics due to
differences in temperatures, we considered two models,
namely a full model, in which parameters of the non-
linear regression model vary with respect to temperature
and biomass concentration, and a reduced model with
constant and temperature independent parameters. The
likelihood ratio test was performed for assessing the
overall temperature effect, and characterized with a p-
value.
For pair-wise comparisons, we considered appropriate

subsets of the data. Initially, we used ANOVA with the
approximate F-test to test the joint significance of the
fixed effects introduced in the model. The F-test for
joint significance was performed, and p-values were
reported for the test as well.
When using the F-test, the assumption of normality

should be justified. However, it is extremely difficult to

check for normality in the case of nonlinear mixed-
effects models. In fact, as the random effects are them-
selves not observable, a direct check of their normality
is not possible. Moreover, the complicated way in which
the random effects enter a nonlinear mixed model
makes it impossible to check the assumption of normal-
ity of the errors. An interesting discussion on this speci-
fic topic can be found in Hartford and Davidian (see
[12]). These authors mention the fact that, because the
random effects are unobservable latent model compo-
nents, no straightforward diagnostic is available to check
the validity of the normality assumption. However, huge
simulations have shown that estimation of fixed para-
meters may not be severely compromised (e.g., [13])
even if the assumption of normality of the random
effects is violated.

Methods for Testing the Effect of Preconditioning
To investigate the effect of heat preconditioning during
growth, we used a similar procedure as before for test-
ing the effect of temperature on glucose uptake
dynamics, namely the ANOVA likelihood ratio test. In
addition, the approximate F-test was used for testing the
joint significance of fixed effects terms in the model.

Simulation Study
To illustrate and justify the overall usefulness of the
proposed method of fitting a three-parameter logistic
model to the glucose uptake profiles we carried out a
robustness analysis with the help of a simulation study.
The steps in the simulation study were as follows:
In the first step, we simulated ε∗

ij ∼ N(0, σ 2) i =
1,2,3,4,5,6; j = 1,2,...,ni. We used the estimated value of
s = 0.3103 from the dataset. We further simulated the
random effects b∗

i1, b
∗
i2, b

∗
i3 ∼ N(0,ψ). We used multiples

of the estimates of the variance-covariance matrix of the
random effects as obtained from the real data as ψ to
generate the simulated data. We also used the parameter
estimates of the fixed effects coefficients directly from
the data to generate the simulated data. Thus, the simu-
lated data (y∗ij, tij) were generated from the model

y∗ij = (β1 + b∗
i1)/(1 + e[−(tij−(β2+b∗

i2))/(β3+b∗
i3)]) + εij.

A sample size of 1000 was used. The parameters were
estimated from each simulated data set. We systemati-
cally changed the random effects variances ψ, simulated
data sets multiple times, and estimated the parameters
of the three-parameter logistic model for every instance.
Specifically, parameter estimates of the fixed effects
terms, bias and standard error for different choices of
ψ’s are reported.
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Results
Results for Model Fitting and Statistical Methods of
Significance Analysis
Model Fitting
We employed all NLME models with the three-para-
meter exponential and the two logistic functions to fit
all data simultaneously. Among them, the three-para-
meter logistic model had the lowest AIC and BIC values
of 1911.637 and 1953.981, respectively (see Additional
file 1 Table S2, Additional file 1 Table S3, and Addi-
tional file 1 Table S4 in the Appendix). All but one of
the parameter estimates (intercept not included) of this
model were found to be significant at the 5% signifi-
cance level (Table 1), indicating that the three-para-
meter logistic model provides overall the best
simultaneous fit for all data. Indeed, the logistic mixed-
effects nonlinear regression model fits the glucose
uptake dynamics through the rate of change of glucose
concentration rather well for all given datasets (Figure
4). The (initial) temperature condition ‘optimal’ is con-
sidered as the reference temperature and referred to as
the intercept of the model.
The intercept terms (b1.Intercept, b2.Intercept, and b3.

Intercept) represent the mean parameter estimates for
the optimal temperature condition for the six experi-
ment types. Specifically, b1.Intercept is the maximum
value for the rate of change of glucose concentration for
the optimal temperature averaged over the six experi-
ment types. For the optimal temperature, b2.Intercept is
the time at which the uptake rate curve attains half of
its maximum value averaged over the six experiment
types. The estimated b3.Intercept parameter represents
the average rate of glucose utilization in the six experi-
ment types for the optimal temperature.
The parameter estimates associated with an increase

in temperature from optimal to heat stress for the six
experiment types are quantified by b1.Heat, b2.Heat and

b3.Heat. The parameter estimate b1.Heat, on average for
the six experiment types, accounts for an increase of
0.65 in the maximum rate of change in glucose concen-
tration under heat stress compared to optimal tempera-
ture, which is not significant at the 5% significance level
(p = 0.2533). However, the b2.Heat parameter estimate
is negative and larger than b2.Intercept, thereby imply-
ing that on average the time at which the rate curve
attains half of its maximum due to heat stress is shorter
than under optimal temperature conditions. The esti-
mate is negative with a very low p-value (p < 10-4),
which implies that glucose is taken up significantly fas-
ter during heat stress compared to the optimal tempera-
ture. The time interval remains the same for the
optimal and the heat stress category, which indicates
that the decay rate of the three parameter logistic curve
is larger in the heat stress category. This conclusion is
supported by the estimate of parameter b3.Heat, which
is positive and significant in heat stress with a very
small p-value. This result implies that the rate of decay
during heat stress is faster than under optimal tempera-
ture conditions.
The effect of a return to the optimal temperature dur-

ing recovery after heat stress is captured by the para-
meter estimates b1.Recovery b2.Recovery and b3.
Recovery. The estimates are negative in sign with very
low p-values implying that the glucose uptake profile
during recovery has on average a lower maximum value
as depicted by b1.Recovery, a shorter time period to
attain half of its maximum (b2.Recovery) and a slower
rate of decay (b3.Recovery). This translates into a flatter
uptake rate curve during recovery as compared to the
initial phase of optimal ambient temperature.

Results of the Significance Analysis
Table 2 shows the results of an ANOVA for testing the
effect of ambient temperature on the rate of change of
glucose consumption over time. The likelihood ratio test
results in a very small p -value (<0.0001), which again
suggests with high confidence that temperature signifi-
cantly affects the glucose uptake dynamics.
For the second part of the analysis, testing the effect

of heat preconditioning on the glucose uptake dynamics
over time, the likelihood ratio test for the ANOVA
results in a very small p-value (p = 0.0004) indicating
that preconditioning significantly affects glucose uptake
dynamics. This result also suggests that the three-para-
meter logistic mixed-effects model explains the glucose
uptake characteristics for this situation as well.
To investigate the overall effect of preconditioning, we

considered two models as before: a full model and a
reduced model. In the full model the parameters
obtained with nonlinear regression depend on precondi-
tioning, and temperature, whereas in the reduced model

Table 1 Parameter estimates for the three-parameter
logistic model with temperature included in the model
as covariate.

Parameter Estimate t-value p-value

b1.(Intercept) 10.4096 16.1326 0.0000

b1.Heat 0.6456 1.1436 0.2533

b1.Recovery -2.0912 -4.1018 0.0000

b2.(Intercept) -0.8622 -1.5464 0.1227

b2.Heat -0.9627 -6.9235 0.0000

b2.Recovery -0.7040 -3.2702 0.0011

b3.(Intercept) -1.0846 -6.0598 0.0000

b3.Heat 0.5000 6.4934 0.0000

b3.Recovery -0.3239 -2.6566 0.0081

The optimal condition is considered as the reference temperature.
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the parameters depend only on temperature, which is
accounted for as the primary covariate. The results are
again significant (Table 3).
We can furthermore investigate the interaction effect

between temperature and preconditioning. In this case,
the full model is formulated in such a fashion that the
parameters of the model depend on temperature, precon-
ditioning and the temperature-preconditioning interac-
tion effect, whereas the parameters of the reduced model
depend on temperature and preconditioning as the only
fixed effects terms. Our results indicate that the interac-
tion effect of temperature and preconditioning is highly
significant (p < 0.0001) at the 5% significance level, which
implies that preconditioning and later heat stress interact
significantly and lead to a combined effect on the glucose
uptake profiles (see Additional file 1 Table S5 in the
Appendix for ANOVA results). The three-parameter
logistic mixed-effects model again explains glucose
uptake dynamics very well for this situation.

The effect of initial biomass on glucose uptake
dynamics was investigated following a similar procedure
as above. Our results show that the p-value for the like-
lihood ratio test is very small (p < 0.0001) indicating
that the amount of cell biomass at harvest significantly
affects glucose uptake kinetics (see Additional file 1
Table S6 in the Appendix for ANOVA results). For this
scenario, the parameters of the full three-parameter
logistic mixed-effects nonlinear regression model vary
with respect to temperature and the amount of biomass
harvested, while the parameters in the reduced model
depend only on temperature.

Pair-wise Comparisons
In addition to the overall assessments, it is also possible
to execute pair-wise comparisons between different tem-
perature conditions during glucose uptake. For these
comparisons, one condition needs to be selected as refer-
ence, and as before we choose the optimal temperature

Figure 4 Plots of observed data (blue circles; adjusted) and time courses (red lines) obtained from a simultaneously fitted three-
parameter logistic model in the implementation of a reduced model of Eq. (3.5) with temperature as the only covariate. No
measurements were taken during recovery in experiment NG3. Notice that NG1 (right column), while normally grown, started with a
substantially higher biomass than NG2-NG4. PC1-PC2 indicate preconditioned cells.

Table 2 Results of ANOVA and the overall likelihood
ratio test for determining whether the effect of
temperature on glucose uptake is significant.

Model Df AIC BIC logLik Test L.Ratio p-
value

Full 36 937.4367 1089.876 -432.7186

Reduced 30 1117.0356 1244.068 -528.5178 1 vs
2

191.5988 <0.0001

Table 3 Results of ANOVA and the overall likelihood
ratio test for determining whether heat stress during
growth significantly affects the glucose uptake dynamics.

Model Df AIC BIC logLik Test L.Ratio p-
value

Full 24 990.3122 1091.938 -471.1561

Reduced 21 1002.7044 1091.627 -480.3522 1 vs.
2

18.3923 0.0004
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for this purpose. The analysis is achieved with an approx-
imate F-test for testing the joint significance of the terms
in the models. The main results consist of very small p-
values (p <0.0001) that indicate significant differences
between all pairs of conditions (Table 4). The low p-
values in all three cases demonstrate that the added tem-
perature terms in the final models are highly significant
in all cases. Interestingly, the glucose uptake dynamics
also differs between optimal and recovery conditions.
The significance of including temperature in the

model indicates that a substantial part of the type-to-
type variation in the dynamics of glucose uptake is
explained by pair-wise differences in temperature. In
other words, the fixed effects terms introduced in the
model to explain the temperature variability in the para-
meter estimates are significantly different from zero at
the 5% significance level. Since the result of the F-test is
highly significant, we can employ an additional t-test in
order to identify exactly which parameters are signifi-
cant and which are not in explaining the type-to-type
variability in the model. Table 4 also identifies the p-
value for the approximate F-test for testing the effect of
preconditioning in the model as very small (p = 0.0033),
which indicates that the fixed effect term (optimal or
heat stress during growth), which was introduced into
the model to explain type-to-type variability due to pre-
conditioning, is significantly different from zero.
As indicated earlier, heat stress conditions during cell

culture growth affect the dynamics of glucose consump-
tion. In Table 5 the intercept terms (b1.Intercept, b2.Inter-
cept, and b3.Intercept) represent the parameter estimates
averaged over the six experiment types under optimal con-
ditions, whereas the preconditioning terms (b1.Precondi-
tioning, b2.Preconditioning, and b3.Preconditioning)
represent the corresponding parameter estimates for com-
paring cell cultures grown under heat conditions relative
to those grown under optimal conditions and averaged
over the six experiment types. For instance, the parameter
estimate b1.Preconditioning indicates the difference in the
maximum value for the glucose uptake rate curve averaged

over the six experimental types for cultures grown under
heat conditions compared to cells grown under optimal
temperature conditions. Its negative value indicates that
the average maximum for the rate of glucose utilization is
lower for preconditioned cells than for control cells grown
under optimal condition, implying a lower uptake rate for
cultures grown under heat conditions compared to those
grown under optimal conditions. The parameter estimate
b2.Preconditioning reflects the difference in the time at
which the maximum rate of glucose utilization attains half
of its value. Again, this value results from averaging over
the experimental types for the preconditioned cells com-
pared to controls. Its positive value indicates that, on aver-
age, the preconditioned cells take more time to consume
glucose and hence had a slower glucose uptake than the
control cells, which confirms a result from an earlier mod-
eling study that used entirely different methods of analysis
[4]. The parameter estimate b3.Preconditioning is the
mean difference in the scale of glucose uptake for the cells
grown under heat versus control conditions.

Results of the Simulation Study
In order to study the robustness of the parameter esti-
mates using the nonlinear mixed-effects model for the
rate of glucose uptake that was deemed best (the three-
parameter logistic model) we used a simulation study.
We checked the performance of the results over multi-
ple variance-covariance matrices ψ and report the
results for two representative cases where the variance-
covariance parameter matrices are multiples of ψ, which
were estimated directly from the data:

ψ2 = 0.001 ∗ ψ =

⎛
⎝0.001159 0 0

0 0.001313 0
0 0 0.000398

⎞
⎠

and

ψ3 = 0.01 ∗ ψ =

⎛
⎝0.011588 0 0

0 0.013126 0
0 0 0.003982

⎞
⎠

Table 4 Approximate F-test; for joint significance of the
fixed effects terms (temperature and preconditioning) in
the model.

Fixed Effect Comparison NumDF denDF F-value P-
value

Temperature Optimal & Heat
Stress

3 325 118.6734 <0.0001

Temperature Optimal &
Recovery

3 331 51.3787 <0.0001

Temperature Heat Stress &
Recovery

3 331 56.1397 <0.0001

Preconditioning Absence &
Presence

3 499 4.6458 0.0033

Table 5 Parameter estimates for the three-parameter
logistic model with preconditioning included in the
model as covariate.

Parameter Estimate t-value p-value

b1.(Intercept) 11.5740 11.3163 0.0000

b1.Preconditioning -3.0639 -1.7608 0.0789

b2.(Intercept) -2.2904 -3.8724 0.0001

b2.Preconditioning 2.4782 2.3383 0.0198

b3.(Intercept) -0.8490 -5.1658 0.0000

b3.Preconditioning -0.6293 -1.9784 0.0484

Cell cultures grown under cold conditions are considered as the reference
category.
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The estimated biases and standard deviations of the
fixed effects parameters are reported in Tables 6 and 7
respectively. Estimated biases and standard deviations
both remain quite small and are therefore acceptable.
For other values of the parameters, the parameter esti-
mates are also robust, which suggests that the method
works reasonably well (results not reported).

Discussion and Conclusions
We have developed stochastic non-linear regression
models to fit and analyze sparse biological time course
data. In the application shown here, these data were
generated with NMR methods. They describe the
dynamics of glucose uptake by yeast cells at different
temperatures. Some of the cells in the study were grown
under optimal control conditions, while others were pre-
conditioned with heat treatment during growth. To
facilitate strict comparisons, we used centered time,

which took advantage of the fact that the time intervals
for data collection were the same for all experimental
set-ups and avoided problems caused by different start-
ing times in the various experiments.
The main goal of the study was to develop rigorous

statistical tests to assess the effects of temperature and
preconditioning on the observed temporal glucose
uptake profiles. To achieve this goal, we designed non-
linear mixed-effects regression models and analyzed
them with customized ANOVA and maximum likeli-
hood ratio tests.
The results indicate that a change in temperature

from optimal to heat stress conditions (30°C to 39°C)
produced significant differences in glucose uptake pro-
files. Specifically, the increase in temperature had a posi-
tive effect [14] on the rate of glucose uptake, while a
corresponding decrease in temperature from heat stress
to recovery resulted in a reduction in rate of glucose
uptake. However, the recovery profiles were found to be
different from the initial profiles (initial optimal condi-
tion), although the temperature was the same. We also
determined that preconditioning with heat during cell
growth resulted in significant differences in the glucose
uptake profiles later in life. These differences presum-
ably reflect a preparation of the cells to survive similar
stresses [15,16] and [17] and to recover in a timely man-
ner. From a methodological point of view, the results
indicate that the methods described here are able to
detect subtle difference in time course data from normal
and stressed cells.
The statistical methods presented in this paper reach

far beyond tests for the effects of different stress condi-
tions. In fact, it appears that the exact same statistical
procedures should be applicable and very useful for
finding significant differences in any short biological
time course data of a similar format. For instance, it
seems that temporal expression profiles of genes or pro-
teins from high-throughput experiments could be clus-
tered by pathways and then analyzed with the proposed
methods to discover differences between normal and
disease conditions.
The estimation of parameter values from biological

time series data is not a trivial problem, and the estima-
tion algorithms for nonlinear mixed-effects are compu-
tationally complex and often provide less accurate
inference than for linear effects models. Furthermore,
nonlinear regression models require starting estimates
for the fixed effects coefficients. Determining reasonable
starting parameter estimates is somewhat of an art and
not intuitive in many situations. Nevertheless, the con-
cepts presented here are quite general, and algorithms
exist in statistical software packages like R for their
implementation and analysis. Finally, this type of analy-
sis, like almost all dynamic modeling efforts in systems

Table 6 Parameter estimates for the simulation study
with the three parameter logistic model with random
effect generated from N (0, 0.001*estimated ψ from the
data).

Parameter Simulation
parameter
values

Simulated
parameter
estimate

Estimated
Bias

Estimated
Standard
Error

b1.Intercept 10.4096 10.4321 -0.0225 0.0724

b1.Heat 0.6456 0.6146 0.0311 0.0956

b1.Recovery -2.0912 -2.1051 0.0138 0.1058

b2.Intercept -0.8622 -0.8665 0.0043 0.0347

b2.Heat -0.9627 -0.9559 -0.0068 0.0399

b2.Recovery -0.7040 -0.6986 -0.0055 0.0663

b3.Intercept -1.0846 -1.1007 0.0161 0.0277

b3Heat 0.5000 0.5128 -0.0128 0.0320

b3.Recovery -0.3239 -0.3332 0.0093 0.0524

Table 7 Parameter estimates for the simulation study
with the three parameter logistic model with random
effect generated from N (0, 0.01*estimated ψ from the
data).

Parameter Simulation
parameter
values

Simulated
estimate

Estimated
Bias

Estimated
Standard
Error

b1.Intercept 10.4096 10.3636 0.0460 0.0595

b1.Heat 0.6456 0.6663 -0.0207 0.0802

b1.Recovery -2.0912 -2.0240 -0.0673 0.0853

b2.Intercept -0.8622 -0.8440 -0.0182 0.0275

b2.Heat -0.9627 -0.9732 0.0105 0.0320

b2.Recovery -0.7040 -0.6898 -0.0143 0.0512

b3.Intercept -1.0846 -1.1172 0.0326 0.0224

b3Heat 0.5000 0.5040 -0.0039 0.0246

b3.Recovery -0.3239 -0.3288 0.0050 0.0387
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biology, requires the choice of a parametric model. It is
unclear how one could get around this requirement,
which is a challenge for about any modelling study in
systems biology. One could potentially use canonical
forms, such as piecewise power-law functions [18], but
while these would be slightly more generic, they would
still be parametric.

Additional material

Additional file 1: Appendix. This file provides additional model
comparisons tables. These tables explain the choice of best model, the
test of interaction effect, the test of biomass concentration as well as
comparing the two and three parameter exponential models.
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